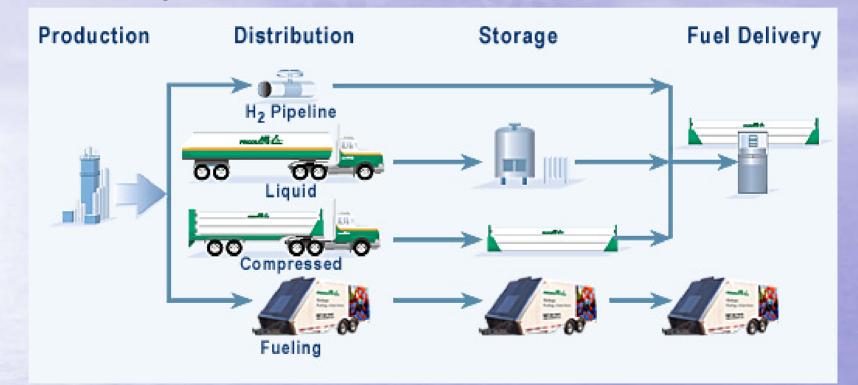


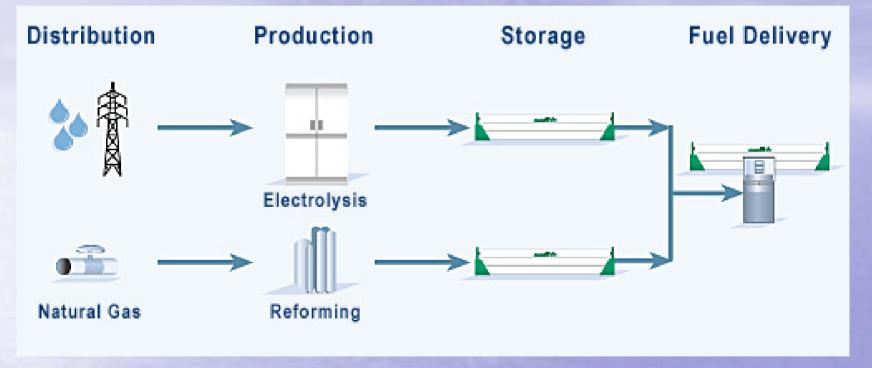
Hydrogen Workshop for Fleet Operators

Module 2, "Hydrogen Production, Distribution and Delivery"

Hydrogen Production, Distribution, & Delivery Outline


- 1. Hydrogen Production
- 2. Hydrogen Delivery
 - Pipeline
 - On-site production
 - Cryogenic truck, tube trailer, rail car
- 3. Hydrogen Storage
 - Gaseous
 - Cryogenic liquid
- 4. Cost Components of Hydrogen Fuel
- 5. Hydrogen Fueling Stations

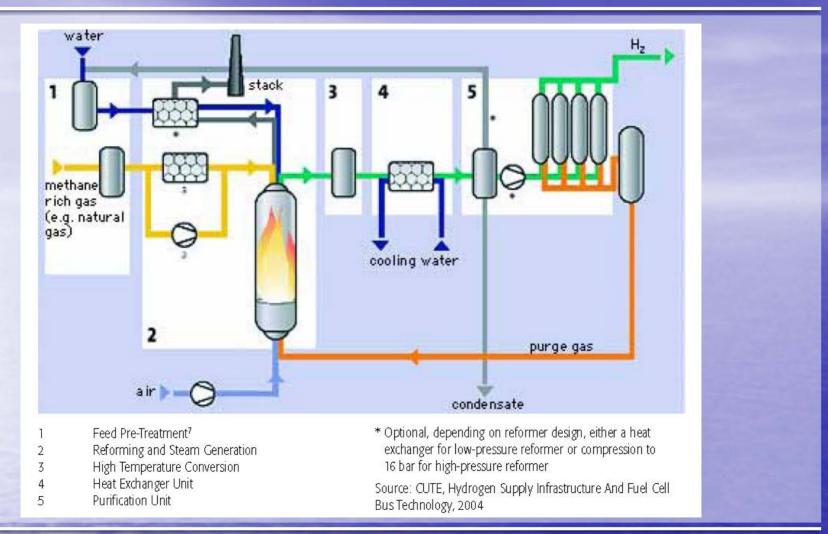
Air Products delivery truck drops off a load of liquid hydrogen for a Space Shuttle launch. It takes about 50 loads transported from Louisiana to launch a Space Shuttle


Hydrogen can be produced at a central location and delivered to the user/fueling station

Air Products and Chemicals, Inc

 Hydrogen can be produced on a smaller scale, locally at the fueling station, business, home, etc.

Air Products and Chemicals, Inc

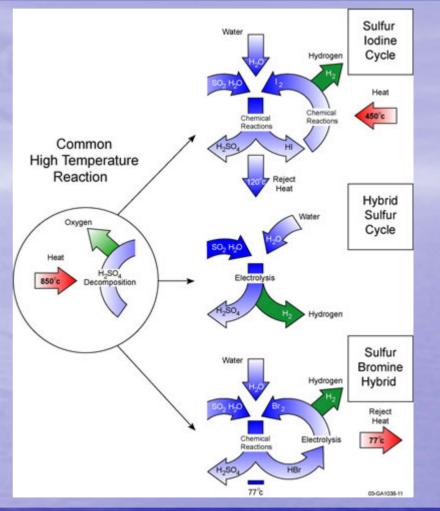


Steam Reforming

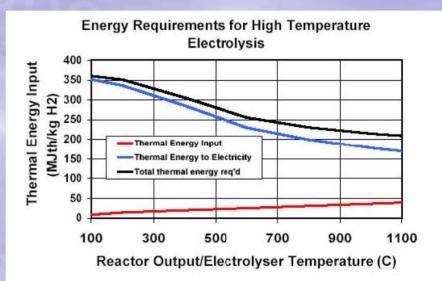
- Currently the least expensive method to produce hydrogen
- Converts hydrocarbons, mainly natural gas (CH₄), into hydrogen and CO by reaction with steam (1,292-2,012°F) over a nickel catalyst
- 95% of the hydrogen used in the United States comes from this method (48% worldwide)
- Existing infrastructure
- Produces CO₂ as a by-product

Electrolysis

- Produces hydrogen by using electrical current to separate water into hydrogen and oxygen
- Electrolyzer consumes 56 to 67
 kWh per kg of hydrogen
- Cost of hydrogen mostly dependent on cost of electricity
- Renewable energy applications such as wind, solar and hydro
- Ideal for distributed production and storage of renewable resources


Proton Energy Systems Hydrogen Generation

- Nuclear thermochemical watersplitting cycles
 - Series of chemical reactions that convert water to hydrogen and oxygen using chemical catalysts at high temperatures
 - Potential for high efficiency hydrogen production at largescale production rates
 - Technology is relatively immature


Schematic representation of the sulfur family of cycles

Office of Nuclear Energy, Science and Technology

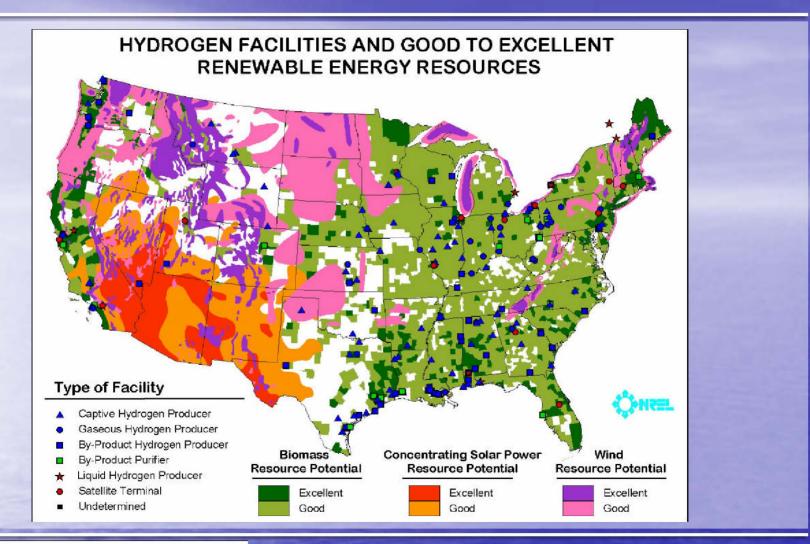
- Nuclear high temperature electrolysis
 - Uses electricity to produce hydrogen from steam instead of liquid water
 - Higher efficiencies than standard electrolysis, which is employed commercially today
 - Involves several technical challenges including development of hightemperature materials and membrane

About 350 MJ are need to produce 1 kg of hydrogen at 100°C whereas it takes approximately 225 MJ at 850°C

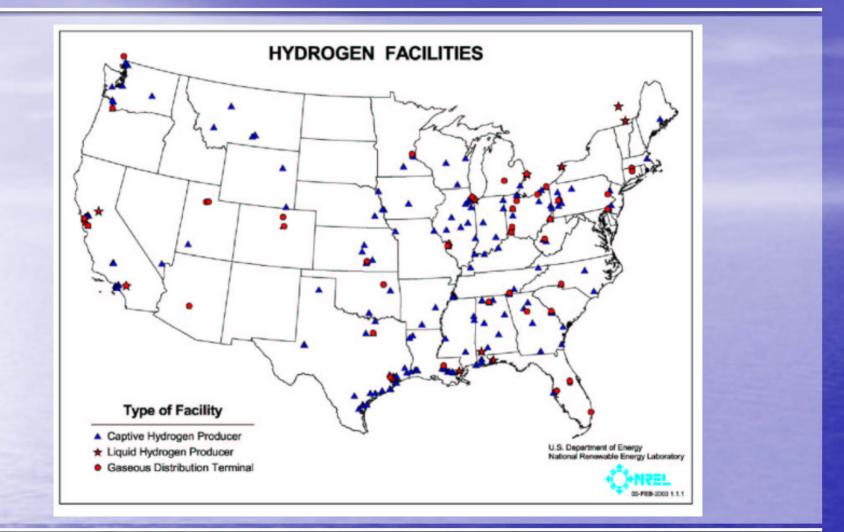
Office of Nuclear Energy, Science and Technology

Photoelectrolysis

- Light harvesting systems that generate sufficient voltage to split water
- Eliminates most of the costs of the electrolyzer
- Still in the RD&D phase
- Biomass Gasification
 - Carbon neutral
 - Thermally converts plant material to simple chemical building blocks that can be transformed to fuels, products, power and hydrogen



Light shining on a photoelectrochemical cell immersed in water produces bubbles of hydrogen and oxygen


Hydrogen can be produce from biomasss, such as switchgrass, via gasification

ALLIANCE TECHNICAL SERVICES, INC.

Shell Hydrogen

- Cryogenic liquid (-423°F)
 - 9 hydrogen liquefaction plants in North America
 - Transported by cryogenic truck, tube trailer, or rail car
 - Hydrogen liquefaction plants were first built in the 1950s to support the Apollo program
 - Typical unit uses 12.5 to 15 kWh per 1 kg of hydrogen
 - Range of >100 miles from the production facility
 - Hydrogen trailer carries 8,800
 lbs (4,000 kg) of hydrogen

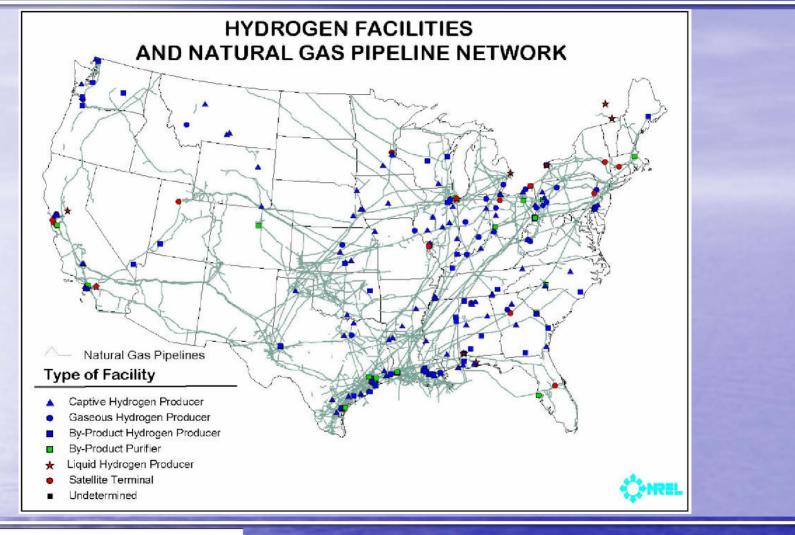
A delivery driver prepares to drops off a load of liquid hydrogen.

Praxair

Compressed gas

- Hydrogen is difficult to compress (very small molecule)
- Energy intensive
 - 1,000 psi, 0.6-0.7 kWh/kg
 - 3,000 psi, 2.6-3.6 kWh/kg
- 5,000-10,000 psi fueling station delivery pressures (small scale)
- High maintenance cost due to wearing components (valves)
- Lowest cost option
- <100-mile delivery by truck

Praxair


- Pipeline (Compressed Gas)
 - Most efficient transportation for large consumers
 - 10,000 miles worldwide
 - 700-1,000 psi pipeline delivery pressures (large volume)
 - Best for short distance delivery (capital intensive \$0.5-\$1.5 million/mile)
 - Cheapest delivery cost, once pipeline is built
- On-site production
 - Higher cost/kg due to small scale production
 - Dramatically reduces delivery costs

Honda hydrogen production and fueling station for fuel cell vehicles in Torrance, CA

ALLIANCE TECHNICAL SERVICES, Inc.

Cost Components of Hydrogen Fuel

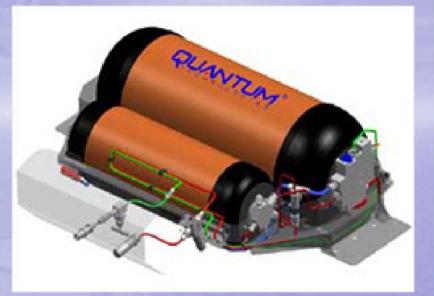
Cost Components (\$/kg)	Merchant Liquid Hydrogen*	On-Site Reformer	On-Site Electrolysis
Natural gas reforming	0.82	0.82	N/A
Cost of electricity	N/A	N/A	1.80**
Purification	0.03	0.03	N/A
Compression	N/A	0.24	0.16
Liquefaction	0.30	N/A	N/A
Handling, storage gasification, and dispensing	0.60	0.10	0.06
Delivery from a central production location to station	0.70	N/A	N/A
Other Costs***	0.35	0.30	0.48

*Merchant gas prices were estimated using the cost of centrally reforming large quantities of natural gas without carbon sequestration and transporting to the facility in liquid form.

**DOE calculations based on \$0.035 kWh of electricity

***Includes site preparation, controls, capital costs, balance of plant, rent, utilities, maintenance, etc.

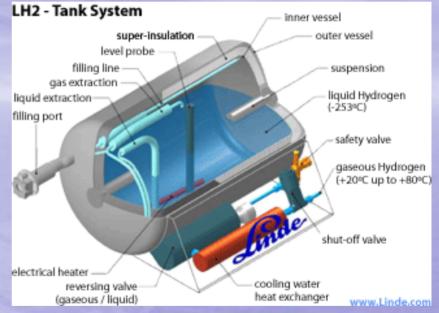
"Transforming the Future: Moving Toward the Fuel Cell-Powered Fleets in Canadian Urban Transit Systems", Natural Resources Canada, February 2005


ALLIANCE TECHNICAL SERVICES, Inc.

Hydrogen Storage

Gaseous

- Requires high pressure tanks (5,000-10,000 psi) to improve energy density
- Carbon fiber reinforced wrapped with an aluminum or plastic liner
- Cost of tanks is largely dictated by the cost of carbon fiber
- 10,000 psi tank can extend vehicle range by 60% when compared to an equivalentsized 5,000 psi tank


Carbon fiber reinforced 5,000 psi -10,000 psi compressed hydrogen tanks under development from Quantum Technologies

Hydrogen Storage

Cryogenic liquid

- Hydrogen boils at -423°F at 1 atmosphere
- Boil-off rate of about 1% of the stored volume per day
- 30% of the heating value of hydrogen is required for liquefaction
- Can store more hydrogen in a given volume compared to a 10,000 psi compressed tank (0.58 lbs/gallon for liquid, 0.25 lbs/gallon for gas)

Liquefied hydrogen storage tank

- Can be designed to operate on delivered hydrogen or hydrogen generated on-site
- Uses pressure from the hydrogen supply
- Can be used to fuel fleets as small as 2 light-duty vehicles to as large as 6 buses

- Similar to the gasoline fueling experience
- Driver connects the fuel dispensing nozzle to the vehicle and follows the on-screen instructions
- Safety features
 - Automatic shutdown with leak detection
 - Standard operator grounding
 - Fuel by PIN to only allow access by qualified users
- Precautions similar to that of a gasoline station

ALLIANCE TECHNICAL SERVICES, Inc.

- Mobile hydrogen fueling stations
 - Small fleet fueling
 - Can fuel 5 vehicles for up to 3 weeks without swapping or refueling
 - No utility hook-up required
 - Fueling procedure is fully automated
 - Can be used for off-site events (promotional or endurance testing)

Stationary dispenser

- Full fill in comparable times to gasoline/diesel fueled vehicle
- Airtight lock prevents leaks
- Standardized nozzle/receptacle geometries to prevent filling a low pressure tank with high pressure hydrogen
- Automated and simple to use
- Options
 - Multiple fueling pressures
 - Blended fuels
 - Product metering

- Shell Hydrogen/Gasoline Fueling Station
 - 1,500-gallon hydrogen storage tank and dispensing equipment
 - Visitor Center
 - Invite students, local, federal, and international officials to observe hydrogen fueling
- Safety features
 - Hydrogen storage tank installed below ground
 - Hydrogen and gasoline deliveries scheduled at different times

Shell Hydrogen/Gasoline Station, Washington, DC

- California Fuel Cell Partnership
 Headquarters Fueling Station
 - Installed jointly by 6 leaders in energy and industrial gas supply
 - Used to fuel vehicles with gaseous or liquid hydrogen
 - Performed over 3,000 fueling events safely
 - Hydrogen is delivered by truck (the same way gasoline is delivered)
 - Stored cryogenically at -423F
 - Meets or exceeds safety standards set by NFPA and ASME

California Fuel Cell Partnership Headquarters, West Sacramento, California

Major components

- One 4,500-gallon storage tank
- Vaporizer that warms the liquid hydrogen to gas
- Compressor to raise the gas pressure to 6,250 psi
- 3 gaseous hydrogen tubes
- 2 gaseous dispenser
 - 1 at 3,600 psi
 - 1 at 5,000 psi
- 1 liquid hydrogen dispenser

California Fuel Cell Partnership hydrogen fueling station

- Fast fill protocol takes less than 5 minutes
 - Driver connects communication cable
 - Establishes safety and vehicle systems are functioning properly
- Time fill protocol takes under 15 minutes
 - Does not use communications link
- Safety features
 - Wireless and remote monitoring
 - IR fire detection
 - Hose breakaways
 - Manual emergency stops
 - Passive pressure relief devices

Module 2, "Hydrogen Production, Distribution and Delivery"

