

MEMORANDUM

TO: Transportation Planning Board
FROM: Lyn Erickson, Plan Development and Coordination Program Director
SUBJECT: Public Comment for the December 2025 TPB Meeting
DATE: December 17, 2025

The Transportation Planning Board accepts public comment on a rolling basis. Comments can be submitted via email (tpbcomment@mwcog.org), online (mwcog.org/tpbcomment), mail, and phone. Comments are collected until noon on the day before the TPB meeting. These comments are compiled and shared with the board at the meeting the following day.

Between noon Tuesday, November 18, and noon Tuesday, December 16 the TPB received one letter and 14 comments submitted via email. All comments were in reference to the Visualize 2050 plan documents.

The comments are summarized below. All full comments are attached to this memo.

PUBLIC COMMENT

Mike Robb, Comments via Letter- December 8, 2025

Mr. Robb writes to submit additional considerations on the Visualize 2050 plan, attaching a document he prepared on the Braddock Road multi-modal improvements project as a case study of the opportunities for enhancements for all roadways on level of service, shared use path design, and value engineering considerations. He offers these suggestions to further strengthen this project and similar projects throughout the region.

Comments via Email

Fourteen people wrote to comment on the Visualize 2050 plan documents. These emails express disappointment in the plan because the writers feel that auto-oriented investment is being prioritized over transit, walkable, bikeable investments. Some write that the plan lacks vision, perpetuating a status-quo of auto-dependency. Writers also want more bus rapid transit. One writer stated “Great work on the plan. 100% support.”

A number of commenters also wrote to express their opposition to toll lanes. Writers stated that having a for-profit partner fund the toll lanes might result in default, they limit public oversight, and are inherently inequitable. They state that the toll lanes would be too expensive for people to use and would create a bottleneck where they end causing more congestion on the other lanes. They also raised concerns about where the toll lanes are going to be placed, stating that the quality of life for people living around the lanes would worsen, including an increase in noise, pollution, and environmental impacts.

Laura Bachle

From: Mike Robb <mikerobb809@gmail.com>
Sent: Monday, December 8, 2025 4:14 PM
To: TPBcomment
Subject: Re: Visualize 2050 comments
Attachments: VDOT Braddock Road MM CASE STUDY COMMENTS 1A.pdf

As a follow up to my previous e-mail:

Attached for your consideration is a 22-page document (Version 1A, dated December 8, 2025) that uses the BRMIP as a case study to highlight opportunities for further refinement. The observations and suggestions for any future action. comments and suggestions are offered in the spirit of partnership and continuous improvement. With construction still several years away, there remains an excellent opportunity to explore these ideas and help the project realize its fullest potential under the latest standards (including HCM 7th Edition and current PROWAG guidance).

Many of the points and discussions may also apply to similar multimodal projects throughout Northern Virginia and beyond. I would welcome the chance to discuss any of these suggestions in more detail or provide additional clarification. Please feel free to contact me at your convenience per below. fel free to forward this to others who may benefit form the document,

Thank you again for your thoughtful work and collaboration on this important project and for considering these comments. I look forward to seeing the Braddock Road corridor deliver lasting benefits to residents, commuters, and all roadway users for decades to come.

Best regards,

Michael D. Robb (Retired) 30+ year professional in the design and construction field.

mikerobb809@gmail.com

(571) 331 6931

On Sun, Nov 23, 2025 at 3:18 PM Mike Robb <mikerobb809@gmail.com> wrote:

Thank you

Let me know if you have any questions about the information I have provided.

Michael Robb
571 331 6931

On Fri, Nov 21, 2025 at 1:34 PM TPBcomment <tpbcomment@mwcog.org> wrote:

Confirmed.

Thanks for commenting,

-Laura

Laura Bachle, AICP

Transportation Planner

National Capital Region Transportation Planning Board (TPB)

Metropolitan Washington Council of Governments

lbachle@mwcog.org | Office: (202) 962-3273

From: Mike Robb <mikerobb809@gmail.com>

Sent: Friday, November 21, 2025 12:47 PM

To: TPBcomment <tpbcomment@mwcog.org>

Subject: Visualize 2050 comments

Please see the attached documents that relate to traffic congestion issues regionally and in my area, especially the Braddock Road project and future Multimodal project issues identified. The issues identified are to other areas throughout the region. the proposed solutions can also be utilized throughout the DMV area.

Please confirm you have received the comments and documents.

Thank you

Mike Robb

571 331 6931

BRADDOCK ROAD MULTIMODAL IMPROVEMENTS PROJECT (BRMIP)

NATIONAL, REGIONAL, STATE, COUNTY AND PROJECT COMMENTS

12-8-2025 VERSION 1A

COMMENTS BY MICHAEL D. ROBB (30+ YEAR DESIGN PROFESSIONAL NOW RETIRED)

THE PROJET IS NOTED TO HAVE BEEN CURRENTLY APPROVED AND DUE FOR CONSTRUCTION START IN 2028

COMMENTS PROVIDED MAY BE TYPICAL OF OTHER SIMILAR PROJECTS THROUOUT THE COUNTY. STATE, REGION AND NATION AND SHOULD BE EVALUATED ON THE REGULATIONS OF THOSE JUSDICTIONS

I WANT TO SINCERELY THANK THE VDOT PROJECT TEAM, FAIRFAX COUNTY STAFF, AND ALL STAKEHOLDERS FOR THE SIGNIFICANT EFFORT INVESTED IN THE BRADDOCK ROAD MULTIMODAL IMPROVEMENTS PROJECT. THE DECISION TO PROVIDE AND UPGRADE TO CONTINUOUS SHARED USE PATHS, ENHANCE KEY INTERSECTIONS, AND INCORPORATE TRANSIT ACCOMMODATIONS REPRESENTS MEANINGFUL PROGRESS TOWARD A SAFER, MORE WALKABLE AND BIKE-FRIENDLY COMMUNITY.

THE OBSERVATIONS AND SUGGESTIONS IN THIS DOCUMENT ARE OFFERED IN THE SPIRIT OF PARTNERSHIP AND CONTINUOUS IMPROVEMENT. WITH CONSTRUCTION STILL SEVERAL YEARS AWAY, THERE REMAINS AN EXCELLENT OPPORTUNITY TO INCORPORATE AND FURTHER EXPLORE THE NEXT STEPS. I APPRECIATE THE CURRENT AND FUTURE EFFORTS DELIVERING EVEN GREATER BENEFITS FOR RESIDENTS, COMMUTERS, AND ALL ROADWAY USERS FOR DECADES TO COME.

THIS DOCUMENT USES THE BRADDOCK ROAD MULTIMODAL IMPROVEMENTS PROJECT AS A CASE STUDY TO HIGHLIGHT OPPORTUNITIES FOR ENHANCEMENT. IT OFFERS CONSTRUCTIVE SUGGESTIONS RELATED TO LEVEL OF SERVICE ANALYSIS, SHARED USE PATH DESIGN, AND VALUE-ENGINEERING CONSIDERATIONS THAT COULD FURTHER STRENGTHEN THE PROJECT AND FUTURE PROJECTS. MANY OF THE OBSERVATIONS MAY APPLY TO SIMILAR MULTIMODAL PROJECTS THROUGHOUT FAIRFAX COUNTY, THE COMMONWEALTH, AND THE NATION.

SUMMARY

1. LEVEL OF SERVICE (LOS) COMPLIANCE AND ISSUES	PAGES 3-6, 15-16
2. SHARED USE PATH COMPLIANCE AND ISSUES	PAGES 7-10
3. NATIONAL / STATE / REGIONAL / COUNTY ISSUES / CONCERNS	PAGE 11
4. NEAR MISS INCIDENT MAPPING	PAGE 12
5. PUBLIC TRANSIT IN NORTHERN VIRGINIA	PAGE 13
6. PROJECT CONTEXT / MAPPING	PAGES 12-14
7. ROAD AND INTERSECTION BEST PRACTICES / ROI	PAGE 17
8. OPTIMIZED TRAFFIC FLOW INTERCECTION DESIGN DIAGRAMS	PAGE 18
9. MAJOR PROJECT ROAD / INTERSECTION AND SHARED US PATH CONCERNS	PAGE 19
10. CUT-THRU TRAFFIC CONSERNS AND MITIGATION	PAGE 20
11. OTHER ISSUES / CONCERNS	PAGE 21
12. KEY TAKEAWAYS AND OPPORTUNITIES	PAGE 22

SUMMARY OF RELEVANT REGULATIONS / STANDARDS LEVEL OF SERVICE (LOS) VIRGINIA

The BRMIP team has clearly worked to incorporate multimodal improvements and operational enhancements. The following summary of current standards is offered in the spirit of ensuring the project realizes the fullest possible benefits under the latest guidance.

The **Virginia Department of Transportation (VDOT)** and other agencies evaluates and manages traffic congestion using **Level of Service (LOS)**, a qualitative measure (A through F, with A being best and F indicating severe congestion) of operating conditions based on factors like speed, travel time, delay, and freedom to maneuver.

Primary Laws and Regulations

VDOT primarily complies with the **Traffic Impact Analysis Regulations** (Virginia Administrative Code **24VAC30-155**), mandated by **Code of Virginia §15.2-2222.1**. These require traffic impact statements for certain developments, comprehensive plan amendments, and rezonings that substantially affect state-controlled highways. The regulations ensure developments do not degrade the transportation system unacceptably, with a focus on mitigating congestion impacts.

Key Standards for LOS Calculation

- **LOS calculations** must follow methodologies in the **Highway Capacity Manual (HCM)**, published by the Transportation Research Board (TRB). Earlier versions of the regulations referenced HCM 2010; VDOT aligns with the latest HCM editions (currently HCM 7th Edition, 2022) for operational analyses. The traffic analysis for the current project was completed in 2015 using HCM 2010 methodologies. Since that time, the Transportation Research Board has released the HCM 7th Edition (2022), which includes refined techniques for multimodal analysis and reliability measures. An updated study using the latest HCM edition could provide additional confidence that future conditions will meet regional goals.
- Usually prohibited methods include intersection capacity utilization or percentile delay for delay and LOS computations.
- VDOT requires consultation on approved software (e.g., Highway Capacity Software or equivalents) for consistency.

Application in Design and Planning

- In VDOT's **Road Design Manual** (Appendix A) and related guidelines, LOS influences geometric design standards. It incorporates **AASHTO's A Policy on Geometric Design of Highways and Streets (Green Book)**, which recommends target LOS based on facility type, area (rural/urban), and terrain.
- **Generally, LOS C or better serves as a desirable target, while LOS D often proves acceptable in dense urban areas where achieving higher levels is impractical or costly. Project is not in a dense urban area but suburban.**
- For new development impacts (via 24VAC30-155), analyses forecast conditions with/without the project and recommend mitigations if LOS degrades significantly (e.g., below acceptable thresholds for the roadway).
- Additional guidance: **Traffic Operations and Safety Analysis Manual (TOSAM)** and **Administrative Guidelines for Traffic Impact Analysis Regulations**, which standardize LOS application in project reviews, interchange justifications, and safety analyses.

VDOT does not enforce a single statewide minimum LOS (e.g., no universal “no worse than LOS E” rule). Acceptable LOS varies by context, functional classification, and location, prioritizing mitigation of substantial adverse impacts over rigid thresholds. For interstate and major projects, federal FHWA guidelines (also HCM-based) may also apply.

SUMMARY OF RELEVANT REGULATIONS / STANDARDS LEVEL OF SERVICE (LOS) FHWA

The **Federal Highway Administration (FHWA)**, part of the U.S. Department of Transportation, addresses traffic congestion primarily through a performance-based, multimodal approach rather than rigid mandates like minimum **Level of Service (LOS)** thresholds. FHWA emphasizes managing congestion via data-driven strategies, operations improvements, and integration into metropolitan planning processes.

Congestion Management Process (CMP)

FHWA requires a **Congestion Management Process (CMP)** in Transportation Management Areas (TMAs)—urbanized areas with populations over 200,000. The CMP is an objectives-driven, performance-based systematic approach that:

- Monitors transportation system performance using reliable data (e.g., travel time, speed, and reliability metrics).
- Identifies congestion causes.
- Evaluates and implements alternative strategies (demand management, operations, multimodal options, and capacity additions as a last resort).
- Integrates into the metropolitan transportation plan (MTP) and transportation improvement program (TIP).

FHWA's CMP Guidebook outlines an 8-step framework, including developing congestion objectives, defining the network, collecting data, identifying performance measures, analyzing problems, evaluating strategies, implementing solutions, and monitoring outcomes. The focus is on travel time reliability and non-recurring congestion (e.g., from incidents or weather), alongside recurring delays.

Performance Measures and National Goals

Under federal transportation laws (e.g., MAP-21, FAST Act, and IIJA/Bipartisan Infrastructure Law), FHWA establishes national performance management rules, including measures for traffic congestion in applicable urban areas. Key metrics include:

- Annual hours of peak-hour excessive delay per capita.
- Percent of non-single-occupant-vehicle travel.
- Travel time reliability (e.g., Planning Time Index).

States and metropolitan planning organizations (MPOs) set targets, and FHWA tracks progress through tools like the Urban Congestion Trends reports (published annually).

Level of Service (LOS) and Analysis Tools

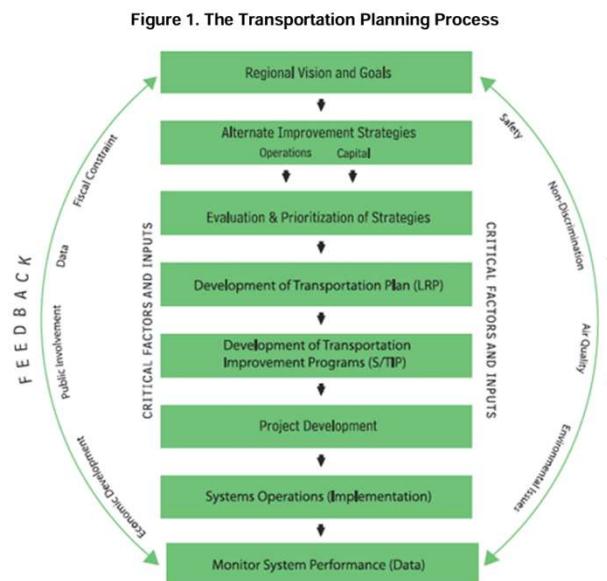
FHWA does not mandate specific minimum LOS values (A–F scale) for highways, including those on the National Highway System (NHS). While the *AASHTO Green Book* (adopted by FHWA for geometric design standards) provides recommended LOS targets based on facility type, area (urban/rural), and terrain, these are guidelines only—agencies may select lower LOS where higher levels are impractical.

FHWA endorses the **Highway Capacity Manual (HCM)**, published by the Transportation Research Board (latest is the 7th Edition, 2022), as the standard methodology for operational analysis, capacity calculations, and LOS determination. Tools like the Highway Capacity Software (HCS) implement HCM methods. However, alternative analysis methods may be used if appropriate.

SUMMARY OF RELEVANT REGULATIONS / STANDARDS LEVEL OF SERVICE (LOS) FHWA

FHWA endorses the **Highway Capacity Manual (HCM)**, published by the Transportation Research Board (latest is the 7th Edition, 2022), as the standard methodology for operational analysis, capacity calculations, and LOS determination. Tools like the Highway Capacity Software (HCS) implement HCM methods. However, alternative analysis methods may be used if appropriate.

Mitigation Strategies


FHWA promotes a toolbox of strategies to mitigate congestion, prioritizing low-cost, high-impact options:

- **Operational improvements** — Ramp metering, traffic signal coordination, incident management, and active traffic management (e.g., variable speed limits, queue warning).
- **Demand management** — Congestion pricing, high-occupancy vehicle/toll (HOV/HOT) lanes, telework, and flexible work hours.
- **Multimodal and land-use approaches** — Transit enhancements, bicycle/pedestrian facilities, and access management.
- **Adding capacity selectively** — As a last resort, after demonstrating that other strategies are insufficient (per CMP requirements for single-occupant-vehicle projects).

FHWA resources, such as the Traffic Analysis Toolbox series and reports on congestion trends/reliability, support these efforts. The agency encourages regional partnerships and integration of management & operations (M&O) into planning.

In summary, FHWA's guidelines shift away from traditional volume-to-capacity or LOS-only approaches toward broader performance measures, reliability, and a balanced mix of strategies tailored to local needs. For the most current details, refer to FHWA's Office of Operations website or specific publications like the CMP Guidebook.

https://www.fhwa.dot.gov/planning/congestion_management_process/cmp_guidebook/cmpguidebk.pdf

Source: U.S Department of Transportation, FHWA and FTA "The Transportation Planning Process: Key Issues - A Briefing Book for Transportation Decisionmakers, Officials, and Staff," Updated September 2007, Publication Number: FHWA-HEP-07-039. Available at: <http://www.planning.dot.gov/documents/BriefingBook/BBook.htm>.

Table 1. Examples of Performance Measures: Local and Regional

Type of Measure	Sample Localized/Corridor-level Measures	Sample Regional/System-level Measures	Reliability	
Congestion intensity: volume/capacity measures	<ul style="list-style-type: none">• Volume-to-capacity ratio (V/C), for segment• Level of Service (LOS), for a segment or intersection	<ul style="list-style-type: none">• Number or share of roadway miles operating at V/C ratio over 1.0• Number/share of roadway miles at LOS E or worse• Number of intersections at LOS E or worse		<ul style="list-style-type: none">• Share of freeway segments with planning time index over a certain threshold• Average buffer index for commute trips• Crash rate regionally
Congestion intensity: travel time measures	<ul style="list-style-type: none">• Travel speed (miles per hour)• Average delay time (the difference between travel time and acceptable or free-flow travel time)• Travel time index (ratio of peak-period to non-peak-period travel time)	<ul style="list-style-type: none">• Average regional commute time (by mode)• Total excess delay time (wasted travel time)• Share of roads experiencing travel time index over 2.0	Transit travel conditions	<ul style="list-style-type: none">• Percentage of buses/trains exceeding a certain crowding level.• Percentage of buses arriving on-time regionally
Congestion duration	<ul style="list-style-type: none">• Hours of travel per day at V/C ratio over 1.0• Hours of travel per day at LOS E or worse	<ul style="list-style-type: none">• Number or share of roadway miles experiencing more than 3 hours of congestion per day on average	Availability or service level of modes	<ul style="list-style-type: none">• Miles of sidewalks or share of roads with sidewalks regionally• Miles of bicycle lanes or paths or share of roads designated as bicycle routes regionally• Number of intersections with pedestrian features
Congestion extent: vehicle measures	<ul style="list-style-type: none">• Number of vehicles experiencing LOS E or worse, for a segment	<ul style="list-style-type: none">• Number or share of vehicle miles traveled at LOS E or worse, regionally	Accessibility	<ul style="list-style-type: none">• Share of regional jobs within 1/4 mile of transit• Share of regional households within 1/4 mile of transit
Congestion extent: delay measures	<ul style="list-style-type: none">• Total delay on roadway (average delay time per vehicle x number of vehicles)	<ul style="list-style-type: none">• Total excess delay time (wasted travel time)	Land use	<ul style="list-style-type: none">• Jobs-housing balance (ratio) within area/zone• Jobs-housing balance (ratio) across each area

SUMMARY OF RELEVANT REGULATIONS / STANDARDS LEVEL OF SERVICE (LOS) FHWA

The **Congestion Management Process (CMP)**, as outlined in the Federal Highway Administration's (FHWA) *Congestion Management Process: A Guidebook* (2011), provides a flexible, objectives-driven, performance-based framework for metropolitan planning organizations (MPOs) in Transportation Management Areas (TMAs). It consists of **eight actions** (often referred to as steps or an 8-step/8-action process). These actions form a cyclical, iterative process integrated into broader metropolitan transportation planning, emphasizing data-driven decisions, multimodal strategies, and ongoing evaluation rather than rigid sequential steps.

Here are the eight actions with explanations:

1. Develop Regional Objectives for Congestion Management

Establish clear, regionally agreed-upon goals for managing congestion. This foundational action answers: "What outcomes do we want?" Objectives might focus on reducing delay, improving reliability, enhancing multimodal options, or supporting economic vitality, and they align with broader regional transportation goals.

2. Define CMP Network

Identify the geographic scope and multimodal network (e.g., highways, arterials, transit routes) for monitoring and analysis. This typically includes roadways and facilities where congestion is a concern, often based on functional classification, volume, or existing data, and may be refined over time.

3. Develop Multimodal Performance Measures

Select measurable indicators tied to the objectives, such as travel time reliability, peak-hour delay, person-throughput, or non-single-occupant-vehicle mode share. Measures should address both recurring and non-recurring congestion and support multimodal assessment.

4. Collect Data / Monitor System Performance

Gather ongoing data (e.g., from probe vehicles, sensors, or transit systems) to track performance measures across the defined network. This provides a baseline and ongoing snapshot of current conditions.

5. Analyze Congestion Problems and Needs

Use collected data to identify the location, extent, duration, and causes of congestion (e.g., bottlenecks, incidents, or demand spikes). This step diagnoses problems and prioritizes areas needing attention.

6. Identify and Assess CMP Strategies

Develop and evaluate a range of potential solutions, including operational improvements (e.g., signal timing), demand management (e.g., pricing or flextime), multimodal enhancements (e.g., transit or biking), and—only as a last resort—capacity additions. Strategies are assessed for effectiveness, cost, and alignment with objectives.

7. Program and Implement CMP Strategies

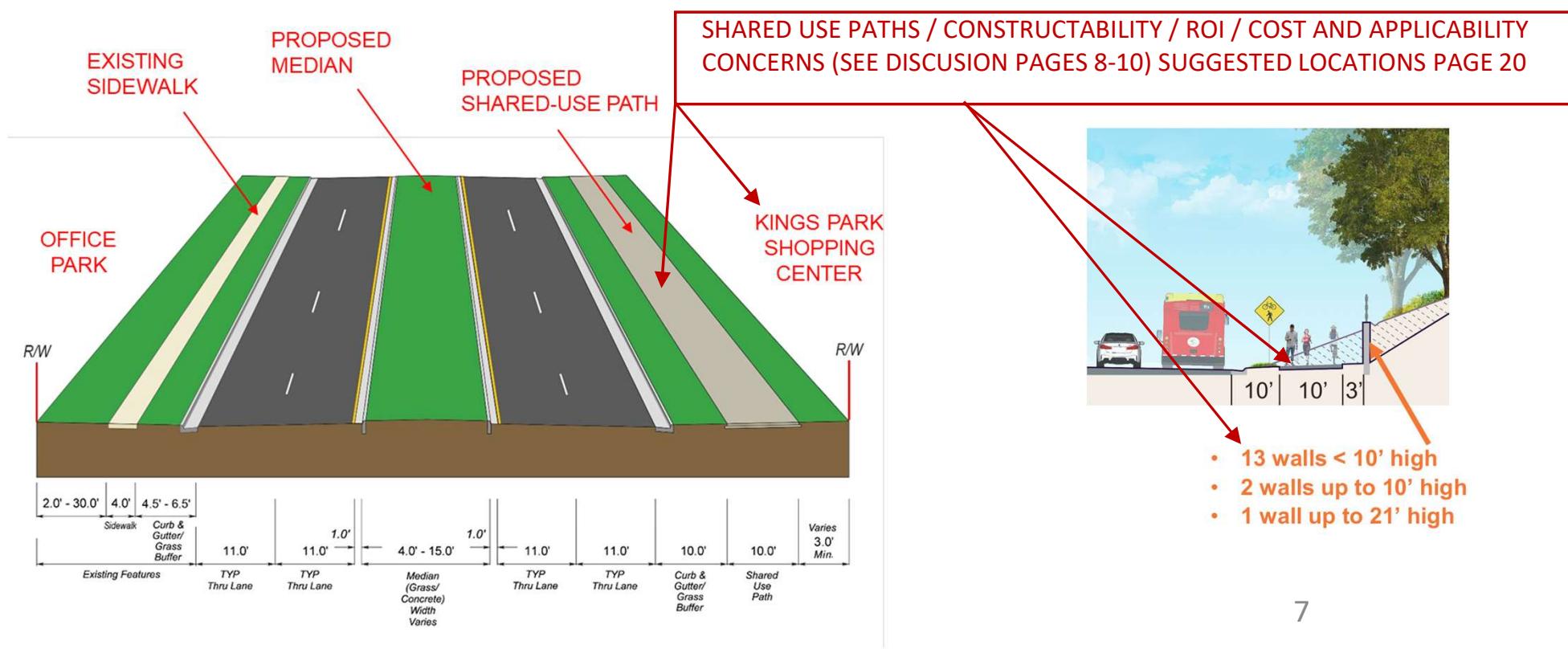
Incorporate selected strategies into the Metropolitan Transportation Plan (MTP) and Transportation Improvement Program (TIP) for funding and execution. This ensures strategies move from planning to real-world implementation through partnerships with agencies and stakeholders.

8. Evaluate Strategy Effectiveness

Monitor implemented strategies using the established performance measures to determine if objectives are met. Results feed back into the process (e.g., refining objectives or measures), creating a continuous improvement loop.

This framework emphasizes integration with operations, stakeholder collaboration, and adaptability to local needs. While required in TMAs (urban areas over 200,000 population), it serves as best practice elsewhere. The process has remained consistent in FHWA guidance since the 2011 guidebook.

SUMMARY OF RELEVANT REGULATIONS / STANDARDS OF SHARED USE PATHS (SUP)


The BRMIP team has clearly worked to incorporate multimodal improvements and upgrading paths with SUP's. The following summary of current standards is offered in the spirit of ensuring the project realizes the fullest possible benefits under the latest guidance.

Federal Regulations and Standards

Shared use paths (multi-use trails for pedestrians, bicyclists, and other non-motorized users) in the public right-of-way are governed by federal accessibility requirements under the Americans with Disabilities Act (ADA) and the Architectural Barriers Act (ABA). The key standard is the **Accessibility Guidelines for Pedestrian Facilities in the Public Right-of-Way (PROWAG)**, finalized by the U.S. Access Board in 2023 and enforceable when adopted by agencies like the Department of Justice (DOJ) and Department of Transportation (DOT/FHWA).

- PROWAG applies to new construction and alterations of shared use paths, requiring accessible surfaces, grades (maximum 5% running slope where practicable), cross slopes (maximum 2%), widths (minimum 10 ft typical), passing spaces, and protrusions-free clear zones.
- Misapplication includes failing to meet these criteria (e.g., excessive slopes, inadequate width causing conflicts, or poor maintenance leading to inaccessible surfaces), which can violate ADA Title II for public entities.
- Design guidance aligns with the **AASHTO Guide for the Development of Bicycle Facilities** (latest 5th Edition, 2024), which FHWA endorses for shared use paths, including recommendations for separation from roadways (side paths), intersections, and safety features. **FHWA emphasizes that shared use paths should not be used as a substitute for proper on-road facilities**, as side paths can create safety issues at intersections.

FHWA and AASHTO note potential **misapplications**, such as using side paths (shared use paths adjacent to roadways) in high-speed or high-volume areas without adequate separation or intersection treatments, leading to higher crash risks for bicyclists.

SUMMARY OF RELEVANT REGULATIONS / STANDARDS OF SHARED USE PATHS (SUP)

Virginia State Regulations and Standards (VDOT)

The Virginia Department of Transportation (VDOT) regulates shared use paths on state-maintained rights-of-way or in developments affecting state roads, primarily through the **Virginia Administrative Code** and VDOT manuals.

- **Code of Virginia § 46.2-100** defines shared use paths as bikeways physically separated from motorized traffic, open to pedestrians, bicyclists, and other non-motorized users.
- **24VAC30-91 (Subdivision Street Requirements)** and **24VAC30-92 (Secondary Street Acceptance Requirements)** require shared use paths in subdivisions or network additions to:
 - Be constructed per the **VDOT Road Design Manual** (Appendix A and B).
 - Follow the roadway's vertical alignment without meandering.
 - Be located fully within dedicated right-of-way for state maintenance eligibility.
 - Meet minimum widths (typically 10 ft), clear zones (3 ft minimum obstacle-free), and surfaces (asphalt or concrete for compliance).
 - Noncompliant paths (e.g., wrong alignment, inadequate width, or poor construction) are not accepted for state maintenance and may require waivers.
 - VDOT's **Policy for Integrating Bicycle and Pedestrian Accommodations** (2004) presumes paths on projects, following AASHTO guidelines.
 - Misapplication restrictions: Paths must not encroach on clear zones improperly, prohibit parking/stopping (24VAC30-640-50), and avoid designs that create safety hazards (e.g., excessive curves or poor sight lines).

VDOT aligns with AASHTO and PROWAG for accessibility and safety, prohibiting designs that degrade user experience or violate standards.

SUMMARY OF RELEVANT REGULATIONS / STANDARDS OF SHARED USE PATHS (SUP)

Fairfax County, Virginia Regulations and Standards

Fairfax County **enforces local standards for shared use paths in site plans, subdivisions, and county projects, often exceeding state minima.**

- The **Fairfax County Public Facilities Manual (PFM)** provides detailed design and construction guidelines for public facilities, including trails/shared use paths (e.g., widths, materials, drainage, and integration with roadways).
- The **Countywide Bicycle Master Plan** (adopted 2014, with updates) designates a network of shared use paths (primary/secondary trails, typically 10-12 ft wide asphalt), requiring compliance with AASHTO, VDOT, and PROWAG.
- Paths must be ADA-compliant, with proper grading and slope requirements, crossings, markings and signage.
- In development reviews, the county requires shared use paths along major roads or in trail corridors, per the Zoning Ordinance and Comprehensive Plan.
- Misapplication: Non-compliant designs (e.g., insufficient width causing user conflicts, poor accessibility, or misalignment with the Bicycle Network Map) are rejected during plan review. The county prioritizes safety, **prohibiting paths that encourage unsafe behaviors or fail to connect properly.**

In summary, misapplication—such as inadequate width/separation leading to conflicts, non-compliance with slopes/surfaces violating ADA/PROWAG, or using paths inappropriately instead of on-road facilities—is restricted by these layered requirements. **Conditions found to be unsafe could lead to injury, litigation or other measures to correct.**

Braddock Road (Route 620) is a major arterial roadway in Fairfax County with **high traffic volumes and speeds often 40–45 mph**. The area near Kings Park (around intersections with Rolling Road, Burke Lake Road, and Southampton Drive) is particularly busy due to commuting patterns, shopping centers, and residential access. Shared use paths (multi-use trails for pedestrians, bicyclists, and other non-motorized users) along such roadways are subject to strict design and application restrictions to ensure safety, especially given known risks with **side paths** (paths parallel and close to high-speed roads). These restrictions stem from federal (FHWA/AASHTO), state (VDOT), and local (Fairfax County) guidelines, which prioritize avoiding misapplication that could increase conflicts at driveways and intersections.

- **FHWA and AASHTO Guidance:** **Side paths are often discouraged or heavily restricted on roadways with speeds ≥ 40 mph, high traffic volumes, or frequent driveways/intersections** because:

- Bicyclists on bidirectional paths can be less visible to turning motorists (e.g., right-turn conflicts where drivers look left but bicyclists approach from the right).
- **Higher crash risks at intersections (up to 2–4 times higher than on-road facilities in some studies).**
- **Paths should not substitute for proper on-road bike lanes where experienced cyclists prefer them.**
- Restrict unsafe sections of roadway and intersections where high or continuous flow of traffic exists. Consider fencing or wall of unsafe sections to pedestrians in these areas.
- Constructability hurdles exist on south side where step slopes and proximity to residential property exists with limited pedestrian usage and many safety concerns exist.

In summary: on heavily traveled roads like **Braddock near Kings Park, shared use paths are not freely allowed or desired**—they are restricted to designs with robust safety features (wide paths, ample separation, advanced intersection treatments, or grade-separated crossings). Plain side paths without mitigations are considered a misapplication and are avoided or denied under FHWA/AASHTO/VDOT rules. The current project demonstrates how these restrictions are satisfied through targeted improvements.

SUMMARY OF RELEVANT REGULATIONS / STANDARDS OF FRONT YARD SHARED USE PATHS (SUP)

Front of single-family houses with individual driveways, a two-way shared-use path is generally prohibited or strongly discouraged by current national and state standards once driveway frequency exceeds about 10–15 per mile. Most 1950s–1990s suburban single-family neighborhoods have 40–80 driveways per mile, so a parallel two-way path in front of the houses is now considered unacceptable by virtually every modern standard.

The preferred solutions today are:

1. Route the path **behind the houses** (most common and safest),
2. Build **one-way protected bike lanes** on each side of the street, or
3. Designate a parallel street as a low-stress bicycle boulevard/greenway.

The old practice of running a 10–12 ft two-way path right along the curb with dozens of driveways crossing it is now viewed as one of the most dangerous and outdated designs in bicycle/pedestrian engineering.

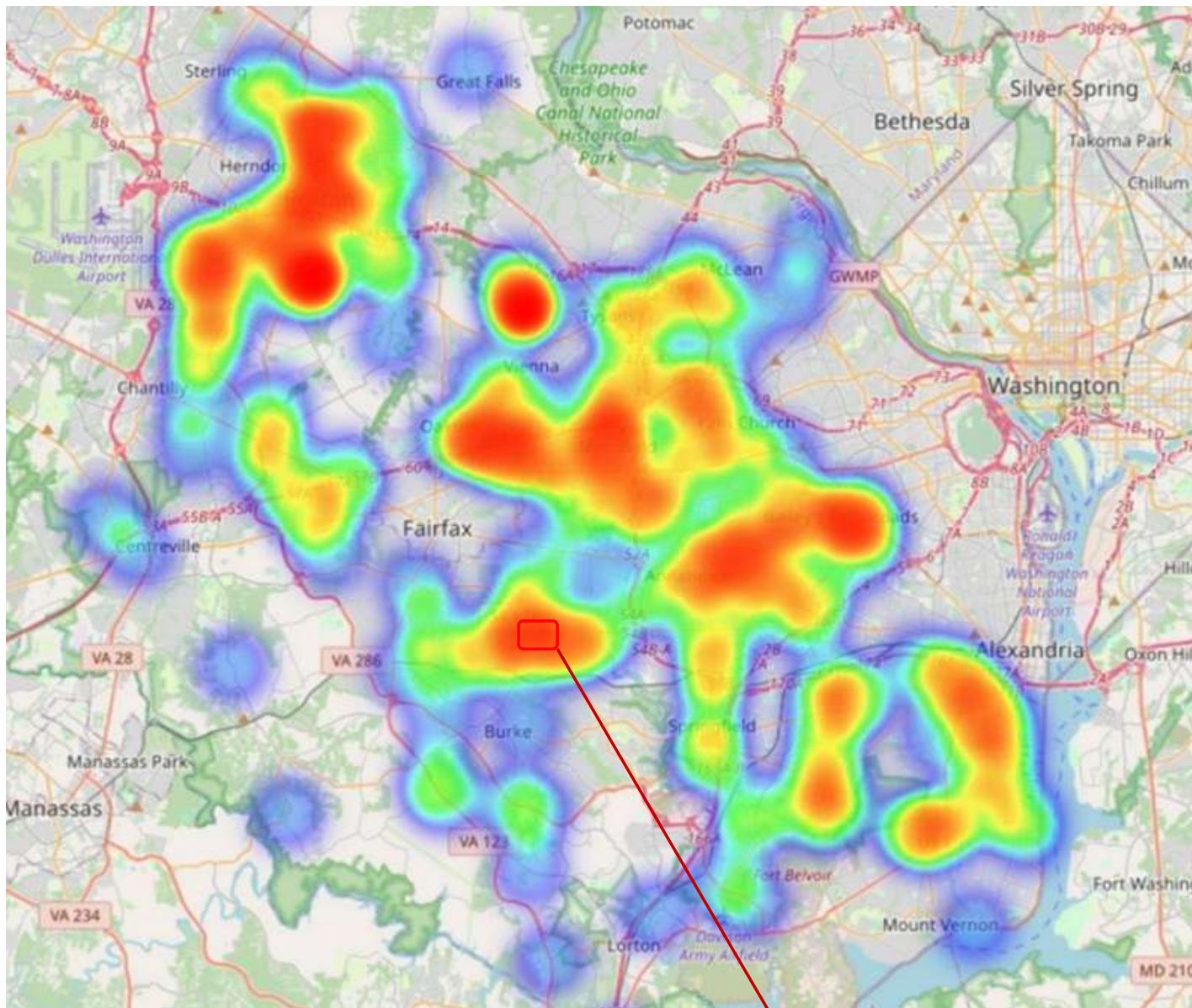
FHWA Small Town & Rural Multimodal Networks (2016)

Explicitly lists “frequent residential driveways” as a condition where a shared-use path **should not be provided** parallel to the roadway. Recommends on-street protected bike lanes or routing the path behind the houses instead.

AASHTO Guide (2012), §5.2.1 & §5.2.8

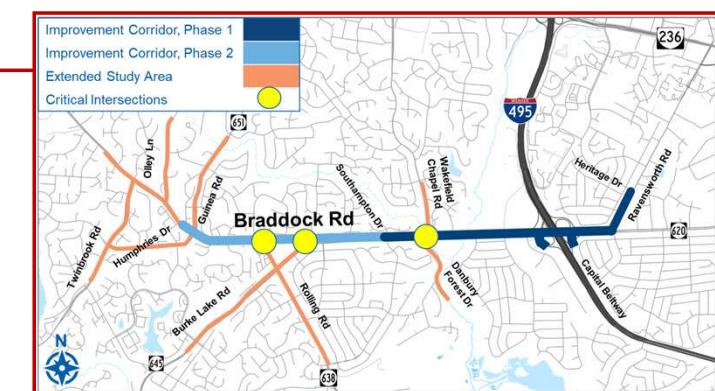
“Shared use paths immediately adjacent to roadways with frequent driveways are not recommended.” Strongly discourages side paths where driveways occur more than about every 200–300 ft (60–90 m).

> ~12–15 driveways per mile is usually considered unacceptable without major treatment.


Key Restrictions for Side paths on Rolling Road That should be Observed

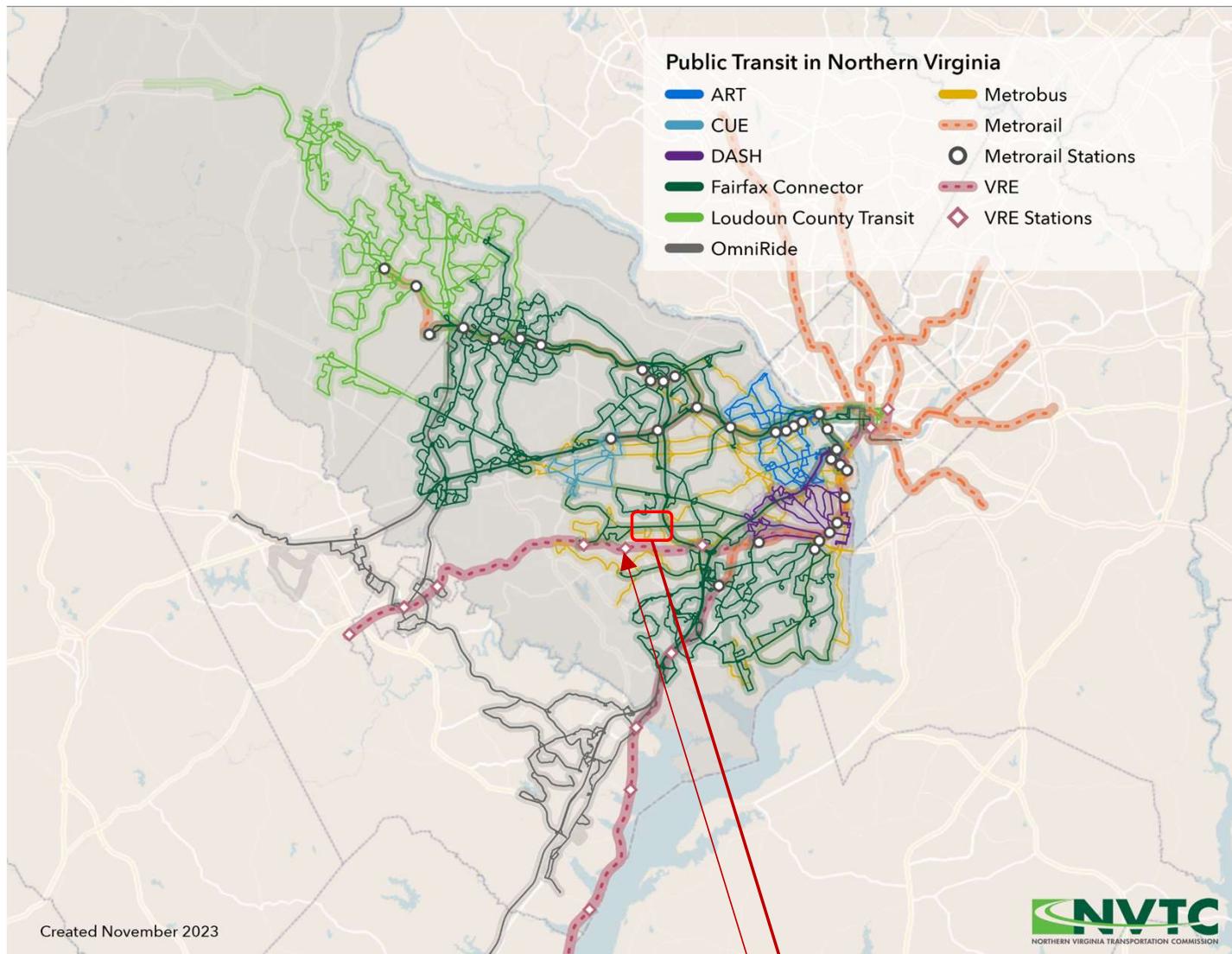
The same misapplication concerns as on Braddock Road apply here—FHWA and AASHTO strongly discourage bidirectional side paths on high-speed, high-volume arterials without extensive mitigations because of:

- Increased crash risks at intersections and driveways (e.g., right-hook conflicts, poor visibility).
- Frequent access points (residential driveways, shopping centers like Kings Park Shopping Center).
- High speeds and volumes making close-proximity paths feel unsafe for users.
- Do not provide front yard Shared us paths Kings Park areas.

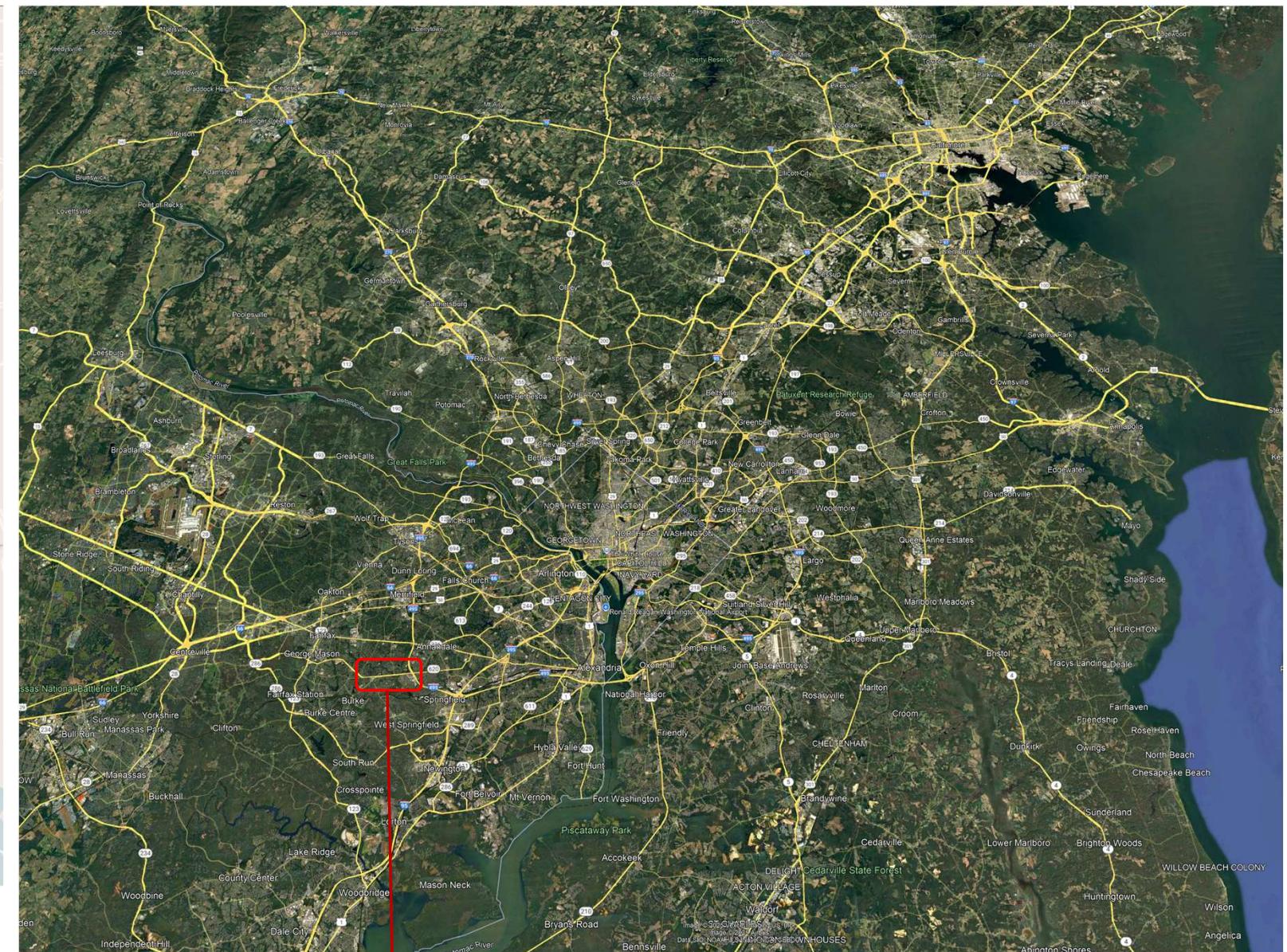


GENERAL ITEMS AND ISSUES (NATIONAL / STATE / COUNTY)			
NO	ITEM	ISSUE	LINKS / NOTES
1	Traffic Congestion Nationally (DC Metro Area)	Washington, D.C. metropolitan area, which has some of the worst traffic in the U.S. According to a July 2025 Consumer Affairs report analyzing the 50 largest U.S. metros, the D.C. region tops the list for worst traffic, with an average one-way commute of 33.4 minutes and over 6.5 hours of daily congestion. This beats out Los Angeles (30.1 minutes commute, nearly 8 hours congestion) and reflects factors like high population density and limited road capacity.	https://www.axios.com/local/washington-dc/2025/07/23/dc-worst-traffic-in-the-us
2	Traffic Congestion Statewide (Fairfax County VA) in VA	Comparisons within Virginia show Fairfax far ahead of other areas. TomTom's 2024 Traffic Index estimates 57 hours lost annually to peak-hour congestion in Washington, D.C. (covering Fairfax and nearby counties), compared to just 16 hours in Richmond and Virginia Beach-Norfolk. INRIX's 2024 Global Traffic Scorecard similarly puts the D.C. metro at 62 hours lost per driver, while Richmond sees about 20-25 hours and Hampton Roads around 30 hours—still much lower than Northern Virginia. Overall, Fairfax leads Virginia in congestion metrics like delay hours, commute times, and bottleneck frequency.	Fairfax County has the highest levels of traffic congestion in Virginia, with 41% of its roads near capacity and 23% over capacity during morning rush hours. This is significantly worse than other areas in the region, making commuting times longer and more challenging for drivers. By the numbers: Most congested types of roads in Northern Va. - WTOP News
3	Traffic Congestion Countywide (Fairfax County VA)	Fairfax County's traffic congestion and related issues have highlighted ongoing challenges in areas like Oakton, Fairfax, Springfield, and the Capital Beltway, as well as broader regional areas.	Fairfax County proposes new transportation priorities Articles fairfaxtimes.com
4	State / Condition of Roadway System (Fairfax County VA)	Most roads are in Fair or Better condition. The average commuter in the Northern Virginia and Washington Metropolitan Region endured delays of 85 hours in 2022; however, traffic volumes continue to increase as more people return to the workplace.	https://www.fairfaxcounty.gov/boardofsupervisors/sites/boardofsupervisors/files/Assets/documents/2025-Transportation-Fact-Sheet-final-12.3.24.pdf
5	Traffic Congestion Hotspots	Northern Virginia Families for Safe Streets (NOVA FSS) found that 90% of the incidents recorded by pedestrians and cyclists since 2020 were recurring events — a higher rate than in Arlington (82%) or Alexandria (74%), the two other jurisdictions analyzed by the volunteer-run nonprofit. SEE NEXT PAGE FOR HEAT MAP.	https://www.ffxnow.com/2024/09/27/new-report-finds-hot-spots-for-near-miss-traffic-incidents-in-fairfax-county/

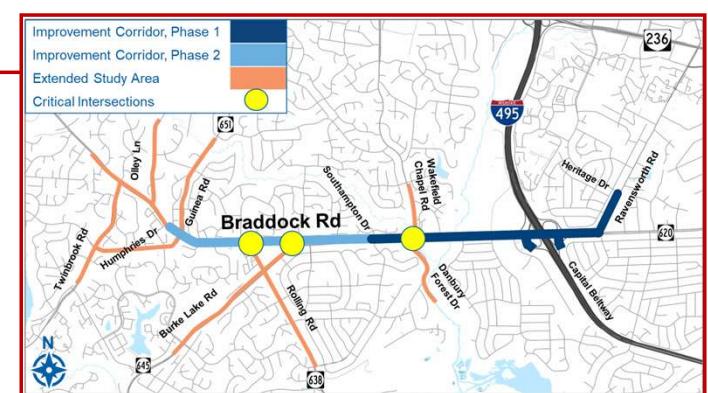
NOVA FSS HOT SPOTS MAPPING (NEAR-MISS INCIDENTS) DC / BALTIMORE REGIONAL MAP

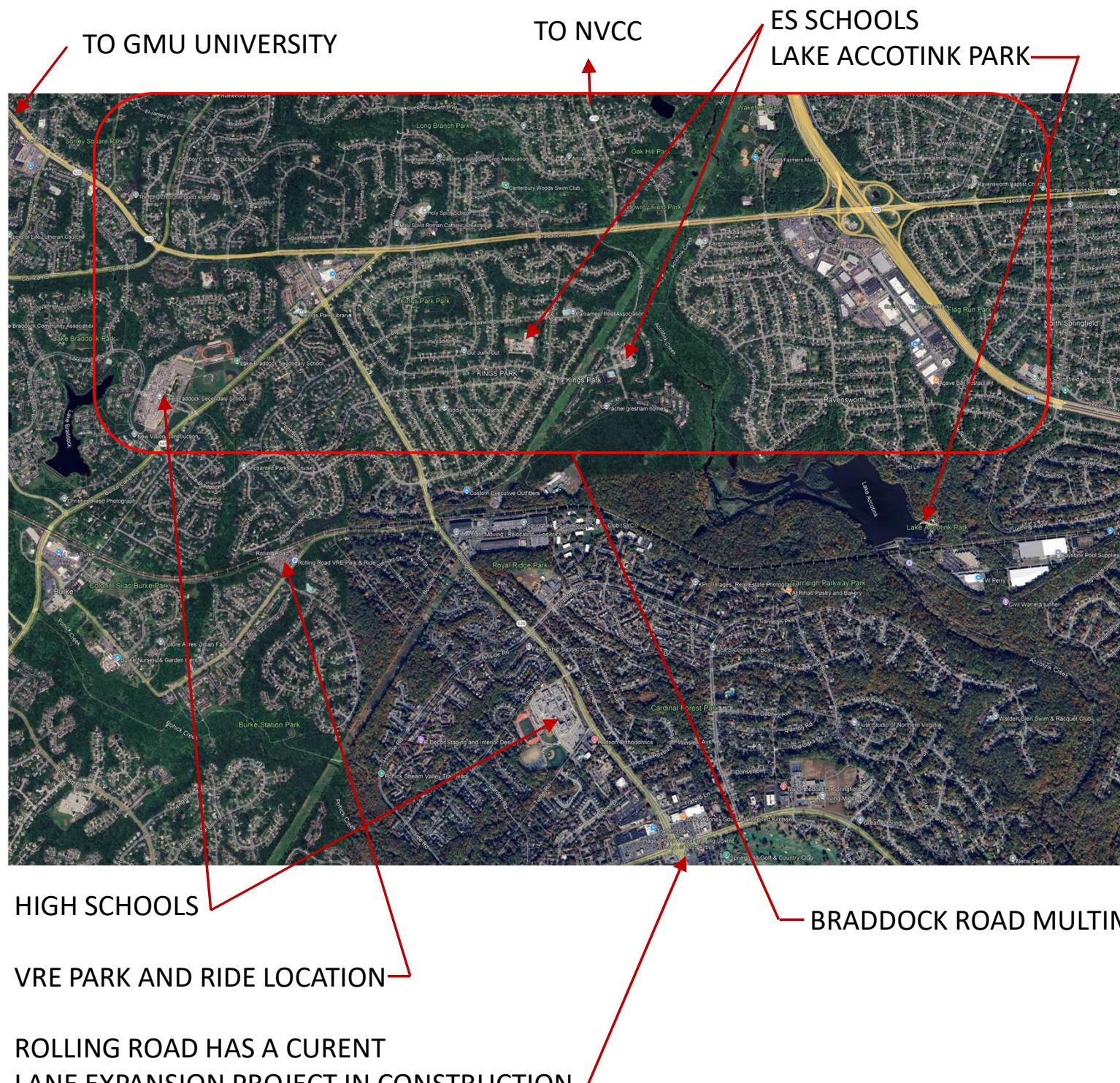


BRADDOCK ROAD MULTIMODAL PROJECT LOCATION

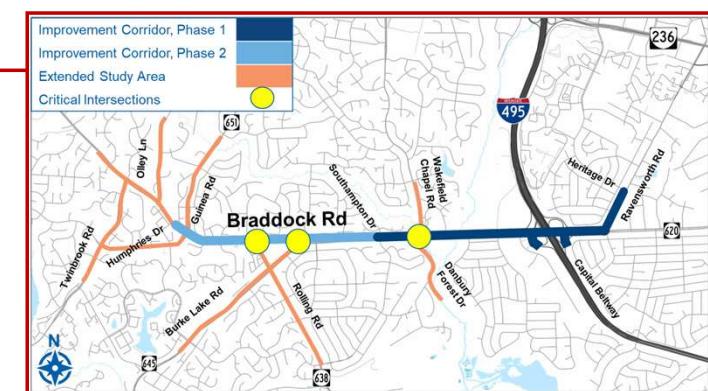
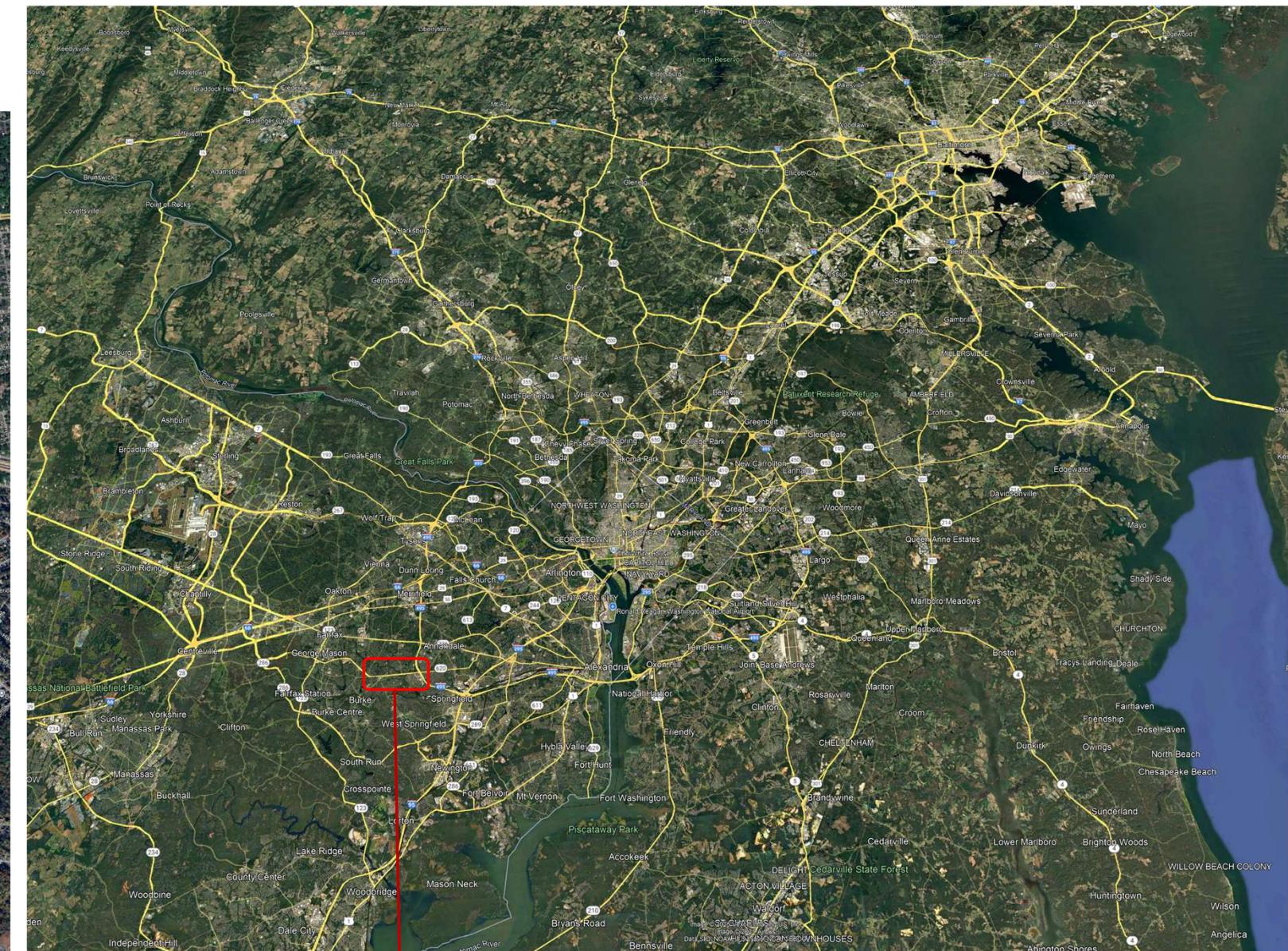

NOTE: INCREASING DENSITY IN BURKE, SPRINGFIELD, FAIRFAX AND FROM BELTWAY TRAFFIC HAS ADDED CONSIDERABLE CONGESTION IN THE PROJECT AREA. (SEE LEVEL OF SERVICE ISSUES NOTED)

NVTC PUBLIC TRANSPORTATION SYSTEM MAP


DC / BALTIMORE REGIONAL MAP


— BRADDOCK ROAD MULTIMODAL PROJECT LOCATION —

NOTE: VERY LIMITED PUBLIC TRANSPORTATION OPTIONS AVAILABLE IN AREA OF PROJECT. BUS AND CARS SHARE THE SAME CONGESTED ROAD SYSTEM.



THERE IS A VRE PARK AND RIDE LOCATION OFF BURKE ROAD
SOUTH WEST OF THE PROJECT AREA

PROJECT CONTEXT MAP

DC / BALTIMORE REGIONAL MAP

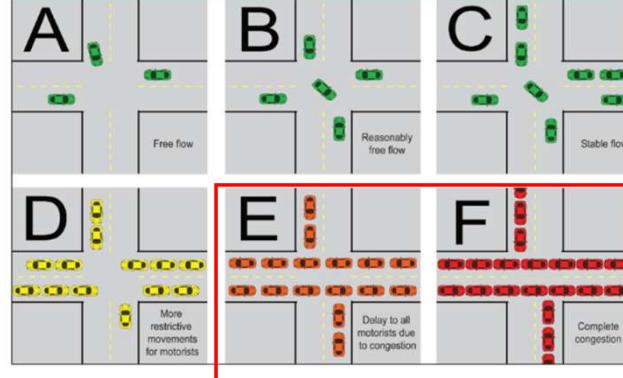
	BRADDOCK ROAD MULTIMODAL PROJECT (General Info / Issues)	
1	Project Goals	The goals of the Braddock Road Multimodal Improvements Project include enhancing vehicle and pedestrian safety, improving mobility and accessibility for all users, and creating dedicated shared-use paths for cyclists and pedestrians. The project aims to reduce traffic congestion and promote active transportation options in the area without adding additional through lanes . Goals look to be attainable but the question is for how long until the future congestion overtakes the solution provided based on LOS (Level Of Service)? https://www.fairfaxcounty.gov/transportation/projects/braddock-multimodal
2	Public Involvement	A number of targeted public involvement meetings took place over a number of years since 2016 - 2025. Unfortunately, not all community members knew of the project until recently. Thus, later input was not timely and not implemented. OTHER NOTED PUBLIC COMMENTS: <ul style="list-style-type: none">Reduction of tree impactsUse of existing trail systems, when feasible / SUP do not need to be on both sides of the road and only provided in appropriate locations.
3	Project was Based on a 2018 Final Report 2015 Traffic Study	An initial study for travel demand based on the regional model and microsimulation was conducted for each of the alternatives. The study was conducted in 2015 and showed projections through 2040. The major problem Identified is on page 5-50 in which the AM traffic travel time will be projected to 114% additional change to 2015. The solution only mitigates that by 34%. It is further noted that on page 5-45 table 5-3 the existing 2015 conditions already showed signs of issues and are now far worse in 2025. A combination of intersection and added lanes was not pursued and projections did not include other issues that will only increase traffic congestion and safety issues. SEE PAGE 16. https://www.fairfaxcounty.gov/transportation/sites/transportation/files/Assets/Documents/PDF/Transportation%20Projects%2C%20Studies%20and%20Plans/Braddock%20Road%20Multimodal%20Study%20Report_2018-05-09.pdf

Signalized intersection level of service (LOS) is defined in terms of the average total vehicle delay of all movements through an intersection. Vehicle delay is a method of quantifying several intangible factors, including driver discomfort, frustration, and lost travel time. Specifically, LOS criteria are stated in terms of average delay per vehicle during a specified time period (for example, the PM peak hour). Vehicle delay is a complex measure based on many variables, including signal phasing (i.e., progression of movements through the intersection), signal cycle length, and traffic volumes with respect to intersection capacity. Table 1 shows LOS criteria for signalized intersections, as described in the *Highway Capacity Manual* (Chapters 19 & 20, 2016).

Table 1. Level of Service Criteria for Signalized Intersections

Level of Service	Average Control Delay (sec/veh)	General Description (Signalized Intersections)
A	≤10	Free Flow
B	>10 - 20	Stable Flow (slight delays)
C	>20 - 35	Stable flow (acceptable delays)
D	>35 - 55	Approaching unstable flow (tolerable delay, occasionally wait through more than one signal cycle before proceeding)
E	>55 - 80	Unstable flow (intolerable delay)
F	>80	Forced flow (jammed)

Unsignalized intersection LOS criteria can be further reduced into two intersection types: all-way stop-controlled and two-way stop-controlled. All-way, stop-controlled intersection LOS is expressed in terms of the average vehicle delay of all of the movements, much like that of a signalized intersection. Two-way, stop-controlled intersection LOS is defined in terms of the average vehicle delay of an individual movement(s). This is because the performance of a two-way, stop-controlled intersection is more closely reflected in terms of its individual movements, rather than its performance overall. For this reason, LOS for a two-way, stop-controlled intersection is defined in terms of its individual movements. With this in mind, total average vehicle delay (i.e., average delay of all movements) for a two-way, stop-controlled intersection should be viewed with discretion. Table 2 shows LOS criteria for unsignalized intersections (both all-way and two-way, stop-controlled).

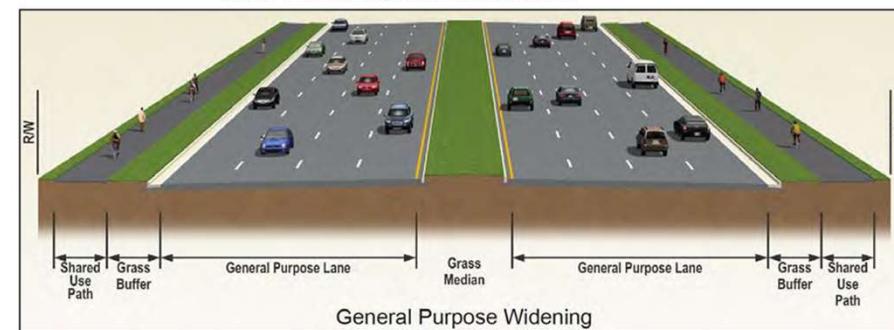

Table 2. Level of Service Criteria for Unsignalized Intersections

Level of Service	Average Control Delay (sec/veh)
A	0 - 10
B	>10 - 15
C	>15 - 25
D	>25 - 35
E	>35 - 50
F	>50

CLASSIFICATION OF LEVEL OF SERVICE...

Level of Service (Signalized Intersections)	Average Vehicle Delay at Intersection (seconds)
A	≤10
B	>10 and ≤20
C	>20 and ≤35
D	>35 and ≤55
E	>55 and ≤80
F	>80

The average (vehicular) travel time for the Intersection and Corridor Improvements, GP Widening and HOV Inside Alternatives were very similar for the AM peak hour. The HOV Outside Alternative had a higher travel time compared to the other three Build Alternatives due to the weave condition at the end of the eastbound HOV lane. In the PM peak hour, the Intersection and Corridor Improvements had the lowest average travel time for 2040 conditions, closely followed by the other three Build Alternatives.


Table 5-1 presents the comparison of intersection MOEs between the Existing Conditions and the No Build Alternative. As traffic volumes increased for the No-Build Alternative, the intersections' level-of-service (LOS) deteriorated over the Existing Conditions. Detailed MOEs (delay and queues by intersection movements, and mainline travel times) are presented in Appendix L.

Alternative	Equivalent LOS					
	A	B	C	D	E	F
AM Peak Hour						
2015 Existing Conditions	0	0	5	3	5	0
2040 No-Build Alternative	0	0	0	0	1	12
PM Peak Hour						
2015 Existing Conditions	0	2	3	5	2	1
2040 No-Build Alternative	0	1	0	4	4	4

Table 5-1: Intersection LOS Summary

Alternative	Equivalent LOS					
	A	B	C	D	E	F
AM Peak Hour						
Existing Conditions	0	0	5	3	5	0
No-Build Alternative	0	0	0	0	1	12
Intersection Imp. Alternative	0	0	2	3	3	5
HOV Outside Alternative	0	0	2	0	0	11
HOV Inside Alternative	0	0	2	2	2	7
GP Widening Alternative	0	0	2	1	3	7
PM Peak Hour						
Existing Conditions	0	2	3	5	2	1
No-Build Alternative	0	1	0	4	4	4
Intersection Imp. Alternative	0	0	5	2	4	2
HOV Outside Alternative	0	1	3	4	2	3
HOV Inside Alternative	0	2	3	3	0	5
GP Widening Alternative	0	2	3	4	0	4

Table 5-3: Intersection LOS Summary

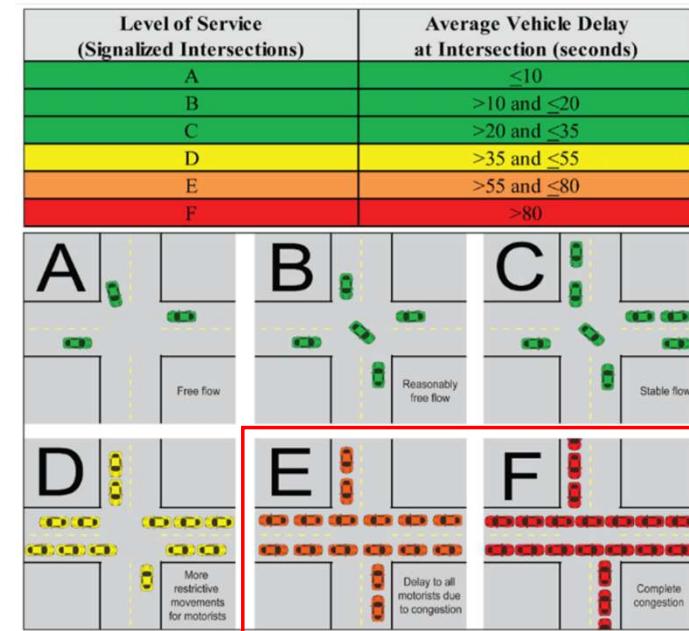


Figure 5-11

BASED ON THE 2015 REPORT A COMBINATION OF GP WIDENING AND INTERSECTION IMPROVEMENTS SEEMS TO BE REQUIRED TO GET AN APPROPRIATE LOS FOR ANY LASTING FUTURE DURATION. A NEW STUDY SHOULD CONFIRM THIS BASED ON UPDATED CONDITIONS.

There is expressed concern about the 2015 study and the indicated growth rates anticipated as follows in addition to the concerns raised about LOS (Level Of Service):

- The study was already 10 years old is outdated and 2025 conditions of “parking lot” (waiting through multiple lights at an intersection) like conditions already exist that were not picked up /anticipated in the report. No follow up studies conducted and no VE studies were conducted.
- There is already a growth rate over the anticipated 6-8 percent already since 2015. A new or more recent study would have picked this up but was not conducted. It was also noted no recent comprehensive metro area study seems to exist.
- Additional density is being built or recently built along the corridor such as George Mason that contribute to the congestion on Braddock and Rolling roads not predicted in the prior report.
- That the widening of Rolling Road (south of Old Keene Mill Road, approximately 2.5 miles to the south) was never addressed in the prior report adding more traffic to this area.
- Some minor development in the Braddock Road area was anticipated but the “driver” for more cars in the immediate area is due to the following factors not indicated in the report and has / will potentially increase vehicular traffic along Braddock Road. The following trends in the area were not studied or included in the report are as follows:
 - Rental property with more adults / drivers.
 - Multi-generational families with more adults / drivers.
 - Construction of larger houses in the area (some houses have doubled in size) along with many more drivers and people in the house.
- Concerns expressed that the anticipated future capacity has already been surpassed and capacity by 2050 will be at least 38% more requiring more additional lane / intersection capacity. Suggested a new traffic study be conducted very soon to confirm or clarify concerns for future action.
- There is also concerns that by 2050 additional capacity will also be required on the beltway and that the intersections will be insufficient to handle congestion based on the additional density of housing anticipated in Springfield, Tysons, Fairfax and the region. This may result in additional construction near the belt way that could be coordinated now or in the near future incorporation into future projects.
- It is suggested to look into integrated intersection designs such as a “Michigan Left” for use in this and other projects (see page 18). Also adding continuous flow at intersection turn lanes in appropriate locations to speed traffic flow and better comply with Level Of Service (LOS) requirements.

The average (vehicular) travel time for the Intersection and Corridor Improvements, GP Widening and HOV Inside Alternatives were very similar for the AM peak hour. The HOV Outside Alternative had a higher travel time compared to the other three Build Alternatives due to the weave condition at the end of the eastbound HOV lane. In the PM peak hour, the Intersection and Corridor Improvements had the lowest average travel time for 2040 conditions, closely followed by the other three Build Alternatives.

Table 5-1 presents the comparison of intersection MOEs between the Existing Conditions and the No Build Alternative. As traffic volumes increased for the No-Build Alternative, the intersections' level-of-service (LOS) deteriorated over the Existing Conditions. Detailed MOEs (delay and queues by intersection movements, and mainline travel times) are presented in Appendix L.

Scenario	Average Travel Time (sec/veh)	Total Travel Time (hr)	% Change to 2015 Existing Avg. Travel Time	% Change to 2040 No Build Avg. Travel Time
AM				
2015 Existing	347.6	1,444	-	-
2040 No Build	745.4	3,096	114%	-
2040 Intersection Improvements	490.2	2,224	41%	-34%
2040 HOV Outside	610.5	2,834	76%	-18%
2040 HOV Inside	497.6	2,429	43%	-33%
2040 GP Widening	505.9	2,459	46%	-32%
PM				
2015 Existing	370.2	1,533	-	-
2040 No Build	517.4	2,272	40%	-
2040 Intersection Improvements	394.5	1,778	7%	-24%
2040 HOV Outside	427.7	1,977	16%	-17%
2040 HOV Inside	428.6	2,010	16%	-17%
2040 GP Widening	423.3	1,982	14%	-18%

Table 5-4: VISSIM Network Performance MOEs

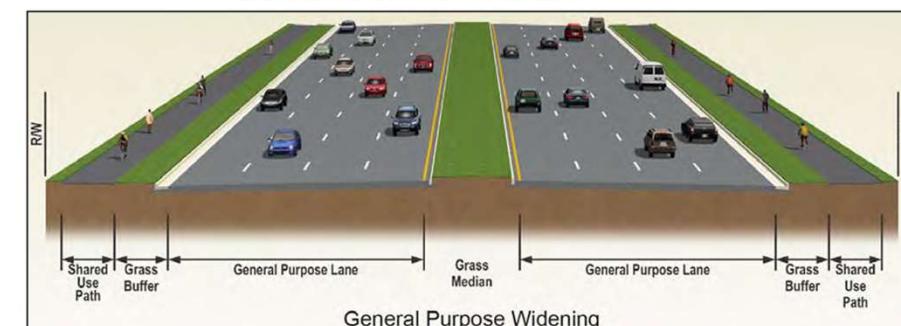


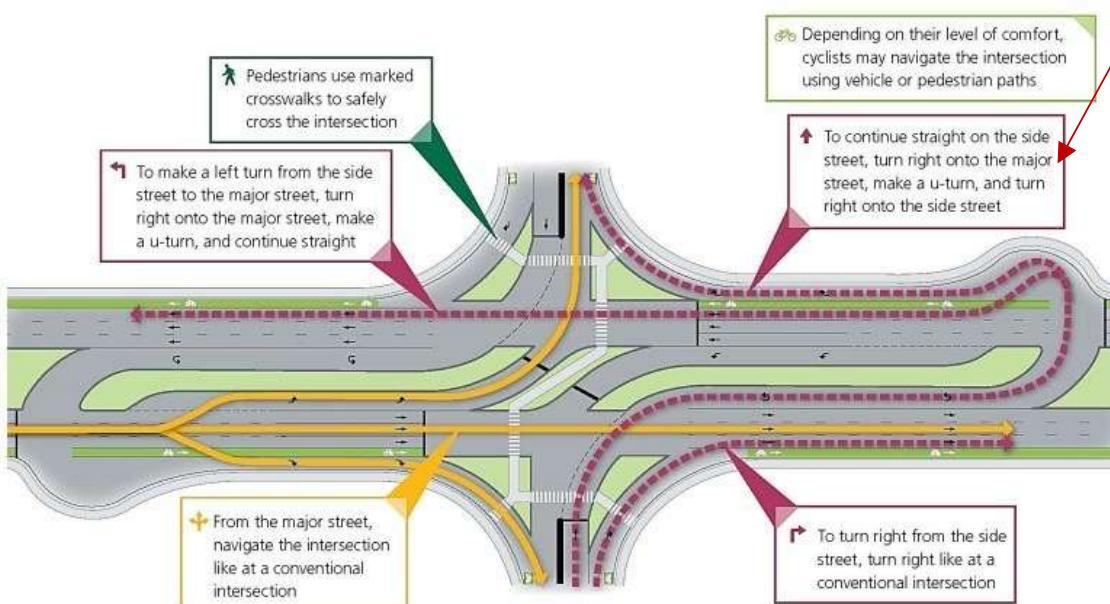
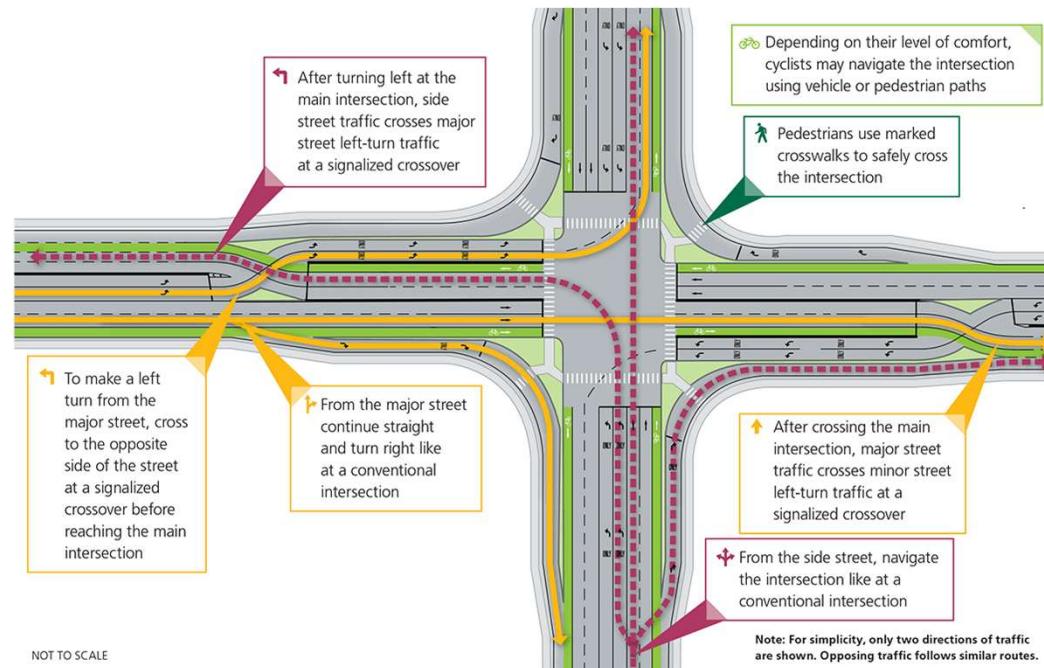
Figure 5-11

Alternative	Equivalent LOS					
	A	B	C	D	E	F
AM Peak Hour						
2015 Existing Conditions	0	0	5	3	5	0
2040 No-Build Alternative	0	0	0	0	1	12
PM Peak Hour						
2015 Existing Conditions	0	2	3	5	2	1
2040 No-Build Alternative	0	1	0	4	4	4

Table 5-1: Intersection LOS Summary

Alternative	Equivalent LOS					
	A	B	C	D	E	F
AM Peak Hour						
Existing Conditions	0	0	5	3	5	0
No-Build Alternative	0	0	0	0	1	12
Intersection Imp. Alternative	0	0	2	3	3	5
HOV Outside Alternative	0	0	2	0	0	11
HOV Inside Alternative	0	0	2	2	2	7
GP Widening Alternative	0	0	2	1	3	7
PM Peak Hour						
Existing Conditions	0	2	3	5	2	1
No-Build Alternative	0	1	0	4	4	4
Intersection Imp. Alternative	0	0	5	2	4	2
HOV Outside Alternative	0	1	3	4	2	3
HOV Inside Alternative	0	2	3	3	0	5
GP Widening Alternative	0	2	3	4	0	4

Table 5-3: Intersection LOS Summary



BEST PRACTICES IN ROAD AND INTERSECTION EXPANSION (FUNCTION / TAX PAYER ROI)

THE FOLLOWING EXPANSION PHASING SHOULD BE PROVIDED GENERALLY TO OPTIMIZE DESIGN, CONSTRUCTION, TIME TABLE, AND COST

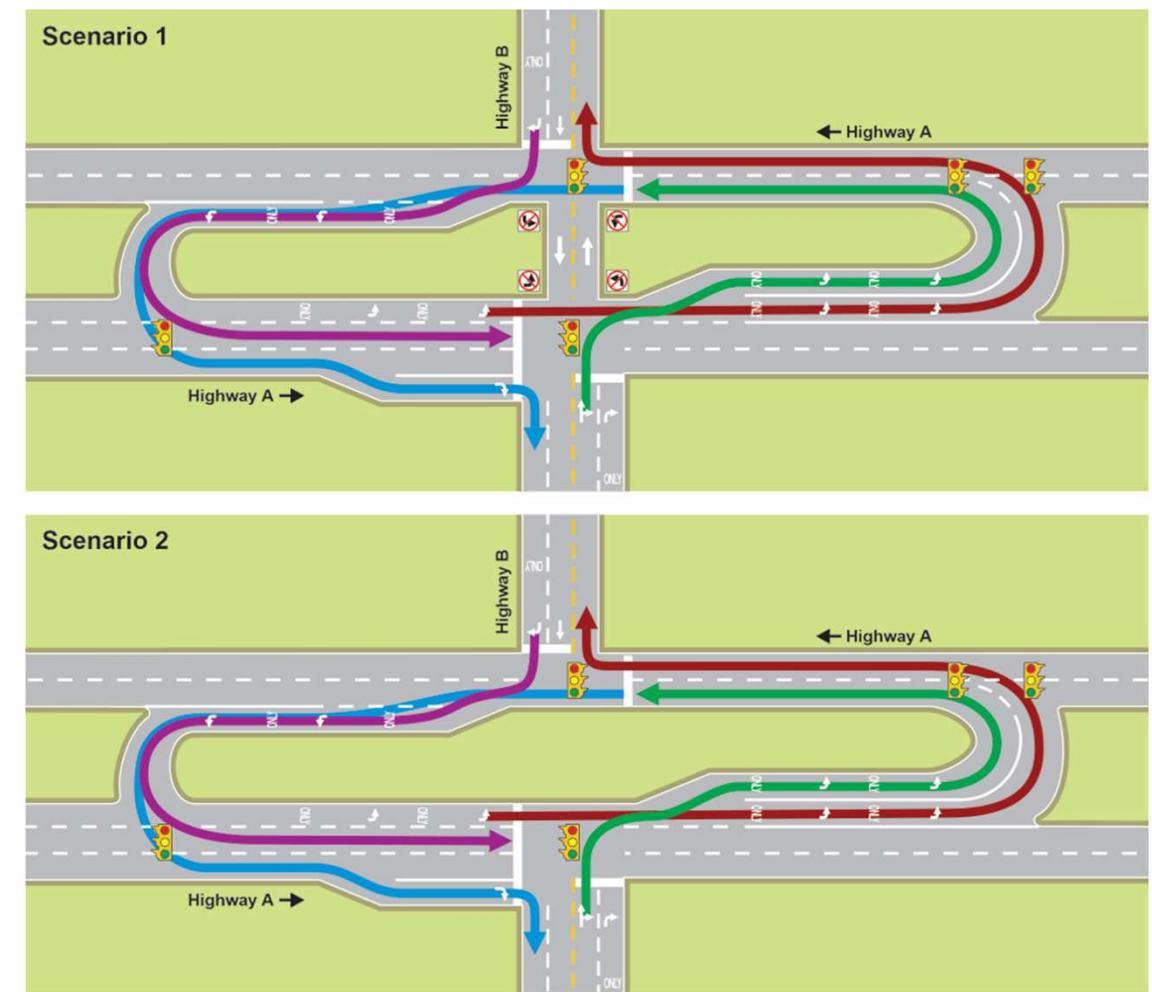
1. RIGHT OF WAY EXPANSION IF REQUIRED FOR ALL ASPECTS OF THE CONSTRUCTION AND PHASING. PHASING AND EXTENT OF CONSTRUCTION IS BASED ON LONG TERM PROJECTIONS OF TRAFFIC USAGE AND PATTERNS IDENTIFIED AND ANY FOLLOW-UP STUDY OR ANALYSIS TO CONFIRM PROJECTIONS COMPLIANCE WITH LEVEL OF SERVICE (LOS) AND OTHER CRITERIA. SEE PAGES 3-6.
COORDINATE ANY UTILITY WORK REQUIRED INCLUDING REMOVAL, PHASING, ALTERATIONS, AND ANY LAND PURCHASES REQUIRED.
2. LANE EXPANSION REQUIRED BY THE PROJECTED (LOS). (NOT PROVIDING THIS FIRST MAY REQUIRE OTHER ASSOCIATED CONSTRUCTION TO BE DEMOLISHED BECAUSE IT MAY INTERFERE WITH NEW FUTURE LANES.) MAY ALSO REQUIRE ADDITIONAL RIGHT OF WAY EXPANSION WHEN FUTURE LANES ARE REQUIRED BY LEVEL OF SERVICE.
3. INTERSECTION ADJUSTMENTS AND ADDED TURN LANES AND / OR CONTINUOUS FLOW LANES. INCLUDE ALL SIGNAL AND ASSOCIATED SIGNAGE CONSTRUCTION. MAY ALSO REQUIRE ADDITIONAL RIGHT OF WAY EXPANSION WHEN LEVEL OF SERVICE REQUIRES ADDITIONAL MEASURES TO REDUCE CONGESTION. SEE PAGE 18.
4. PEDESTRIAN WALKS, CROSSINGS, SIGNALING / SHARED USE PATHS. SEE PAGE 20 FOR SUGGESTED SHARED US PATH FOR THIS PROJECT OR FUTURE CONSIDERATION,
5. MORE COST EFFECTIVE IF ALL THE ABOVE IS PROVIDED AT ONE TIME. ALL PROJECT SCOPING SHOULD BE CONSIDERED IN A PHASED APPROACH IF FUNDING IS INSUFFICIENT TO BE ONE PHASE IF POSSIBLE, COORDINATING PROJECT. COORDINATED PHASING OF ALL ASPECTS OF THE WORK PROVIDES DECREASE CONSTRUCTION DOWN TIME, AND MAXIMISES TAX PAYER RETURN ON INVESTMENT(ROI).
6. THIS CASE STUDY PROJECT WILL POTENTIALLY REQUIRE ADDITIONAL PROJECT(S) IN THE COMING YEARS BASED ON CURRENT (LOS) SERVICE ANALYSIS. THERE IS AN OPPORTUNITY TO ALTERED OR ENHANCE THE PROJECT WITH ADDITIONAL SUGGESTED FEATURES INDICATED IN THIS DOCUMENT. ANY FUTURE EXPANSIONS WILL VERY LIKELY REQUIRE DEMOLISHING AND OR ALTERING BUILT CONSTRUCTION AT OVIOUSLY MORE TIME AND CONSTRUCTION EXPENSE. THE CURRENT DESIGN PROVIDES VALUABLE NEAR-TERM IMPROVEMENTS. INCORPORATING PHASED RIGHT-OF-WAY PRESERVATION OR ADAPTABLE MEDIAN/TURN-LANE CONFIGURATIONS NOW COULD MAKE FUTURE CAPACITY ENHANCEMENTS SIGNIFICANTLY EASIER AND LESS COSTLY WHEN DEMAND WARRANTS.

BEST PRACTICES OPTIMIZING TRAFFIC FLOW INTERSECTIONS

TO FOLLOWING OPTIMIZED INTERSECTION DESIGNS, INCORPORATE MORE MOVEMENT THROUGH THE INTERSECTIONS OPTIMIZING TRAFFIC FLOW

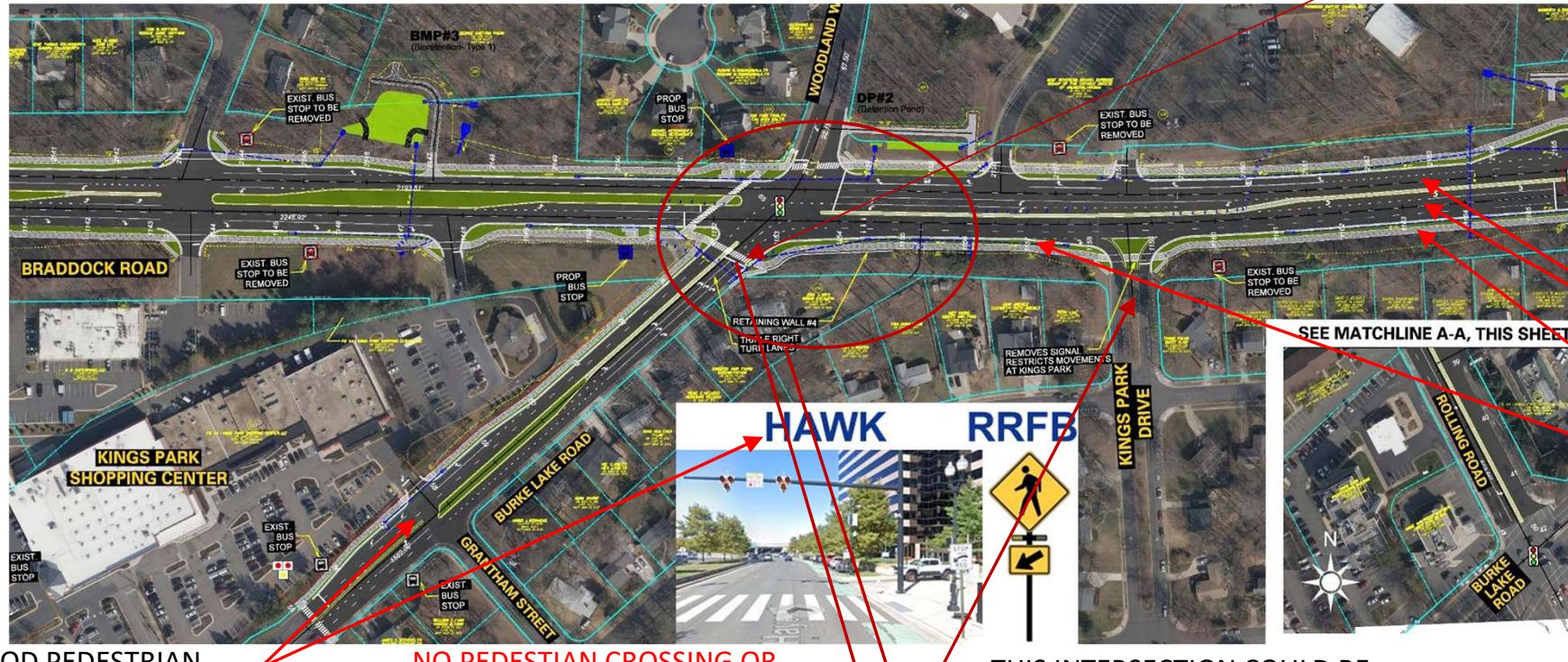
Several proven intersection treatments used successfully elsewhere in Virginia and nationally (such as Restricted Crossing U-Turns or displaced left turns) may offer additional safety and capacity benefits with relatively modest additional right-of-way. These are presented here as options for consideration.

A third scenario for the Michigan left could add additional right hand turn lanes for additional flow and flexibility.


This right turn feature was noted to be missing in the project design. Missing features could be altered / implemented in the future as needed.

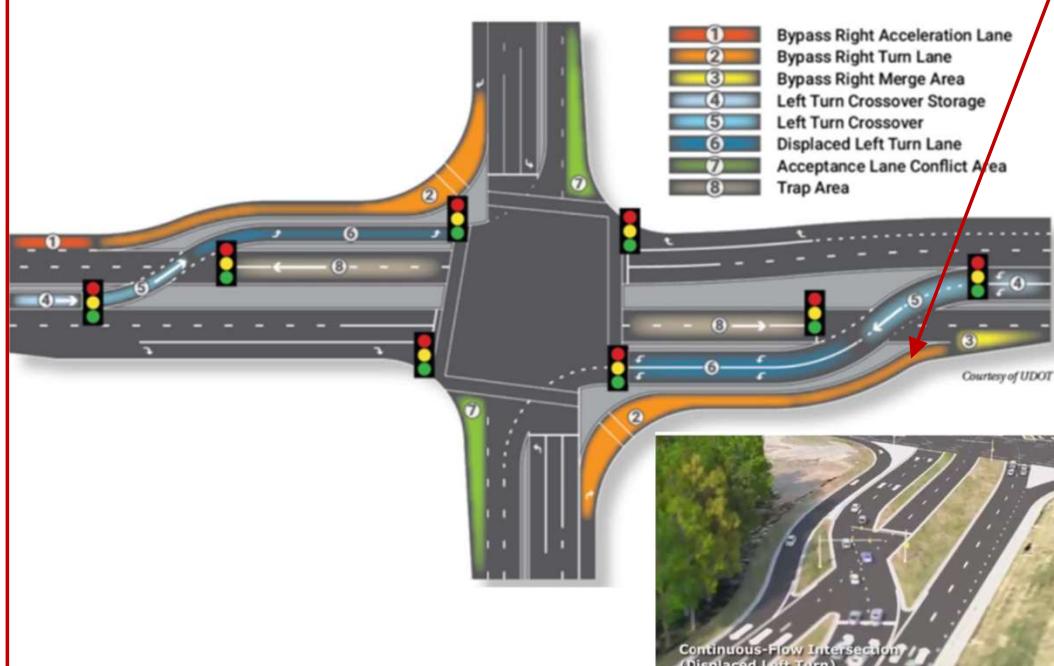
The r-cut design is generally a compromise utilized when there is not sufficient median width as indicated in the Michigan left design. Michigan left is more optimal and flexible design overall. A version of the r-cut design was implemented in the design.

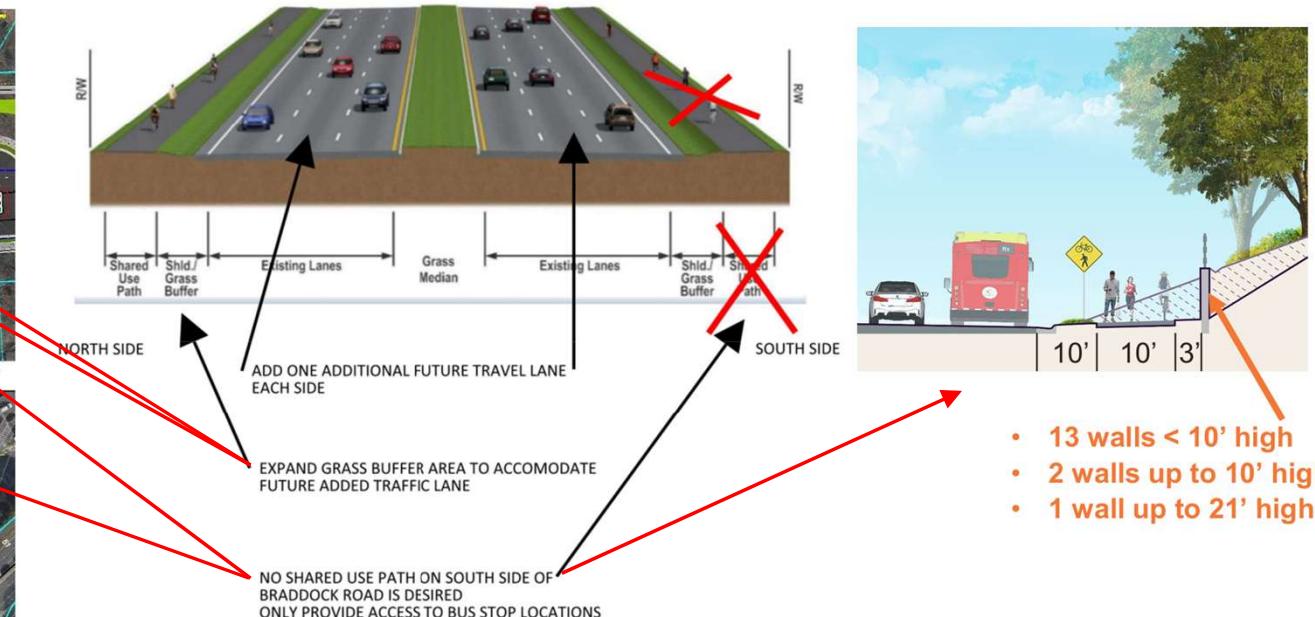
Are Michigan Lefts one lane or two?


A single-lane Michigan Left is designed for one vehicle to turn at a time. While some crossovers may appear to be wide enough to fit multiple passenger vehicles side-by-side, that extra room is actually there to accommodate larger vehicles, like tractor trailers and recreational vehicles, that need a wider turning radius.

A multi-lane Michigan Left is designed for two vehicles to turn at a time. Pavement markings, such as arrows, ONLY lettering, and white solid lines, indicate that both lanes may be used to turn. An unmarked median crossover should always be treated as a single-lane crossover.

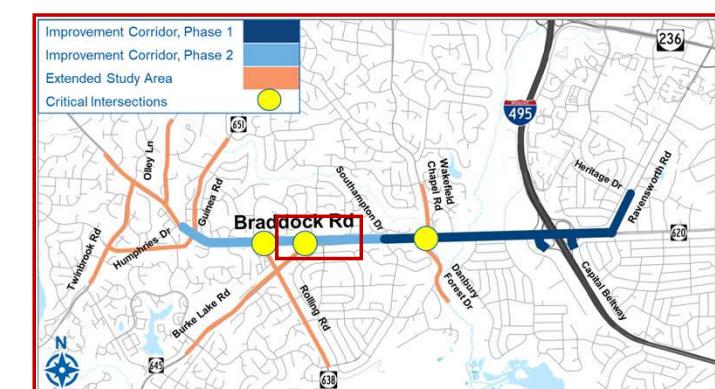
PROPOSED INTERSECTION ROAD CONCERNS AND ISSUES


PROJECT ELIMINATED THE EXISTING RIGHT TURN CONTINUOUS FLOW LANE
JUST TO ACCOMMODATE A SHARED USE PATH IN A UNDESIRABLE LOCATION


GOOD PEDESTRIAN
CROSSING LOCATION
INCORPORATING HAWK
SIGNAL

NO PEDESTRIAN CROSSING OR
SHARED USE PATH AT THIS
INTERSECTION AREA AS IT IS A
MAJOR SAFETY CONCERN

THIS INTERSECTION COULD BE
ELIMINATED FOR LONGER TURN LANES



**PROVIDE A CONTINUOUS FLOW
INTERSECTION:** THE IDEA IS THAT RIGHT
TURNS FROM BURKE LAKE DRIVE ONTO BRADDOCK
ROAD HAVE DEDICATED RIGHT TURN LANES ARE
CONTINUOUS FLOW (NO STOPPING). ALSO
DEDICATED LEFT TURN LANES ONTO BURKE LAKE
DRIVE. THE ADDITIONAL TWO LEFT TURN LANES
ARE ADDED SOUTH OF THE EAST BOUND LANES
BUT NORTH OF THE NEW RIGHT TURN LANES. THIS
ALLOWS FOR BOTH LEFT TURN AND EAST BOUND
LANES TO GO AT THE SAME TIME ELIMINATING
THE CONGESTION CONDITIONS. WAITING TO GET
THROUGH MULTIPLE LIGHTS AT THIS
INTERSECTION. SIMILAR INTERSECTION
CONDITIONS / ISSUES AT GALLONS ROAD

- 13 walls < 10' high
- 2 walls up to 10' high
- 1 wall up to 21' high

SEE THE ABOVE COMMENT SKETCH ON THE PROPOSED
ROAD SECTION ADDING AT LEAST ONE ADDITIONAL
TRAVEL LANE. NO SHARED USE PATH SHOULD BE PROVIDED
ON SOUTH SIDE ADJACENT TO KINGS PARK SUBDIVISION. NORTH SIDE HAS A PATH
CURRENTLY BUT COULD BE UPGRADED TO A SHARED USE PATH. VERY FEW
PEDESTRIANS WILL UTILIZE THE SOUTH SIDE AS A PATH OTHER THEN GETTING TO
THE BUS. THE CONSTRUCTION TO ACCOMMODATE THIS PATH IS VERY EXPENSIVE
DUE TO STEEP SLOPES AND HEAVY TREE BUFFER. THIS MONEY WOULD BE BETTER
USED ON CONCERNs NOT BEING PROVIDED. SEE ALTERNATIVE SKETCH PROVIDED
INDICATING SUGGESTED LOCATIONS FOR A SHARED USE PATH PAGE 20.

CUT-THROUGH TRAFFIC AT KINGS PARK SUBDIVISION MITIGATION / DIVERSION

CUTROUGH TRAFFIC HAS BEEN A DELEMA FOR A LONG TIME AFLICTING KINGS PARK SUBDIVISION. TRAFFIC CALMING MEASURES SUCH AS: NO LEFT TRUN MEDIAN, TRAFFIC CIRCLES AND SIGNAGE THAT RESTRICT TRAFFIC FLOW WERE ADOPTED SOME TIME AGO. TRAFFIC HAS STEADILY INCREASED MAINLY ON SOUTHAMPTON DRIVE OVER THE YEARS CUTTING THROUGH THE NEIGHBORHOOD. THE EXPANSION LANES PROJECT BEING COMPLETED ON ROLLING ROAD INCREASES TRAFFIC AND DELAYS IN THE KINGS PARK AREA. A DEVERSION ROAD IS ONE MEASURE WHO'S TIME IS PROBABLY OVERDUE TO RELIEVE THE CONGESTION AND CUT THROUGH TRAFFIC. SEE SUGGESTION BELOW INCLUDING PROPOSED SHARED USE PATH CONCEPT.

EXTENSION OF BURKE ROAD

EXPANDING THE BRIDGE AT ROLLING ROAD AND EXTENDING BURKE ROAD TO BRADDOCK ROAD. THIS IDEA, AS PRESENTED ON THIS PAGE OR A SIMMILAR LAYOUT, HAS THE POTENTIAL FOR A SHARED USE PATH THAT CAN BE INTEGRATED WITH THE EXISTING PARK PATH SYSTEM


THE CONCEPT WILL ALSO PROVIDE CONGESTION RELIEF AT THE OVERWHELMED INTERSECTIONS NEAR KINGS PARK SHOPPING CENTER

ONCE THIS EXTENTION IS IMPLEMENTED THE MORE CURRENTLY EXISTING OBTRUSIVE "TRAFFIC CALMING" MEASURES IN THE KING'S PARK RESIDENTIAL SUBDIVISION CAN BE REMOVED.

PROPOSED NEW TRAFFIC DIVERSION DIAGRAM INTERSECTION AT ROLLING ROAD

NEW OPTIONAL ROLLING ROAD TO LAKE BRADDOCK ROAD

OPTION CREATES A TRAFFIC DIVERSION OPTION SIMILAR TO HILLSIDE ROAD THAT COULD ALSO INCORPORATE THE SHARED USE PATH IDEA CONNECTING AND INTEGRATING INTO THE PATH SYSTEM AT LAKE ACCOTINK PARK.

UTILIZING RIGHT TURNS ONTO THE NEW ROAD FROM ROLLING ROAD AND ONTO BRADDOCK ROAD EAST BOUND.

BECAUSE THIS WOULD ALSO REDUCE CUT-THRU COMMUTER TRAFFIC IN KINGS PARK THE TRAFFIC MEDIAN COULD BE REMOVED THAT RESTRICT LEFT TURNS ON SOUTHAMPTON DRIVE / EASTBOURNE DRIVE. TRAFFIC CONGESTION WOULD BE GREATLY REDUCED AT THE KINGS PARK SHOPPING CENTER.

OTHER GENERAL ITEMS AND ISSUES			
1	Tax Burden vs Road Funding Priorities	Fairfax County residents face a significant net tax burden to the Commonwealth of Virginia, contributing far more in state taxes than the county receives back in direct funding and services. This “balance of payments” imbalance has persisted for decades, with Fairfax subsidizing other regions through progressive tax structures and allocation formulas that favor higher-need localities. Road funding faces a similar disparity for Fairfax County residents. Fairfax County Residents also pay higher fees and tax rates as well.	Fairfax County's Balance of Payments with Richmond: A Policy Perspective – The State of Fairfax
2	Fairfax County-Specific Road Work Needs and Projections to 2050 Identified to Date https://www.fairfaxcounty.gov/transportation/visualize-2050	Fairfax County, as the region’s population and economic hub (projected 1.3 million residents by 2050), drives much of the Northern Virginia focus. The draft plan carries forward ~25 funded/committed road projects from Visualize 2045 into the fiscally constrained list, plus ~17 developmental projects, prioritizing capacity enhancements on major corridors like I-95, I-495, I-66, Route 123, and Fairfax County Parkway to cut peak-hour delays by 10–25% regionally. These address bottlenecks from 25% employment growth in Tysons and Springfield, with air quality conformity analyses forecasting a 28% drop in PM _{2.5} emissions by 2050 despite added capacity, thanks to EV adoption and operations improvements. Key Strategies and Projections No aggregate Fairfax-specific funding is detailed yet (regional highway allocation ~\$60 billion of the total), but projects draw from federal (e.g., Highway Trust Fund), state (VDOT), and local sources, with public-private partnerships for express lanes. Timelines span FY2026–2050, with many in design/construction phases.	<ul style="list-style-type: none"> • Congestion Relief: Emphasizes managed lanes (e.g., I-495 Southside Express Lanes: 11-mile extension from Springfield Interchange in Fairfax across Wilson Bridge, adding 2 HOT lanes/direction by ~2035; projected 15–20% speed gains, free HOV-3+, \$0.50–\$15 tolls; integrates bus route to Tysons by 2031). Operations like ramp metering and ITS to cut non-recurring delays (50% of total). • 2050 Needs: Models show +25% congested lane-miles without action; road work aims for 10–28% vehicle-hour reductions on I-95/I-66/I-495, supporting 2,400+ more peak-hour people movers while preserving rail options on bridges. • Funding/Equity: Relies on \$3–4 billion annual regional revenue; prioritizes low-income access via discounted tolls and transit ties
3	Toll Lanes	Road funding is not a high enough priority to keep up with traffic demands and projections leading to frustrated citizens / taxpayers. The high expense of tolls is a major issue leading to lack of use.	https://jlarc.virginia.gov/pdfs/reports/Rpt590.pdf

Key Takeaways and Opportunities

The Braddock Road Multimodal Improvements Project demonstrates many positive steps forward in suburban transportation planning, including the commitment to complete shared use paths, targeted intersection safety upgrades, and better accommodation of pedestrians, bicyclists, and transit users.

At the same time, this project highlights several broader lessons that could strengthen similar efforts across Fairfax County, Virginia, and beyond:

1. Value of Current Data and Standards

Traffic forecasts and operational analyses evolve rapidly. Using the most recent edition of the Highway Capacity Manual (currently the 7th Edition, 2022) and incorporating post-pandemic travel patterns can help ensure projects remain aligned with long-range goals and deliver the expected level of service.

2. Shared Use Path Design on Higher-Speed Corridors

When side paths are proposed parallel to arterials with speeds of 40–45 mph and frequent driveways, extra attention to separation width, grading, barrier placement, and intersection treatments can significantly enhance user safety and comfort while fully meeting AASHTO, PROWAG, and VDOT guidelines. Shared Use Paths are discouraged along front yards with driveways. Avoid crossing unsafe intersections with heavy traffic.

3. Phased Planning and Adaptability

Preserving flexibility for future capacity needs (through wider medians, turn-lane configurations, or proven innovative intersections such as Restricted Crossing U-Turns) can reduce the cost and disruption of later improvements as population and travel demand continue to grow.

4. Early Value-Engineering Integration / Updated Studies

Incorporating a formal value-engineering review or additional update studies early in the design process—particularly after major updates to national standards—often yields high-benefit, low-cost refinements that improve safety, operations, and return on investment. This can also significantly reduce overall costs and provide a better Return On Investment (ROI) for tax payers.

5. Future Road Extension / and Traffic Diversion

Incorporating a road extension at Burke Road to Braddock Road and integrating SUP with current park path systems is an opportunity to be explored. See page 20.

The suggestions presented here are intended as constructive contributions from a long-time design professional who shares the common goal of creating transportation facilities that are safe, efficient, and sustainable. With the project still in the pre-construction phase, there is ample time to explore these opportunities and make the Braddock Road corridor an even stronger success story for the community.

Thank you again for the thoughtful work already completed. I look forward to seeing the final project deliver lasting benefits to the Braddock Road area and the region.

Laura Bachle

From: Michael Anderson <mcanderson16@gmail.com>
Sent: Tuesday, December 9, 2025 3:13 PM
To: TPBcomment

Great work on the plan. 100% support.

Laura Bachle

From: Jacob Barker <jacobbarker@me.com>
Sent: Friday, December 5, 2025 1:33 PM
To: TPBcomment
Subject: Visualize 2050

I'm expressing my displeasure at hearing you've prioritized auto-dependency over transit oriented and walkable, bikeable communities. I know this because you've allocated funding to the tune of 20-30 billion dollars for roadway/highway expansions of 500 lane miles compared to only 16 billion to expand transit which is already vastly underfunded and behind. We need a change. It's time to move all that money and all those highway ideas into massively expanding the regions regional rail system, expanding WMATA rail, building out multiple BRT lines in every jurisdiction in our region, and then making links to all those transit stops with better sidewalks, bikeways, and bus only infrastructure to move the most people the most efficiently. Cars are the past, fund actual solutions. Fund micromobility lanes, bus lanes, BRT, and dense multi use communities around our region.

Spread the music,

Jacob Barker, M.Ed.
Woodlin Elementary General Music/Chorus
Our Lady of Lourdes Staff Singer
National Children's Chorus Course Instructor

605 Hudson Ave
Apt 322
Takoma Park, MD 20912

Laura Bachle

From: Jared Barlow <jaredkbarlow@gmail.com>
Sent: Friday, December 5, 2025 10:27 AM
To: TPBcomment
Subject: Visualize 2050 Transportation Plan

Good Morning,

I am a current DC resident. I would like to submit a comment on the Visualize 2050 transportation plan.

The draft plan has way too many highway and arterial road expansions projects. These projects will increase pollution, increase car dependence, increase road deaths, increase sprawl, decrease community, decrease walkability, and be very bad for the economy and health of the DC area in the medium and long term. The projects should do more to foster walkability, biking, and public transit use. This will decrease road deaths, decrease pollution, and make life better for DC area residents.

Projects that should be prioritized include bus lanes/bus rapid transit projects and signal priority. Projects should increase the number of bus/rail routes as well as the operating hours and frequency on existing bus/rail routes. There should be more protected bike lanes as well. Projects like these are extremely important to increase the livability and safety of the DMV.

Please do not hesitate to contact me at 860-881-5083 if you wish to discuss further.

Thank you,

Jared Barlow

Laura Bachle

From: Emily Dupree <emdupree@hotmail.com>
Sent: Friday, November 28, 2025 7:54 AM
To: TPBcomment
Subject: Toll lanes

I do not support any toll lanes on 495 or 270 in MD. They are inherently discriminatory and take away space that all drivers could be using.

Laura Bachle

From: english.susan@everyactioncustom.com on behalf of Susan English
<english.susan@everyactioncustom.com>
Sent: Saturday, November 22, 2025 2:47 PM
To: TPBcomment
Subject: Visualize 2050 fails to prioritize safety and climate action in transportation

Dear TPB Chair Alcorn and Board members,

I thank the Transportation Planning Board for unanimously voting to exclude the 495 Southside highway widening project from the Visualize 2050 plan, and directing VDOT and MDOT to pursue better options for the corridor. I also appreciate the work of regional jurisdictions to advance the DMVMoves regional transit funding commitments.

However, I am disappointed that the region's proposed transportation plan, Visualize 2050, does not make more progress on climate change and safety. Instead, the Visualize plan dedicates over \$20 billion to wasteful highway and arterial expansion that makes our climate problem worse while undermining walkable, transit-friendly communities.

We need to spend more on transit, period. Let's not waste land! Housing near transit, period. Widening roads leads to induced demand. I saw it dramatically in 2002-2006 when I-66 outside the beltway was widened. I support the statements below.

The Visualize plan ignores induced demand, the proven phenomenon that widening highways does not reduce congestion but in fact leads to more driving and traffic over time. The plan document needs to acknowledge the reality of induced traffic.

The wasteful highway expansions in Visualize 2050 will likewise undermine the region's major transit and rail investments in the plan, including bus rapid transit lines, Long Bridge, MARC and VRE investments, and the Purple Line.

Despite the TPB's 2021 commitment for a climate-friendly Visualize 2050, the plan would make it impossible for the region to meet the Council of Governments (COG) greenhouse gas reduction targets and most local targets. This is unacceptable.

Please take these concrete actions that can shift our region's transportation future:

- Work with state legislative delegations to implement the DMVMoves plan, quickly establishing dedicated new regional and state funding for Metro operating and capital needs, including rail modernization;
- Locally pursue the DMVMoves recommended bus priority improvements;
- Remove barriers to transit-oriented development such as minimum parking requirements and outdated restrictive zoning; and
- Prioritize safety and community livability over vehicle speeds, through narrower road designs and reallocating road widening dollars to fostering walkable, transit-friendly communities.

Thank you for your consideration,

Susan English

2609 S Kent St Arlington, VA 22202-2217 english.susan@icloud.com

Laura Bachle

From: Paul Garbarino <garbarinop@outlook.com>
Sent: Friday, December 5, 2025 4:24 PM
To: TPBcomment
Subject: Visualize 2050 Comment

Hello,

I want to write to express my concern with the current Visualize 2050 plan.

First, I would like to thank the TPB and the folks behind the plan for their efforts in trying to make the capital region a healthier, safer, and more enjoyable place to live and work. These efforts do not go unnoticed, and we need more people working to make the region a better place.

My main concern is the dearth of vision in Visualize 2050. The plan is ostensibly hamstrung by the shackles of pragmatism and today's limited resources rather than any attempt to envision where the region ought to be regarding transportation priorities. In chapter 5, one stanza opens with the line discussing financial projections: "The Visualize 2050 financial plan reflects the current sources and levels of these various funds and assumes their availability through 2050 with moderate growth." There is nothing wrong with including financial projections based on current spending, per se. However, the absence of a vision for what funding ought to be is most troubling to me.

Performing some napkin math, it appears the moderate growth rate was assumed to be something a little over 3% per year, which is fine. But, these financial charts should be accompanied with sister charts that show how our region's transportation funds should actually be allocated. Just under \$100 billion for WMATA's operating revenues from 2026-50? How about we say that should be doubled to \$200 billion? And you expect transit ridership to increase by 1%? How about a vision for how we can increase it by 10%? The evidence is nearly deafening regarding the benefits of increased spending on public transit infrastructure. This basic fact is hardly reflected in the plan.

In Chapter 5, nearly all of the priority strategies focus on roads for passenger vehicles. The first priority strategy did highlight buses, but passenger rail is just about absent from the section. I strongly insist on chapter 5 and the Visualize 2050's financial plan not just consider projections based on current funding levels but also include a vision for how transportation funds ought to be allocated to build a more competitive region. The current plan is not optimally conducive to positive densification and its subsequent benefits to residents and taxpayers, and needs to be amended to better reflect an actual vision for the future. The plan in its current state is merely a self-fulfilling prophecy of the status-quo.

I hope the TPB can incorporate more research and work in the plan to envision where the region should be in 2050. Thank you,

Paul

Laura Bachle

From: Rich Holcomb <rrholcomb@yahoo.com>
Sent: Thursday, December 11, 2025 11:27 AM
To: TPBcomment
Subject: Comments Regarding the 2050 National Capital Region Transportation Plan

Good morning,

I am writing to convey my view that the current version of the 2050 NC RTP is not acceptable for a number of reasons, including the over-emphasis on road-building and expansion instead of transit and transit-oriented development. Given the limited capacity of roads used by low occupancy vehicles, the region will never be able to build its way out of road congestion.

The goals for moving people out of cars and into transit are exceedingly modest, particularly in light of climate change. I suggest setting bold objectives and advocating for innovative approaches to achieve them.

Instead, this document is very much more-of-the-same, which will result in increasing congestion to the harm of our local economy and environment.

Please re-work this plan and come back with a real vision.

Sincerely,
Rich Holcomb

Laura Bachle

From: Gil Landau <gil.landau@gmail.com>
Sent: Sunday, December 7, 2025 1:21 PM
To: TPBcomment
Subject: Visualize 2050 draft plan

Hi,

Just leaving a comment regarding the plan. The plan has a lot of good in it, but it fails to recognize that increasing road capacity is a road to nowhere. Our region is growing and congestion is growing with it. More roads will simply induce further car demand, increasing congestion (which is already growing in 2025).

The solution is to focus on public transit, build public transit, induce demand there. As people shift trips to faster, more convenient, and more affordable public transit options, those who need to use cars will have more room on the roads and better travel times. A larger focus on transit will pay dividends for everyone in the region.

Sincerely,

Gil Landau
DC

Laura Bachle

From: Ellen Meeks <nospamtem@yahoo.com>
Sent: Saturday, November 22, 2025 7:45 AM
To: TPBcomment
Subject: Do Not Implement the Moore-Hogan Toll Lanes on I-270!

We need to direct funding to mass transportation (busses and subway) and green energy NOT toll lanes! I'm an environmental voter and I will not vote for candidates who support toll lanes on I-270.

Teresa Meeks

Laura Bachle

From: Scott Poe <scott.poe.1@gmail.com>
Sent: Monday, November 24, 2025 7:38 AM
To: TPBcomment
Subject: Moore-Hogan toll lanes

Please do not continue with the Moore-Hogan toll lanes. They are only for wealthy people

Laura Bachle

From: jreschovsky@verizon.net
Sent: Saturday, November 22, 2025 2:23 PM
To: TPBcomment
Subject: Comments onf Visualize 2050 plan

Dear TPB members,

I apologize for being late in submitting my comments. I just returned this morning from traveling abroad and did not have access to a phone or computer to send comments.

I was disappointed that the basic Larry Hogan/Wes Moore toll lane proposal remains in the Visualize 2050 plan. I have reason to drive on the Virginia beltway and on I66 outside of the Beltway with some frequency and have not observed the supposed benefits. During rush hours, the untolled lanes are frequently stop and go, while at the same time, the tolled lanes are so expensive that they remain sparsely used. Where is the reduction in overall congestion, particularly for the vast majority who cannot afford the tolled land? I have not seen it.

Not only would extending Virginia's tolled Beltway lanes over the American Legion Bridge into Maryland and up onto I270 not provide congestion relief for all but the wealthiest drivers, the inevitable back-ups where toll lanes end and merge into general lanes will move from Virginia into Maryland and significantly slow down northbound I270 traffic and eastbound I495 traffic, especially during rush hours. Again, what is the benefit? The Hogan/Moore plan could well make evening rush hours much worse than they are now.

I also object to the P3 financing. Private-public partnerships are little more than a gimic to save state politicians from making politically difficult decisions. If we want improved roads, we should be willing to pay for them in taxes. P3 arrangements are a political expedient. But making a 50-year committment to a private firm with retaining little control over pricing and other aspects of the project is simply a folly that is likely to end badly for the general public.

On top of all of this, there are significant environmental and public health costs to the toll land project.

I urge you to omit the Hogan/Moore toll lanes from the Visualize 2050 plan. It just doesn't add up.

Thank you for you consideration of my views,
Jim Reschovsky
Rockville, MD

Laura Bachle

From: Schlossberg, Andrew <aschlossberg@akingump.com>
Sent: Sunday, November 23, 2025 8:48 PM
To: TPBcomment
Subject: Strong Opposition to I-270 Toll Lane Construction Project as part of Visualize 2050

Hi Transportation Planning Board:

My name is Andrew Schlossberg – I am a Montgomery County/Rockville resident.

I am writing to express my strong opposition to the I-270 widening project as part of Visualize 2050, particularly Phase 2, as the widening for the toll lane would directly devastate my neighborhood (we live in Old Farm in Rockville near Exit 4) as it would essentially tear up our backyard and increase the noise outside such that I have to imagine that my family and I (and my neighbors) would have no choice but to move.

In speaking with MDOT in the past few years, I understand that the current Phase 2 plan would move the noise barrier substantially closer into where my backyard ends and it seems that all of the (rather old) trees that currently sit in between our backyard and I-270 would be cut down (such that we'd be directly overlooking the highway with nothing blocking the view anymore, and now the highway/new noise barrier would just be substantially closer to where our house is).

The noise is already loud on a day-to-day basis (but manageable). If the project goes through as currently planned, the noise would be deafening, and we would not be able to live here anymore (I currently have a 5 yr old daughter and 2 yr old son). In all honesty, *any* movement of the barrier back from its current place (or cutting down of trees) would not be acceptable to my family and community given where the current road and barriers are. Our elementary school (Farmland Elementary) is close by and the noise would likely be deafening there too.

In short, I strongly oppose any widening of I-270, and hope that the TPB/MDOT can consider other proposals besides toll lanes (or drop this altogether) that would devastate communities like mine. I have been in touch with our Greater Farmland Civic Association (and my state/local representatives) as this widening would affect many families, particularly those with young children. However, I wanted to make sure that you heard this from me directly, because the effect on the community would be real, and it's not clear to me that toll lanes would even solve the bottleneck problem – just move them elsewhere.

Best,
Andrew Schlossberg

Andrew R. Schlossberg

Akin

Robert S. Strauss Tower | 2001 K Street N.W. | Washington, DC 20006 | USA | Direct: [+1 202.887.4314](tel:+12028874314)
aschlossberg@akingump.com | akingump.com | [Bio](#)

This email message was sent from Akin Gump Strauss Hauer & Feld LLP. The information contained in this e-mail message is intended only for the personal and confidential use of the recipient(s) named above. If you have received this communication in error, please notify us immediately by e-mail, and delete the original message.

Laura Bachle

From: Linda Sciuto <lcsciuto@gmail.com>
Sent: Saturday, November 22, 2025 7:02 AM
To: TPBcomment
Subject: Feedback

I am writing to oppose the use of public-private partnerships to build toll roads. These projects rely on taxpayer dollars to construct public infrastructure, yet hand long-term control and profits to private companies. As a result, residents end up paying twice—first through taxes and then through high tolls that often increase for decades.

P3 toll roads limit public oversight, lock governments into restrictive contracts, and shift financial risk back onto taxpayers when revenue falls short. Our transportation system should remain publicly owned, accountable, and affordable—not turned into a guaranteed profit stream for private operators.

I urge you to reject new P3 toll road proposals and support publicly controlled infrastructure that truly serves the community.

Sincerely,

Linda Sciuto

Laura Bachle

From: Cal Simone (FoBus) <mainevent@his.com>
Sent: Friday, November 21, 2025 11:59 PM
To: TPBcomment
Subject: Comments on Visualize 2050 plan

Greetings,

I've resided in various NW DC neighborhoods, on-and-off, for 64 of my 74 years. As a 12-year-old. I rode my bike a lot, and at 13, I began my lifelong usage of buses and trains. (Informed about this comment period in my councilmember's newsletter only the night before it is closing, I was only able to spend an hour or so with the Draft 2050 plan. Had I had more time, I might have delved into some specifics.)

I'm quite taken aback. The plan seems hardly visionary. In 25 years, it puts forth only incremental improvements to existing transportation options. Trips using SOVs would only be reduced from 41% to 38%, and for all cars from 81% to 78% - to me, this is embarrassing.

In 25 years, I'd expect to get more than half the cars off the road. In the plan, improvements to bus transit seem minimal (other than bits on BRT/HCT). As an example of the paucity of bus service, our Chevy Chase neighborhood once had five major bus lines stretching from Ivy City and Takoma to Rockville and Aspen Hill, not to mention six lines to downtown (four of them in rush-hour). Now our bus to the nearest Metro station is only hourly on weekends.

Transportation should look vastly different in 2050. Y'all ought to be working with technologists with vision.

It seems you need some forward-thinking visionaries. I wish I were part of this effort.

Thank you for listening.

Yours,
Cal Simone
co-founder, Friends of Bus Transit