

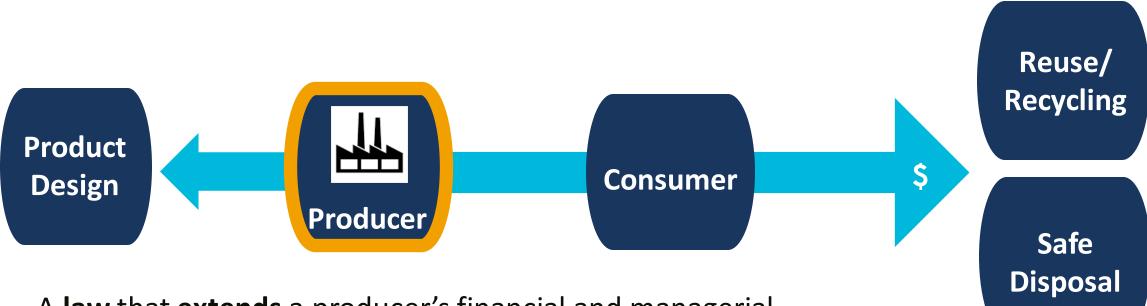
What is "Chemical Recycling"?

MWCOG Recycling Committee Meeting December 1, 2022

> Scott Cassel, CEO/Founder Product Stewardship Institute

Context

- Chemical recycling in context of packaging EPR
- Orientation: PSI
 - National non-profit (501c3)
 - Board/Members: State & Local Governments
 - Partners: companies, environmental groups, int'l govts, others
- Goal: Dialogue \rightarrow Decisions
 - Greater understanding of CR technologies
 - Role of CR technologies in plastics recycling
 - Criteria for governments to evaluate CR technologies for permitting


Me & Waste

- 40 years gov't, corporate, env'l nonprofit
- MA Executive Office of Energy & Env'l Affairs Director of Waste Policy & Planning
- Founder, CEO PSI
- Marine Debris Foundation Board of Directors

Extended Producer Responsibility (EPR)

A law that extends a producer's financial and managerial responsibility for its products and packaging beyond the manufacturing stage — both upstream to product design and downstream to postconsumer reuse, recycling, or safe disposal.

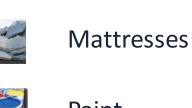
Product Categories

Solar Panels

Electronics

Pharmaceuticals


Medical Sharps



Appliances with Refrigerants

Gas Cylinders

Paint

Lighting

Framework

Packaging

Pesticides

BUSINESS REPLY MAIL

HHW

Batteries

Junk Mail

Textiles

Tires

Radioactive Devices

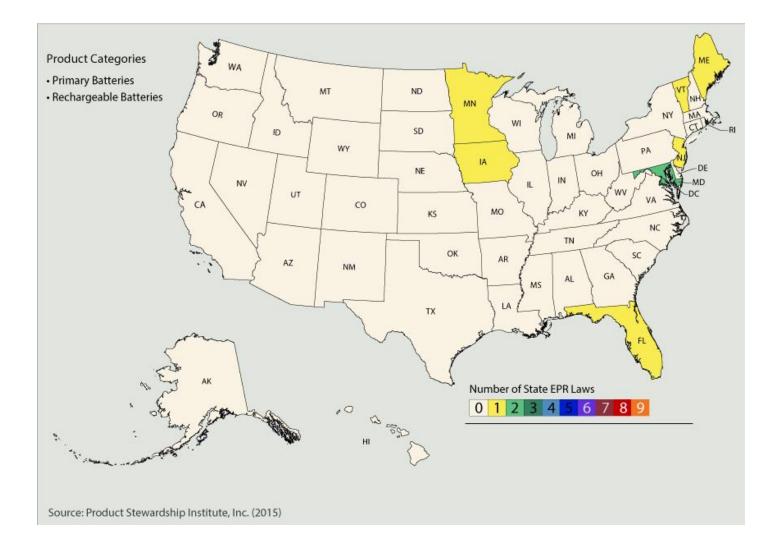
Mercury Thermostats

Motor Oil

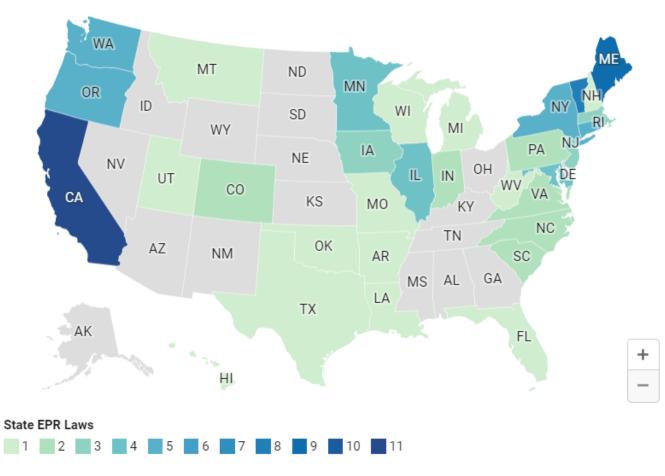
Carpet

Auto Switches

6

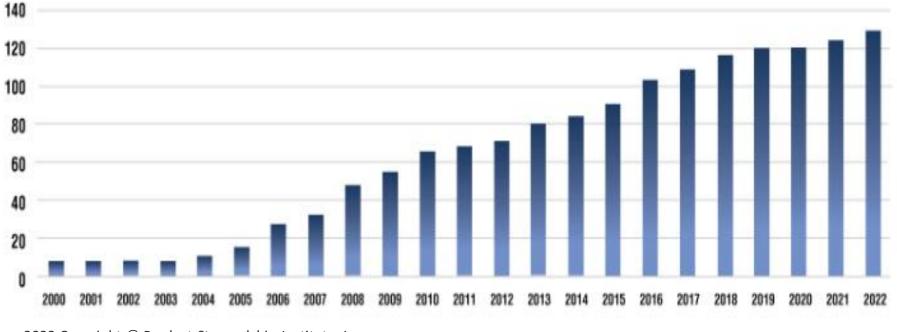


EPR Laws in the U.S. in 2000



EPR Laws in the U.S. in 2022

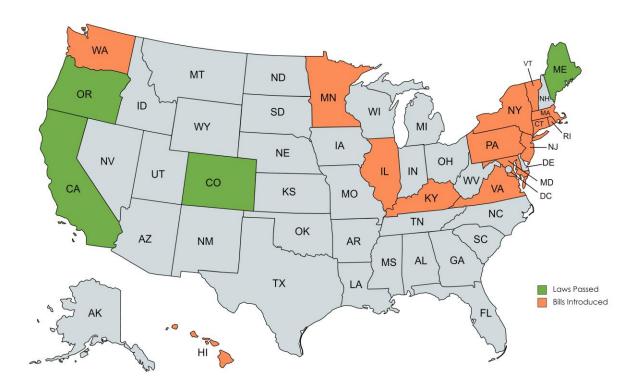
130 EPR Laws
16 Products
33 States + D.C.
Most built on or influenced by PSI models


*Excludes **bottle bills** due to the different ways in which the disparate policies across 10 states hold producers responsible.

Map: 2022 Source and Copyright © Product Stewardship Institute, Inc. • Created with Datawrapper

EPR Laws in the U.S. Since 2000

²⁰²² Copyright © Product Stewardship Institute, Inc.


U.S. Packaging EPR Momentum

4 State Laws in 2 years

2021: **OR** + **ME** 2022: **CO** + **CA**

Dozens of Active States

22 proposed bills in 16 states in 2022 PSI model EPR bill

Sticky Issue: "Chemical Recycling"

- What does this even mean?
- What should count as recycling?
- Should EPR funds be spent on it?

Key Drivers

- Only 5-6% plastics recycled on average
- Emerging PCR content requirements: Need food-grade recycled resin
- ACC, others pushing laws to classify "CR" as *manufacturing:* 20 state laws so far
- EPR momentum used as opportunity for investment

California

• Plastic beverage containers (CRV only) \rightarrow 50% PCR

Washington

- Plastic trash bags \rightarrow 20% PCR
- Plastic beverage bottles \rightarrow 50% PCR
- Plastic bottles for household cleaning, PCP \rightarrow 50% PCR

New Jersey

- Rigid plastic containers \rightarrow 50% PCR
- Plastic carryout bags \rightarrow 20% PCR
- Plastic trash bags \rightarrow 10% 40% PCR
- Glass containers \rightarrow 35% PCR

Key Issues

- Outputs: fuels vs plastics (sometimes both)
- Environmental & human health impacts
- Politically: strong opposition to all "chemical recycling" from environmental sector
- Commercial Viability: long time-to-scale, many failed investments

Confusing Terms

"Chemical Recycling" It's about chemistry "Advanced Recycling" It's new & fancy "Molecular Recycling" It's about breaking down plastics

It's all the same!

14

3 Technology Types

- **Purification:** Plastics dissolved in chemical solvents to recover virgin-grade resins, free from additives & dyes.
- **Depolymerization:** Breaks the molecular bonds of plastics to recover building blocks (monomers) that can be reconstructed into "like-new" resins.
- **Conversion:** Converts plastics into refined hydrocarbons and petrochemicals.
 - **Pyrolysis** and **gasification** produce fuels or fuel intermediaries, which *could* be reprocessed into plastics.

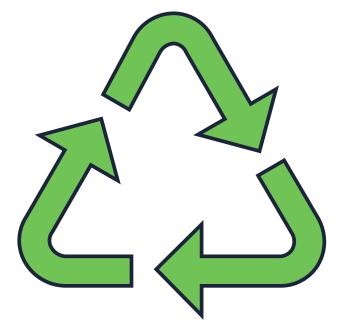
Processing Efficiencies

Technology Type	Avg. Processing Efficiency (Plastics-to-Plastics)	Avg. Non-Pellet Outputs
Purification	91%	N/A
Mechanical Recycling	83%	N/A
Depolymerization	75%	18%
Conversion	42%	17%

Average processing efficiency of each technology type, based on Closed Loop Partners independent research on a small sample of each technology type. Purification n=2; Depolymerization n=4; Conversion n=3.

Regulatory Context

- Status Quo: State & federal permitting requirements
 - 20 states reg. as manufacturing vs. waste management
 - less stringent emissions controls


- Now: 2021 US EPA announced formal rulemaking process on pyrolysis, gasification
- Key Permitting Considerations:
 - Potential impacts on state and/or local GHG emissions reduction targets
 - Transparent and thorough environmental justice & environmental impact reviews
 - Robust community engagement & transparency
 - Financial assurance in the event of site failure(s), especially if cleanups needed

EPR Policy Options

Definition of "recycling":

- Growing consensus: plastics-to-fuel is NOT recycling.
- Growing consensus: mechanical before chemical recycling.
- All 4 Pkg EPR Laws: "Recycling" does NOT include waste-tofuel, incineration, energy recovery, or other disposal.
- OR, CO: "Mechanical recycling" does not break molecular bonds → Includes purification?
- **Certain proposals (none yet passed):** No "high-heat or chemical treatment processes," no pyrolysis or gasification

EPR Policy Options, Continued

Transparency :

- OR, CO:
 - Include LCA & other info for materials *not* managed through mechanical recycling;
 - Compare to incineration, disposal & other recycling options.

Investments:

- ME: State approval needed for all infrastructure investments.
- **CA:** Pyrolysis = Disposal; no PRO funds invested.

Proposed Criteria:

Can "chemical recycling" technologies support a sustainable circular economy?

Criteria #1: Proper Inputs

- Only source inputs that need to be disposed; don't have reusable or mechanically recyclable alternatives (e.g., plastics from medical waste, e-waste, textiles, and construction waste).
- Don't perpetuate unsustainable production of problematic or unnecessary materials, such as single-use cutlery and straws.

Criteria #2: Transparent Outputs

- All fuel outputs should be transparently reported, including wastes, emissions, and final products.
- Only plastics outputs count as recycling.
- Third-party certification/independent verification should support all claims.

Criteria #3: Reduced Climate Impacts and Fossil Fuel Extraction

- Outputs should have lower life-cycle impacts than virgin feedstocks, including GHG emissions.
- Account for full scope of each technology: collection, pre-processing through to end market, and end-of-life management.
 20

Proposed Criteria (Cont'd):

Criteria #4: Minimal Harm

- Minimize emissions & pollutants.
- Adhere to Clean Air/Water Act or more stringent state standards.
- Do not add to cumulative pollution impacts in overburdened communities.
- Siting process must include robust community engagement and transparency.
- Prioritize domestic management over global exports. If exported, no harm to environment or communities.

Criteria #5: Widespread, Convenient Collection

Provide a convenient, equitable, accessible way for waste generators to provide materials.

Do not increase contamination in mechanical recycling streams or increase consumer confusion.

Criteria #6: Operates at Scale Without Public Subsidy. Be commercially viable within realistic time frame. Reduce financial burden on taxpayers; do not depend on public subsidies.

Recording Available!

Making Sense of "Chemical Recycling"

Criteria for Assessing Plastics-to-Plastics and Plastics-to-Fuel Technologies

REVISED DRAFT September 16, 2022

PSI whitepaper

EPR MASTERCLASS CHEMICAL RECYCLING

- David Allaway, Oregon Dept. of Environmental Quality
- Paula Luu, Closed Loop Partners
- Tom Metzner, CT Dept. of Energy & Environmental Protection
- Veena Singla, Natural Resources Defense Council (NRDC)
- Helmut Schmitz, Duales System Deutschland (DSD)
- Cheryl Coleman, Institute of Scrap Recycling Industries (ISRI)

FREE WEBINAR NOVEMBER 17 11:30 - 1:00 EST

Hosted by The Product Stewardship Institute and presented by EXPRA

Learn More: www.productstewardship.us

PRODUCT STEWARDSHIP

Thank You!

www.productstewardship.us

Scott Cassel

CEO / Founder 617-236-4833 <u>scott@productstewardship.us</u>