Freight Performance Measures Analysis of 30 Freight Botilenecks

March 2009

Prepared by the American Transportation Research Institute

Freight Performance Measures Analysis of 30 Freight Bottlenecks

Prepared by
The American Transportation Research Institute

Principal Investigator:
Jeffrey Short, M.S.
Senior Research Associate
American Transportation Research Institute
Atlanta, GA

Co- Principal Investigators:

Racquel Pickett, M.S. Research Associate
American Transportation Research Institute
St. Paul, MN

Jenna Christianson, B.A.
Research Assistant
American Transportation Research Institute
St. Paul, MN

950 N. Glebe Road
Arlington, VA 22203
(703)838-1966
atri@trucking.org
www.atri-online.org

ATRI BOARD OF DIRECTORS

Mr. Douglas G. Duncan
Chairman of the ATRI Board
President \& CEO
FedEx Freight
Memphis, TN
Mr. Michael S. Card
President
Combined Transport, Inc.
Central Point, OR
Mr. Edward Crowell
President \& CEO
Georgia Motor Trucking Association
Smyrna, GA
Mr. Hugh H. Fugleberg
President \& COO
Great West Casualty Company
South Sioux City, NE

Mr. Ludvik F. Koci
President
Penske Transportation
Components
Bloomfield Hills, MI
Mr. Chris Lofgren
President \& CEO
Schneider National, Inc.
Green Bay, WI
Mr. Gregory L. Owen
Head Coach \& CEO
Ability/ Tri-Modal Transportation
Services
Carson, CA
Mr. Tim Solso
Chairman \& CEO
Cummins Inc.
Indianapolis, IN

Mr. Douglas W. Stotlar President \& CEO
Con-way Inc.
San Mateo, CA
Mr. Steve Williams
Chairman \& CEO
Maverick USA, Inc.
Little Rock, AR
Ms. Rebecca M. Brewster
President \& COO
American Transportation
Research Institute Atlanta, GA

Honorable Bill Graves
President \& CEO
American Trucking Associations
Arlington, VA

2009-2010 RESEARCH ADVISORY COMMITTEE

Mr. Don Osterberg RAC Chairman
Schneider National, Inc.
Mr. Paul Baute
Grammer Industries, Inc.
Mr. Philip L. Byrd, Sr.
Bulldog Hiway Express

Mr. Michael Conyngham
International Brotherhood of Teamsters
Mr. John Culp
Maverick USA, Inc.
Mr. Chad England
C.R. England

Ms. Sheila D. Foertsch
Wyoming Trucking Association
Mr. David Foster
Southeastern Freight Lines
Dr. Kathleen Hancock, PE, PhD
Virginia Polytechnic Institute and State University

Mr. Stephen A. Keppler
Commercial Vehicle Safety Alliance

Mr. Dick Landis
HELP, Inc.
Ms. Trina Martynowicz
U.S. Environmental Protection

Agency-Clean Energy and Climate
Change Office
Mr. Jeffrey J. McCaig
President \& CEO
Trimac Transportation, Inc.
Mr. Ed Miller
Maryland DOT

Ms. Jennifer Morrison

National Transportation Safety Board
Mr. Michael Naatz
YRC Worldwide Enterprise
Services, Inc.
Mr. Steve L. Niswander
Groendyke Transport, Inc.

Dr. Laurence R. Rilett, PhD University of Nebraska-Lincoln

Mr. Wellington (Rocky) F. Roemer, III
Wellington F. Roemer Insurance, Inc.

Mr. Jim Runk
Pennsylvania Motor Truck
Association
Mr. Tom Weakley
Owner-Operator Independent
Drivers Association Foundation
Mr. Scott Wombold
Pilot Travel Centers
Mr. Greer Woodruff
J.B. Hunt Transport Services, Inc.

TABLE OF CONTENTS

INTRODUCTION 4
RESEARCH METHODOLOGY 6
RESEARCH OUTCOME 7
CONCLUSIONS 10
APPENDIX ONE 11
TABLES
Table 1: Original List of Worst U.S. Freight Bottlenecks 5
Table 2: Example of Total Freight Congestion Value Calculation for a Single Freight Bottleneck 8
Table 3: Ranking of Freight Bottleneck Severity Based on ATRI Analysis 9
FIGURES
Figure 1: Map - Chicago I-80 and I-94 14
Figure 2: Map - Fort Lee, NJ: I-95 at SR4 17
Figure 3: Map - Chicago, IL: I-90/I-94 (Edens Interchange) 20
Figure 4: Map - Atlanta, GA: I-85 at I-285 23
Figure 5: Map - New York City: I-95 26
Figure 6: Map - Nashville, TN: I-65/I-40 29
Figure 7: Map - Industry, CA: SR-60/57 Interchange 32
Figure 8: Map - Ontario: l-10 at I-15 35
Figure 9: Map - Houston, TX: I-45 at US-59 38
Figure 10: Map - Houston, TX: I-45 at 610 41
Figure 11: Map - Atlanta, GA: I-20 at I-85/75 44
Figure 12: Map - Phoenix, AZ: I-10 at I-17 (The Stack) 47
Figure 13: Map - Washington, DC: Interstates 495/95 50
Figure 14: Map - Los Angeles, CA: I-710 at l-105 53
Figure 15: Map - Columbus, OH: I-70 at I-71 56
Figure 16: Map - Oakland, CA: I-80 at I-580 59
Figure 17: Map - Atlanta, GA: I-85/75 (Brookwood Interchange) 62
Figure 18: Map - Alameda, CA: I-880 at l-238 65
Figure 19: Map - Baltimore, MD: I-95 at I-695 (South) 68
Figure 20: Map - El Paso, TX: I-10 at l-110 (South) 71
Figure 21: Map - Denver, CO: I-25 at I-76 74
Figure 22: Map - San Antonio, TX: I-10 at I-410 77
Figure 23: Map - Atlanta, GA (North): I-285 at I-75 80
Figure 24: Map - Chicago, IL: I-280 at I-355 83
Figure 25: Map - Phoenix, AZ: I-10 (Mini-Stack) 86
Figure 26: Map - Los Angeles: I-110 at I-105 89
Figure 27: Map - Anaheim, CA: SR-91 at SR-55 92
Figure 28: Map - Ft. Lauderdale, FL: I-95 at I-595 95
Figure 29: Map - Long Beach, CA: I-405 at I-605 98
Figure 30: Map - Los Angeles, CA: SR-134 at SR-2 101
CHARTS
Chart 1: Weekday Speed by Time: Chicago I-80 at I-94 13
Chart 2: Weekday Speed by Time: Fort Lee, NJ: I-95 at SR4 16
Chart 3: Weekday Speed by Time: Chicago, IL: I-90/I-94 (Edens Interchange) 19
Chart 4: Weekday Speed by Time: Atlanta, GA: I-85 at I-285 22
Chart 5: Weekday Speed by Time: New York City: I-95 25
Chart 6 Weekday Speed by Time: Nashville, TN: I-65/I-40 28
Chart 7: Weekday Speed by Time: Industry, CA: SR-60/57 Interchange 31
Chart 8: Weekday Speed by Time: Ontario: I-10 at I-15 34
Chart 9: Weekday Speed by Time: Houston, TX: I-45 at US-59 37
Chart 10: Weekday Speed by Time: Houston, TX: I-45 at 610 40
Chart 11: Weekday Speed by Time: Atlanta, GA: I-20 at I-85/75 43
Chart 12: Weekday Speed by Time: Phoenix, AZ: I-10 at I-17 (The Stack) 46
Chart 13: Weekday Speed by Time: Washington, DC: Interstates 495/95 49
Chart 14: Weekday Speed by Time: Los Angeles, CA: I-710 at I-105 52
Chart 15: Weekday Speed by Time: Columbus, OH: I-70 at I-71 55
Chart 16: Weekday Speed by Time: Oakland, CA: I-80 at I-580 58
Chart 17: Weekday Speed by Time: Atlanta, GA: I-85/75 (Brookwood Interchange) 61
Chart 18: Weekday Speed by Time: Alameda, CA: I-880 at I-238 64
Chart 19: Weekday Speed by Time: Baltimore, MD: I-95 at I-695 (South) 67
Chart 20: Weekday Speed by Time: El Paso, TX: I-10 at I-110 (South) 70
Chart 21: Weekday Speed by Time: Denver, CO: I-25 at I-76 73
Chart 22: Weekday Speed by Time: San Antonio, TX: I-10 at I-410 76
Chart 23: Weekday Speed by Time: Atlanta, GA (North): I-285 at I-75 79
Chart 24: Weekday Speed by Time: Chicago, IL: I-280 at I-355 82
Chart 25: Weekday Speed by Time: Phoenix, AZ: I-10 (Mini-Stack) 85
Chart 26: Weekday Speed by Time: Los Angeles: l-110 at l-105 88
Chart 27: Weekday Speed by Time: Anaheim, CA: SR-91 at SR-55 91
Chart 28: Weekday Speed by Time: Ft. Lauderdale, FL: I-95 at I-595 94
Chart 29: Weekday Speed by Time: Long Beach, CA: I-405 at I-605 97
Chart 30: Weekday Speed by Time: Los Angeles, CA: SR-134 at SR-2 100

INTRODUCTION

In 2008 the American Transportation Research Institute (ATRI) conducted an analysis of 30 U.S. freight bottlenecks using a unique truck position database and Freight Performance Measures (FPM) analysis techniques and tools.

The 30 bottlenecks analyzed, which are shown in the original rank order in Table 1, were provided to ATRI from an external freight bottleneck research effort, and represent one of several lists that have been produced in the current freight bottleneck research environment ${ }^{1}$.

Through this analysis, ATRI has developed new approaches for identifying and assessing bottlenecks that affect commercial motor vehicles, the details of which are described in this report.

[^0]| No. | Bottleneck Name | CountylState |
| :---: | :---: | :---: |
| 1 | I-710 @I-105 Interchange | Los Angeles, CA |
| 2 | I-17/ l-10 Interchange (the "Stack") | Maricopa, AZ |
| 3 | I-285@ I-85 Interchange ("Spaghetti Junction") | Dekalb, GA |
| 4 | I-20 @ I-75/I-85 Interchange | Fulton, GA |
| 5 | I-80 @ I-94 split in Chicago, IL | Cook, IL |
| 6 | SR-60 @ SR-57 Interchange | Los Angeles, CA |
| 7 | I-80 @ I-580/I-880 in Oakland, CA | Alameda, CA |
| 8 | I-405 (San Diego Fwy) @ I-605 Interchange | Orange, CA |
| 9 | I-90 @I-94 Interchange ("Edens Interchange") | Cook, IL |
| 10 | I-40 @ I-65 Interchange (east) | Davidson, TN |
| 11 | I-290@ I-355 Interchange | DuPage, IL |
| 12 | I-75@ I-85 Interchange | Fulton, GA |
| 13 | I-95 @SR-9A (Westside Hwy) | New York, NY |
| 14 | I-71@ I-70 Interchange | Franklin, OH |
| 15 | I-880 @ I-238 | Alameda, CA |
| 16 | SR-91 @ SR-55 Interchange | Orange, CA |
| 17 | 1-285@1-75 Interchange | Cobb, GA |
| 18 | I-695/I-70 and I-95 exit 11 (note: I-70 N. of here) | Baltimore, MD |
| 19 | I-95 @ SR-4 | Bergen, NJ |
| 20 | I-10 @ I-110/US-54 Interchange | El Paso, TX |
| 21 | I-45 (Gulf Freeway) @ US-59 Interchange | Harris, TX |
| 22 | SR-134 @ SR-2 Interchange | Los Angeles, CA |
| 23 | I-10 @ SR-51/SR-202 Interchange ("Mini-Stack") | Maricopa, AZ |
| 24 | I-10 @ I-15 Interchange | San Bernardino, CA |
| 25 | I-95/I-495 | Prince Georges, MD |
| 26 | I-45 @ I-610 Interchange | Harris, TX |
| 27 | I-10 @ I-410 Loop North Interchange | Bexar, TX |
| 28 | I-110@ I-105 Interchange | Los Angeles, CA |
| 29 | I-95@ I-595 Interchange | Broward, FL |
| 30 | I-25 @ I-76 Interchange | Adams, CO |

Table 1: Original List of Worst U.S. Freight Bottlenecks (Ranked by Severity) Source: Generated during the development of Estimated Cost of Freight Involved in Highway Bottlenecks (2008).

RESEARCH METHODOLOGY

ATRI conducted an in-depth analysis of each of the 30 bottlenecks listed in Table 1 using truck position and speed data that were derived from wireless onboard communications systems used by the trucking industry. The four basic steps in this analysis are as follows:

1. Identification of Study Population (i.e. extraction of data for commercial vehicles within a specific time period and at a specific location from a larger "fused" database);
2. Application of Data Quality Tools and Techniques;
3. Application of a Four-Step Analysis Process that Utilizes Vehicle Time, Date and Speed information; and
4. Final Production of Total Freight Congestion Values and Ranking.

The results of the first three steps in the analysis are described and displayed in Appendix One. For this Appendix, the ATRI Research Team produced analysis for each of the 30 bottlenecks, including a description of the selected study area and population, a chart describing mean and median speeds by hour of day for data that is included in the study population, and a map that visualizes the study area. The process for producing total freight congestion values and rankings is described in the next section of this report.

RESEARCH OUTCOME

The final result of this analysis was a new ranking of the original 30 bottleneck list. Each bottleneck was given a "total freight congestion value" using a calculation that factors in the impact of congestion on average commercial vehicle speeds in each study area, includes analysis for 24 one-hour blocks of time, and addresses freight demand for road segments that are located within the study area during each hour-long block of time. The "total freight congestion value" does not represent hours lost, or financial costs due to this delay, but is simply a means by which the researchers could compare the level of severity of each individual bottleneck.

Table 2 displays the calculations used to produce a "total freight congestion value" for an individual bottleneck; the methods are also described below.

The first step in the process is to set a free flow speed. In this research, 55 mph is used for free flow on all 30 bottlenecks. In future exercises of this nature the free flow speed may be set lower or higher based on the posted speed limit at a given location, which may vary from bottleneck to bottleneck.

The second step is a calculation of the miles per hour below free flow; this number is then multiplied on an hour-by-hour basis by the number of commercial vehicles that were part of the corresponding hour block. Thus, commercial vehicles that are not affected by delay produce a delay value of 0 . Essentially, for each of the 24 one-hour blocks of time, "vehicle population by hour" is multiplied by "(Free Flow - Average MPH)" to produce an "hourly freight congestion value."

Finally, the sum of 24 hourly freight congestion values is calculated to produce the "total freight congestion value," which is the number used to rank the severity of the 30 bottlenecks.

The final result of this exercise is a re-ranking of the original 30 bottleneck list, which is shown in Table 3. It should be noted that this list only describes the relationship of each of the 30 bottlenecks with other bottlenecks in the list using the method of analysis described above; it does not offer information pertaining to bottlenecks that are not on the list. Bottlenecks that are not shown on the Table 1 and 2 lists may be more severe than those analyzed in this study.

As a final note, the study period (i.e. the timeframe from which data was extracted) included one year of weekday truck position data between June 1, 2006 and May 31, 2007. During those time periods (and for specific bottlenecks) certain external factors may have played a role in the final total freight congestion value. This is especially true for those areas that were influenced by ongoing, long-term construction projects.

Hour of Day	Vehicle Population by Hour	Average MPH by Hour	MPH Below Free Flow =(Free Flow [55]- Average MPH)	Hourly Freight Congestion Value = (MPH Below Free Flow) * (Vehicle Population by Hour)
00:00-01:00	687	55.00	0.00	0
01:00-02:00	711	55.00	0.00	0
02:00-03:00	744	55.00	0.00	0
03:00-04:00	700	55.00	0.00	0
04:00-05:00	784	55.00	0.00	0
05:00-06:00	979	55.00	0.00	0
06:00-07:00	1015	53.98	1.02	1,032
07:00-08:00	1473	38.48	16.52	24,333
08:00-09:00	1536	38.59	16.41	25,203
09:00-10:00	1585	49.06	5.94	9,418
10:00-11:00	1456	54.27	0.73	1,070
11:00-12:00	1537	55.00	0.00	0
12:00-13:00	1358	55.00	0.00	0
13:00-14:00	1420	53.44	1.56	2,209
14:00-15:00	1521	46.80	8.20	12,467
15:00-16:00	1654	39.85	15.15	25,057
16:00-17:00	1465	39.68	15.32	22,446
17:00-18:00	1609	39.36	15.64	25,164
18:00-19:00	1186	47.76	7.24	8,588
19:00-20:00	998	55.00	0.00	0
20:00-21:00	835	55.00	0.00	0
21:00-22:00	862	55.00	0.00	0
22:00-23:00	753	55.00	0.00	0
23:00-00:00	751	55.00	0.00	0
$\begin{aligned} & \text { Total Freight Congestion Value } \\ & =156,987 \\ & \hline \text { (Sum of Hourly Freight } \\ & \text { Congestion Values) } \end{aligned}$				

Table 2: Example of Total Freight Congestion Value Calculation for a Single Freight Bottleneck

Total Freight Congestion Value	Ranking Using ATRI Analysis	Bottleneck Namel Location	County/State
2722629	1	I-80 @ I-94 split in Chicago, IL	Cook, IL
1435661	2	I-95 @ SR-4	Bergen, NJ
921688	3	I-90 @I-94 Interchange ("Edens Interchange")	Cook, IL
899899	4	I-285@ I-85 Interchange ("Spaghetti Junction")	Dekalb, GA
656190	5	I-95 @ SR-9A (Westside Hwy)	New York, NY
446933	6	I-40 @ I-65 Interchange (east)	Davidson, TN
426569	7	SR-60 @ SR-57 Interchange	Los Angeles, CA
382200	8	I-10 @ I-15 Interchange	San Bernardino, CA
318853	9	I-45 (Gulf Freeway) @ US-59 Interchange	Harris, TX
259704	10	I-45 @ I-610 Interchange	Harris, TX
234258	11	I-20@ I-75/I-85 Interchange	Fulton, GA
225892	12	I-17 (Black Canyon Fwy): I-10 Interchange (the "Stack")	Maricopa, AZ
183772	13	I-95/I-495	Prince Georges, MD
156987	14	I-710 @l-105 Interchange	Los Angeles, CA
144772	15	I-71 @ I-70 Interchange	Franklin, OH
144009	16	I-80 @ I-580/I-880 in Oakland, CA	Alameda, CA
138824	17	I-75@ I-85 Interchange	Fulton, GA
129421	18	I-880 @ I-238	Alameda, CA
119629	19	I-695/I-70 and I-95 exit 11 (note: I-70 N. of here)	Baltimore, MD
115516	20	I-10 @ I-110/US-54 Interchange	El Paso, TX
107116	21	I-25@ I-76 Interchange	Adams, CO
93066	22	I-10@ I-410 Loop North Interchange	Bexar, TX
58784	23	I-285@ I-75 Interchange	Cobb, GA
56591	24	I-290@ I-355 Interchange	DuPage, IL
51486	25	I-10 @ SR-51/SR-202 Interchange ("Mini-Stack")	Maricopa, AZ
40647	26	I-110 @ I-105 Interchange	Los Angeles, CA
36746	27	SR-91 @ SR-55 Interchange	Orange, CA
28291	28	I-95 @ I-595 Interchange	Broward, FL
16732	29	I-405 (San Diego Fwy) @ I-605 Interchange	Orange, CA
3200	30	SR-134 @ SR-2 Interchange	Los Angeles, CA

Table 3: Ranking of Freight Bottleneck Severity Based on ATRI Analysis

CONCLUSIONS

The analysis contained within this report offers an initial glimpse at the use of FPM data, customized software and FPM processing methods to identify and determine the severity of freight bottlenecks. Future research should focus on the identification and analysis of additional bottlenecks that were not among the 30 bottlenecks analyzed in this report, including those that derive from sources other than urban congestion. In future research efforts, it is possible that several hundred major U.S. freight bottlenecks could be identified, assigned total freight congestion values and ranked by severity.

As a follow-up activity to this report, ATRI intends to host a Freight Bottleneck Analysis Workshop in May 2009, which will allow those involved in this type of research the ability to collaborate on research methods.

APPENDIX ONE

ANALYSIS OF 30 FREIGHT BOTTLENECKS

Bottleneck 01: Chicago, Illinois

Bottleneck Location: Chicago, Illinois, Interstate 80 at Interstate 94.
Dates: Weekdays; June 1, 2006 - May 31, 2007; 1 year time period
Distances: From the bottleneck (the interchange) the study area extends 2 miles in each direction for a total of approximately 8 miles in the study area.

Positions: There were approximately 227,478 truck position reads used in this analysis.

Mean \& Median Speed by Time of Day Chicago: I-80 at I-94

Chart 1: Weekday Speed by Time of Day

Figure 1: Map of Location

Bottleneck 02: Fort Lee, New Jersey

Bottleneck Location: Fort Lee, New Jersey, Interstate 95 at SR-4
Dates: Weekdays; June 1, 2006 - May 31, 2007; 1 year time period
Distances: Approximately 4 miles of roadway were included in the study area.
Positions: There were approximately 51,257 truck position reads used in this analysis.

Chart 2: Weekday Speed by Time of Day

Figure 2: Map of Location

Bottleneck 03: Chicago, Illinois

Bottleneck Location: Chicago, Illinois, Interstate 94/90 Interchange (Edens)
Dates: Weekdays; June 1, 2006 - May 31, 2007; 1 year time period
Distances: From the bottleneck (the interchange) the study area extends 2 miles in each direction for a total of approximately 6 miles.

Positions: There were approximately 49,923 truck position reads used in this analysis.

Mean \& Median Speed by Time of Day
 Chicago: I-90/I-94 (Edens Interchange)

Chart 3: Weekday Speed by Time of Day

Figure 3: Map of Location

Bottleneck 04: Atlanta, Georgia

Bottleneck Location: Atlanta, Georgia; Interstates 85 and 285; "Spaghetti Junction"
Dates: Weekdays; June 1, 2006 - May 31, 2007; 1 year time period
Distances: From the bottleneck (the interchange) the study area extends 1 mile in each direction for a total of approximately 3 miles.

Positions: There were approximately 71,865 truck position reads used in this analysis.

Chart 4: Weekday Speed by Time of Day

Figure 4: Map of Location

Bottleneck 05: New York, New York

Bottleneck Location: New York, New York, Interstate 95 near SR-9A (Westside Highway)
Dates: Weekdays; June 1, 2006 - May 31, 2007; 1 year time period
Distances: The study area is approximately 2 miles.
Positions: There were approximately 21,896 truck position reads used in this analysis.

Mean \& Median Speed by Time of Day
 New York City: I-95

Chart 5: Weekday Speed by Time of Day

Figure 5: Map of Location

Bottleneck 06: Nashville, Tennessee

Bottleneck Location: Nashville, Tennessee, Interstates 65 and 40
Dates: Weekdays; June 1, 2006 - May 31, 2007; 1 year time period
Distances: Approximately 6 miles of roadway were included in the study area.
Positions: There were approximately 51,313 truck position reads used in this analysis.

Mean \& Median Speed by Time of Day

Nashville: I-65/I-40

Chart 6 Weekday Speed by Time of Day

Figure 6: Map of Location

Bottleneck 07: Industry, California

Bottleneck Location: Industry, California, Highways 60 and 57 (near Los Angeles)
Dates: Weekdays; June 1, 2006 - May 31, 2007; 1 year time period
Distances: The study area covers approximately 10 miles.
Positions: There were approximately 52,140 truck position reads used in this analysis.

Chart 7: Weekday Speed by Time of Day

Figure 7: Map of Location

Bottleneck 08: Ontario, California

Bottleneck Location: Ontario, California, Interstate 10 at 15
Dates: Weekdays; June 1, 2006 - May 31, 2007; 1 year time period
Distances: Approximately 8 miles of roadway were included in the study area.
Positions: There were 56,102 approximately truck position reads used in this analysis.

Mean \& Median Speed by Time of Day Ontario: I-10 at I-15

Chart 8: Weekday Speed by Time of Day

Figure 8: Map of Location

Bottleneck 09: Houston, Texas

Bottleneck Location: Houston, Texas, Interstate 45 at US-59
Dates: Weekdays; June 1, 2006 - May 31, 2007; 1 year time period
Distances: Approximately 8 miles of roadway were included in the study area.
Positions: There were approximately 32,627 truck position reads used in this analysis.

Chart 9: Weekday Speed by Time of Day

Figure 9: Map of Location

Bottleneck 10: Houston, Texas

Bottleneck Location: Houston, Texas, Interstate 45 at Highway 610
Dates: Weekdays; June 1, 2006 - May 31, 2007; 1 year time period
Distances: From the bottleneck (the interchange) the study area extends 1.5 miles in each direction for a total of approximately 6 miles.

Positions: There were approximately 46,856 truck position reads used in this analysis.

Chart 10: Weekday Speed by Time of Day

Figure 10: Map of Location

Bottleneck 11: Atlanta, Georgia

Bottleneck Location: Atlanta, Georgia, Interstate 20 at Interstate 85/75
Dates: Weekdays; June 1, 2006 - May 31, 2007; 1 year time period
Distances: From the bottleneck (the interchange) the study area extends 2 miles in each direction for a total of approximately 8 miles.

Positions: There were approximately 27,537 truck position reads used in this analysis.

Mean \& Median Speed by Time of Day
 Atlanta: I-20 at I-85/75

Chart 11: Weekday Speed by Time of Day

Figure 11: Map of Location

Bottleneck 12: Phoenix, Arizona

Bottleneck Location: Phoenix, Arizona, Interstate 10 and 17, "The Stack"
Dates: Weekdays; June 1, 2006 - May 31, 2007; 1 year time period
Distances: From the bottleneck (the interchange) the study area extends 2 miles in each direction for a total of approximately 8 miles.

Positions: There were approximately 42,395 truck position reads used in this analysis.

Chart 12: Weekday Speed by Time of Day

Figure 12: Map of Location

Bottleneck 13: Washington, DC

Bottleneck Location: Near Washington D.C., Interstates 495/95
Dates: Weekdays; June 1, 2006 - May 31, 2007; 1 year time period
Distances: Approximately 6 miles of roadway were included in the study area.
Positions: There were approximately 36,540 truck position reads used in this analysis.

Mean \& Median Speed by Time of Day
 Washington DC: Interstates 495/95

Chart 13: Weekday Speed by Time of Day

Figure 13: Map of Location

Bottleneck 14: Los Angeles, California

Bottleneck Location: Los Angeles, California, Interstate 710 and Interstate 105
Dates: Weekdays; June 1, 2006 - May 31, 2007; 1 year time period
Distances: From the bottleneck (the interchange) the study area extends 2 miles in each direction for a total of approximately 8 miles.

Positions: There were approximately 27,488 truck position reads used in this analysis.

Chart 14: Weekday Speed by Time of Day

Figure 14: Map of Location

Bottleneck 15: Columbus, Ohio

Bottleneck Location: Columbus, Ohio, Interstate 70 at Interstate 71
Dates: Weekdays; June 1, 2006 - May 31, 2007; 1 year time period
Distances: Approximately 6 miles of roadway were included in the study area.
Positions: There were approximately 40,718 truck position reads used in this analysis.

Mean \& Median Speed by Time of Day Columbus:I-70 at I-71

Chart 15: Weekday Speed by Time of Day

Figure 15: Map of Location

Bottleneck 16: Oakland, California

Bottleneck Location: Oakland, California, Interstate 80 at Interstate 580
Dates: Weekdays; June 1, 2006 - May 31, 2007; 1 year time period
Distances: From the bottleneck (the interchange) the study area extends 2 miles in each direction for a total of approximately 4 miles.

Positions: There were approximately 10,347 truck position reads used in this analysis.

Mean \& Median Speed by Time of Day Oakland: I-80 at I-580

Chart 16: Weekday Speed by Time of Day

Figure 16: Map of Location

Bottleneck 17: Atlanta, Georgia

Bottleneck Location: Atlanta, Georgia, Interstate 75 and 85 Interchange (Brookwood) in Fulton County
Dates: Weekdays; June 1, 2006 - May 31, 2007; 1 year time period
Distances: From the bottleneck (the interchange) the study area extends 2 miles in each direction for a total of approximately 6 miles.

Positions: There were approximately 18,270 truck position reads used in this analysis.

Chart 17: Weekday Speed by Time of Day

Figure 17: Map of Location

Bottleneck 18: Alameda, California

Bottleneck Location: Alameda, California, Interstate 880 at 238
Dates: Weekdays; June 1, 2006 - May 31, 2007; 1 year time period
Distances: Approximately 6 miles of roadway were included in the study area.
Positions: There were approximately 13,550 truck position reads used in this analysis.

Chart 18: Weekday Speed by Time of Day

Figure 18: Map of Location

Bottleneck 19: Baltimore, Maryland

Bottleneck Location: Baltimore, Maryland, I-95 at I-695
Dates: Weekdays; June 1, 2006 - May 31, 2007; 1 year time period
Distances: Approximately 8 miles of roadway were included in the study area.
Positions: There were approximately 59,523 truck position reads used in this analysis.

Chart 19: Weekday Speed by Time of Day

Figure 19: Map of Location

Bottleneck 20: El Paso, Texas

Bottleneck Location: El Paso, Texas, Interstate 10 at Interstate 110
Dates: Weekdays; June 1, 2006 - May 31, 2007; 1 year time period
Distances: Approximately 6 miles of roadway were included in the study area.
Positions: There were approximately 49,672 truck position reads used in this analysis.

Mean \& Median Speed by Time of Day
 El Paso: I-10 at I-110

Chart 20: Weekday Speed by Time of Day

Figure 20: Map of Location

Bottleneck 21: Denver, Colorado

Bottleneck Location: Denver, Colorado, Interstate 25 at Interstate 76
Dates: Weekdays; June 1, 2006 - May 31, 2007; 1 year time period
Distances: Approximately 8 miles of roadway were included in the study area.
Positions: There were approximately 30,826 truck position reads used in this analysis.

Mean \& Median Speed by Time of Day
 Denver: I-25 at I-76

Chart 21: Weekday Speed by Time of Day

Figure 21: Map of Location

Bottleneck 22: San Antonio, Texas

Bottleneck Location: San Antonio, Texas, Interstate 10 at Interstate 410
Dates: Weekdays; June 1, 2006 - May 31, 2007; 1 year time period
Distances: Approximately 8 miles of roadway were included in the study area.
Positions: There were approximately 15,243 truck position reads used in this analysis.

Chart 22: Weekday Speed by Time of Day

Figure 22: Map of Location

Bottleneck 23: Atlanta, Georgia (North)

Bottleneck Location: Atlanta, Georgia, Interstate 285 at 75 Interchange in Cobb County
Dates: Weekdays; June 1, 2006 - May 31, 2007; 1 year time period
Distances: From the bottleneck (the interchange) the study area extends 2 miles in each direction for a total of approximately 8 miles.

Positions: There were approximately 8,532 truck position reads used in this analysis.

Chart 23: Weekday Speed by Time of Day

Figure 23: Map of Location

Bottleneck 24: Chicago, Illinois

Bottleneck Location: Chicago, Illinois, Interstate 280 at Interstate 355
Dates: Weekdays; June 1, 2006 - May 31, 2007; 1 year time period
Distances: From the bottleneck (the interchange) the study area extends 2 miles in each direction for a total of approximately 6 miles.

Positions: There were approximately 49,546 truck position reads used in this analysis.

Mean \& Median Speed by Time of Day Chicago:I-280 at I-355

Time of Day

Chart 24: Weekday Speed by Time of Day

Figure 24: Map of Location

Bottleneck 25: Phoenix, Arizona

Bottleneck Location: Phoenix, Arizona, Interstate 10, Mini Stack
Dates: Weekdays; June 1, 2006 - May 31, 2007; 1 year time period
Distances: From the bottleneck (the interchange) the study area extends 1 mile in each direction for a total of approximately 2 miles.

Positions: There were approximately 8,322 truck position reads used in this analysis.

Chart 25: Weekday Speed by Time of Day

Figure 25: Map of Location

Bottleneck 26: Los Angeles, California

Bottleneck Location: Los Angeles, California, Interstate 110 at Interstate 105
Dates: Weekdays; June 1, 2006 - May 31, 2007; 1 year time period
Distances: Approximately 8 miles of roadway were included in the study area.
Positions: There were approximately 6,370 truck position reads used in this analysis.

Chart 26: Weekday Speed by Time of Day

Figure 26: Map of Location

Bottleneck 27: Anaheim, California

Bottleneck Location: Anaheim, California, SR-91 at SR-55
Dates: Weekdays; June 1, 2006 - May 31, 2007; 1 year time period
Distances: Approximately 6 miles of roadway were included in the study area.
Positions: There were approximately 8,163 truck position reads used in this analysis.

Chart 27: Weekday Speed by Time of Day

Figure 27: Map of Location

Bottleneck 28: Ft. Lauderdale, Florida

Bottleneck Location: Ft. Lauderdale, Florida, Interstate 95 at Interstate 595
Dates: Weekdays; June 1, 2006 - May 31, 2007; 1 year time period
Distances: Approximately 8 miles of roadway were included in the study area.
Positions: There were approximately 16,635 truck position reads used in this analysis.

Mean \& Median Speed by Time of Day
 Ft. Lauderdale: I-95 at I-595

Chart 28: Weekday Speed by Time of Day

Figure 28: Map of Location

Bottleneck 29: Long Beach, California

Bottleneck Location: Long Beach, California, Interstate 405 at Interstate 605
Dates: Weekdays; June 1, 2006 - May 31, 2007; 1 year time period
Distances: Approximately 6 miles of roadway were included in the study area.
Positions: There were approximately 4,426 truck position reads used in this analysis.

Chart 29: Weekday Speed by Time of Day

Figure 29: Map of Location

Bottleneck 30: Los Angeles, California

Bottleneck Location: Los Angeles, California, SR-134 at SR-2
Dates: Weekdays; June 1, 2006 - May 31, 2007; 1 year time period
Distances: Approximately 8 miles of roadway were included in the study area.
Positions: There were approximately 4,603 truck position reads used in this analysis.

Mean \& Median Speed by Time of Day
 Los Angeles: SR-134 at SR-2

Time of Day

Chart 30: Weekday Speed by Time of Day

Figure 30: Map of Location

950 N. Glebe Road
Arlington, VA
(703) 838-1966
atr@trucking.org
www.atri-online.org

[^0]: ${ }^{1}$ The following research report is an example of such research activities.

 Federal Highway Administration. Estimated Cost of Freight Involved in Highway Bottlenecks: Final Report. Prepared by Cambridge Systematics, Inc., for Federal Highway Administration Office of Transportation Policy Studies, November 12, 2008.

