

MEMORANDUM

TO: Transportation Planning Board
FROM: Lyn Erickson, Plan Development and Coordination Program Director
SUBJECT: Public Comment for the February 2026 TPB Meeting
DATE: February 18, 2026

The Transportation Planning Board accepts public comment on a rolling basis. Comments can be submitted via email (tpbcomment@mwcog.org), online (mwcog.org/tpbcomment), mail, and phone. Comments are collected until noon on the day before the TPB meeting. These comments are compiled and shared with the board at the meeting the following day.

Between noon Tuesday, January 20 and noon Tuesday, February 17, the TPB received one comment submitted via email.

The comments are summarized below. All full comments are attached to this memo.

PUBLIC COMMENT

Comments via Email

Mike Robb, Comments via Email- January 29, 2026

Mr. Robb writes to submit additional considerations on the Visualize 2050 plan, attaching a summary of studies on the impact of shared use paths on traffic congestion. He notes these studies conclude such infrastructure has a negligible or indirectly positive effect overall on traffic congestion.

Laura Bachle

From: Mike Robb <mikerobb809@gmail.com>
Sent: Thursday, January 29, 2026 2:48 PM
To: TPBcomment
Subject: Re: Visualize 2050 comments
Attachments: Shared Use Paths Studies and Effects on Traffic Congestion.pdf

Hello

See the attached document on shared use paths / bike lanes / paths, and driving traffic congestion impacts. This document is useful for your planning and has some takeaways that will help in the planning process. Let me know if you have any questions or comments.

Thank you

Mike Robb

571 331 6931

On Mon, Jan 26, 2026 at 3:34 PM Mike Robb <mikerobb809@gmail.com> wrote:

Thank you for your response.

What are the next steps and or public outreach measures in the future?

Thank you

Mike Robb

571 331 6931

Sent from my iPad

On Jan 26, 2026, at 9:29 AM, TPBcomment <tpbcomment@mwcog.org> wrote:

Hello Mr. Robb,

We have included your comments and study in the public comment materials shared with the Transportation Planning Board. We have no further comments or items to discuss.

Thanks again,

-Laura Bachle

Laura Bachle, AICP

Transportation Planner

National Capital Region Transportation Planning Board (TPB)

Metropolitan Washington Council of Governments

lbachle@mwcog.org | Office: (202) 962-3273

From: Mike Robb <mikerobb809@gmail.com>

Sent: Thursday, January 22, 2026 1:55 PM

To: TPBcomment <tpbcomment@mwcog.org>

Subject: Re: Visualize 2050 comments

Just checking back with you on the comments / case study I have previously sent.

Do you have any comments or items to discuss? let me know what the next steps in your process are.

I have reattached the case study for your convenience.

Thank you

Mike Robb

571 331 6931

On Mon, Dec 8, 2025 at 4:27 PM TPBcomment <tpbcomment@mwcog.org> wrote:

Received.

Thanks for commenting.

-Laura

From: Mike Robb <mikerobb809@gmail.com>
Sent: Monday, December 8, 2025 4:14 PM
To: TPBcomment <tpbcomment@mwcog.org>
Subject: Re: Visualize 2050 comments

As a follow up to my previous e-mail:

Attached for your consideration is a 22-page document (Version 1A, dated December 8, 2025) that uses the BRMIP as a case study to highlight opportunities for further refinement. The observations and suggestions for any future action, comments and suggestions are offered in the spirit of partnership and continuous improvement. With construction still several years away, there remains an excellent opportunity to explore these ideas and help the project realize its fullest potential under the latest standards (including HCM 7th Edition and current PROWAG guidance).

Many of the points and discussions may also apply to similar multimodal projects throughout Northern Virginia and beyond. I would welcome the chance to discuss any of these suggestions in more detail or provide additional clarification. Please feel free to contact me at your convenience per below. fel free to forward this to others who may benefit form the document,

Thank you again for your thoughtful work and collaboration on this important project and for considering these comments. I look forward to seeing the Braddock Road corridor deliver lasting benefits to residents, commuters, and all roadway users for decades to come.

Best regards,

Michael D. Robb (Retired) 30+ year professional in the design and construction field.

mikerobb809@gmail.com

(571) 331 6931

On Sun, Nov 23, 2025 at 3:18 PM Mike Robb <mikerobb809@gmail.com> wrote:

Thank you

Let me know if you have any questions about the information I have provided.

Michael Robb

571 331 6931

On Fri, Nov 21, 2025 at 1:34 PM TPBcomment <tpbcomment@mwcog.org> wrote:

Confirmed.

Thanks for commenting,

-Laura

Laura Bachle, AICP

Transportation Planner

National Capital Region Transportation Planning Board (TPB)

Metropolitan Washington Council of Governments

lbachle@mwcog.org | Office: (202) 962-3273

From: Mike Robb <mikerobb809@gmail.com>

Sent: Friday, November 21, 2025 12:47 PM

To: TPBcomment <tpbcomment@mwcog.org>

Subject: Visualize 2050 comments

Please see the attached documents that relate to traffic congestion issues regionally and in my area, especially the Braddock Road project and future Multimodal project issues identified. The issues identified are to other areas throughout the region. the proposed solutions can also be utilized throughout the DMV area.

Please confirm you have received the comments and documents.

Thank you

Mike Robb

||| 571 331 6931

SHARED USE PATHS / BIKE LANES / PATHS, AND DRIVING TRAFFIC CONGESTION IMPACTS

Studies on the impact of **shared use paths** (off-street multi-use trails for cyclists and pedestrians) and related cycling infrastructure like separated bike lanes or protected bike paths on driver traffic congestion generally show **minimal to negligible effects** on motor vehicle traffic in most cases. Some slightly positive indirect effects through mode shifts and transportation funding sources can be realized.

Key findings from empirical and simulation-based research include:

- In residential or low-traffic settings, retrofitting separated cycling lanes (often similar in effect to dedicated paths) results in very small increases in car travel times. One simulation study in a Melbourne suburb found average car travel time increases of about **7%** in the worst case (or roughly **less than 10 seconds per kilometer**), primarily due to reduced speed limits rather than the presence of cyclists or lane reallocation. The impact of cyclists using dedicated lanes was described as **negligible** on car speeds when interactions are limited (e.g., only at intersections).
- Multiple simulation studies (e.g., in Atlanta and other U.S. contexts) conclude that adding bike lanes (including protected or separated ones) and narrowing motor vehicle lanes **does not adversely affect peak-hour congestion**. In some cases, average stop delays decreased (e.g., from 190 seconds to 164 seconds in one network), with fewer overall conflicts.
- A data-driven analysis for Chicago estimated that adding 25 miles of bike lanes could increase cycling ridership significantly (from ~3.6% to 6.1% mode share) while causing at most a **9.4% increase in driving times** network-wide (or ~7.5% in worst-case road segments). Optimized placement even reduced congestion on some segments by encouraging mode shifts away from cars.
- On low-speed, low-volume urban roads without bike lanes, the presence of cyclists themselves slows cars by **1 mph or less** — a difference deemed negligible and not congestion-causing.
- Separated or protected bike facilities often act as **traffic-calming** measures, slowing cars slightly and reducing fatalities overall, but direct congestion impacts remain small.
- Shared use paths (off-street) tend to have even less direct interaction with motor vehicles than on-street lanes, so their impact on driver congestion is typically **indirect and positive** if they encourage mode shifts from driving (e.g., some surveys show ~13% of path users commuting by active modes instead of single-occupancy vehicles, reducing vehicle miles traveled and thus congestion). However, studies rarely quantify a precise “delta” for off-street paths alone, as effects are often bundled with broader active transportation networks.

Overall, the evidence does not support large increases in driver congestion from shared use paths or similar infrastructure. Negative effects on car speeds or delays are usually minor (often <10% or a few seconds per trip/km), often offset by reduced car volumes from induced cycling. In many cases, the infrastructure has no measurable adverse impact on congestion, and broader benefits (safety, health, emissions) outweigh any small delays. These conclusions come from simulations, before-after analyses, and modeling in cities like Chicago, Melbourne, Atlanta, and Portland. Real-world outcomes can vary by context (e.g., traffic volume, road type, and implementation).

Here are some specific studies that have examined the impact of **shared use paths** (multi-use trails), separated bike lanes, protected bike facilities, or related cycling infrastructure on driver traffic congestion, motor vehicle delays, or travel times. These draw from simulations, empirical data, and modeling in various cities. While off-street shared use paths often have more indirect effects (via mode shifts reducing car use) than on-street lanes, studies frequently address similar infrastructure together.

STUDY 1: Poulos et al. (2022) — “Do Safe Bike Lanes Really Slow Down Cars? A Simulation-Based Approach to Investigate the Effect of Retrofitting Safe Cycling Lanes on Vehicular Traffic”

Full open-access article (MDPI, including tables, figures, and charts with delta effects):

[Do Safe Bike Lanes Really Slow Down Cars? A Simulation-Based Approach to Investigate the Effect of Retrofitting Safe Cycling Lanes on Vehicular Traffic](#)

(Also available via PubMed Central/PMC for free

PDF: <https://PMC8997564/>

- Context: Suburban residential (Melbourne)
- Infrastructure Added: Separated bike lanes + speed limit reduction
- Key Delta on Driver Congestion: Avg. car travel time +~7% (worst case); <10 s/trip
- Magnitude/Notes: Negligible; mostly from speed limits

STUDY 2: Liu, Siddiq, and Zhang (2022/2024) — “Planning Bike Lanes with Data: Ridership, Congestion, and Path Selection”

Preprint/full version on SSRN (free to download PDF):

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4055703

Published version in *Management Science* (may require access):

<https://pubsonline.informs.org/doi/10.1287/mnsc.2022.00775>

- Context: Urban network (Chicago)
- Infrastructure Added: Optimized bike lanes (25 miles)
- Key Delta on Driver Congestion: Network-wide driving time +≤9.4%; some segments decrease
- Magnitude/Notes: Offset by mode shift to cycling

STUDY 3: Hwang and Guhathakurta (2022/2023) — “Exploring the Impact of Bike Lanes on Transportation Mode Choice: A simulation-based, route-level impact analysis”

Abstract and full article (may require access or purchase via ScienceDirect):

<https://www.sciencedirect.com/science/article/abs/pii/S2210670722006229>

(Check your institution/library for full text; some versions are available via ResearchGate or university repositories.)

- Context: Simulated urban (Atlanta-like)
- Infrastructure Added: Bike lanes + narrowed auto lanes
- Key Delta on Driver Congestion: Stop delays decrease (190s → 164s); no adverse effect
- Magnitude/Notes: Fewer conflicts, better flow

SHARED USE PATHS AND MULTIMODAL PROJECTS

Departments of Transportation (DOTs)—both federal (like FHWA/USDOT) and state-level (e.g., VDOT, MassDOT, TxDOT, Hawaii DOT)—promote and fund **shared use paths** (multi-use trails for pedestrians, cyclists, etc.) as **multimodal projects** because they align with broader transportation goals beyond just moving cars efficiently. Multimodal infrastructure refers to systems that support multiple modes of travel (driving, transit, walking, biking) in an integrated, equitable way.

The key reasons and benefits, drawn from official DOT guidance, plans, and project announcements, include:

- **Enhancing safety for all users:** Shared use paths provide separated, off-street facilities that reduce conflicts between non-motorized users (pedestrians, cyclists) and motor vehicles. This lowers crash risks, especially for vulnerable road users. FHWA's Achieving Multimodal Networks guide emphasizes that interconnected pedestrian/bicycle infrastructure makes walking and biking viable and safe choices, reducing multimodal conflicts and improving overall safety.
- **Improving connectivity and access:** These paths connect people to essential destinations like jobs, schools, health care, transit stops, recreation, and community services—particularly in urban, suburban, and rural areas. They fill gaps in networks, support access to public transit (e.g., last-mile connections), and make transportation more inclusive for people of all ages and abilities. MassDOT highlights how shared use paths expand multimodal connectivity, offering safe ways to reach destinations while contributing to climate goals.
- **Promoting equity, health, and quality of life:** By providing affordable, accessible options for non-drivers (including low-income residents, youth, seniors, and those without cars), paths advance equity. They encourage physical activity, support recreation/commuting, foster community interactions, and revitalize areas. FHWA notes contributions to health, equity, and quality of life.
- **Reducing congestion indirectly through mode shifts:** While direct impacts on driver congestion are minimal (as studies show), paths encourage shifts from single-occupancy vehicles to walking/biking/transit. This reduces vehicle miles traveled (VMT), eases overall demand on roads, and mitigates congestion in high-use areas. TxDOT explicitly states that Transportation Alternatives-funded paths (including shared use) improve accessibility, safety, mobility, and mitigate congestion by providing safe alternatives to motor vehicle transport.
- **Supporting environmental and sustainability goals:** Paths lower emissions, improve air quality, and aid climate resilience by reducing car dependency. Many DOTs tie them to broader plans like Complete Streets, Beyond Mobility 2050 (MassDOT), or statewide visions for cleaner, more sustainable networks.
- **Leveraging funding and policy priorities:** Federal programs (e.g., Transportation Alternatives, CMAQ for congestion/air quality relief, Active Transportation Infrastructure Investment Program) make these eligible and competitive. State DOTs prioritize them in unified plans to meet federal requirements, local needs, and goals like economic competitiveness or system efficiency.

In short, DOTs view shared use paths not as “anti-car” but as essential components of a complete, efficient, safe, and sustainable multimodal system. They address multiple objectives—safety, access, equity, health, environment—while having negligible or even positive

indirect effects on car traffic through reduced overall vehicle use. This holistic approach is why they're framed and funded as multimodal projects rather than just recreational trails.

KEY TAKEAWAYS:

1. Shared use paths for the most part have a minimal positive effect to negative effect on vehicular traffic flow depending on the path system utilized and the urban/ suburban / rural areas they are utilized.
2. They should be used only per the recognized standards:
 - a. **Federal Regulations and Standards**

Shared use paths (multi-use trails for pedestrians, bicyclists, and other non-motorized users) in the public right-of-way are governed by federal accessibility requirements under the Americans with Disabilities Act (ADA) and the Architectural Barriers Act (ABA). The key standard is the **Accessibility Guidelines for Pedestrian Facilities in the Public Right-of-Way (PROWAG)**, finalized by the U.S. Access Board in 2023 and enforceable when adopted by agencies like the Department of Justice (DOJ) and Department of Transportation (DOT/FHWA).
 - b. PROWAG applies to new construction and alterations of shared use paths, requiring accessible surfaces, grades (maximum 5% running slope where practicable), cross slopes (maximum 2%), widths (minimum 10 ft typical), passing spaces, and protrusions-free clear zones.
 - c. Misapplication includes failing to meet these criteria (e.g., excessive slopes, inadequate width causing conflicts, or poor maintenance leading to inaccessible surfaces), which can violate ADA Title II for public entities.
 - d. Design guidance aligns with the **AASHTO Guide for the Development of Bicycle Facilities** (latest 5th Edition, 2024), which FHWA endorses for shared use paths, including recommendations for separation from roadways (side paths), intersections, and safety features. FHWA emphasizes that shared use paths should not be used as a substitute for proper on-road facilities, as side paths can create safety issues at intersections.

- e. FHWA and AASHTO note potential misapplications, such as using side paths (shared use paths adjacent to roadways) in high-speed or high-volume areas without adequate separation or intersection treatments, leading to higher crash risks for bicyclists.

3. **Safety FHWA and AASHTO Guidance:** Side paths are often discouraged or heavily restricted on roadways with speeds ≥ 40 mph, high traffic volumes, or frequent driveways/intersections because:

- a. Bicyclists on bidirectional paths can be less visible to turning motorists (e.g., right-turn conflicts where drivers look left but bicyclists' approach from the right).
- b. Higher crash risks at intersections (up to 2–4 times higher than on-road facilities in some studies).
- c. Paths should not substitute for proper on-road bike lanes where experienced cyclists prefer them.
- d. Restrict unsafe sections of roadway and intersections where high or continuous flow of traffic exists. Consider fencing or wall of unsafe sections to pedestrians in these areas.
- e. Constructability hurdles exist on south side where step slopes and proximity to residential property exists with limited pedestrian usage and many safety concerns exist.

4. **OUTDATED USEAGE / NOW DISCOURAGED:** Front of single-family houses with individual driveways, a two-way shared-use path is generally prohibited or strongly discouraged by current national and state standards once driveway frequency exceeds about 10–15 per mile. Most 1950s–1990s suburban single-family neighborhoods have 40–80 driveways per mile, so a parallel two-way path in front of the houses is now considered unacceptable by virtually every modern standard.

The preferred solutions today are:

- a. Route the path **behind the houses** (most common and safest),
- b. Build **one-way protected bike lanes** on each side of the street, or
- c. Designate a parallel street as a low-stress bicycle boulevard/greenway.
- d. The old practice of running a 10–12 ft two-way path right along the curb with dozens of driveways crossing it is now viewed as one of the most dangerous and outdated designs in bicycle/pedestrian engineering.