

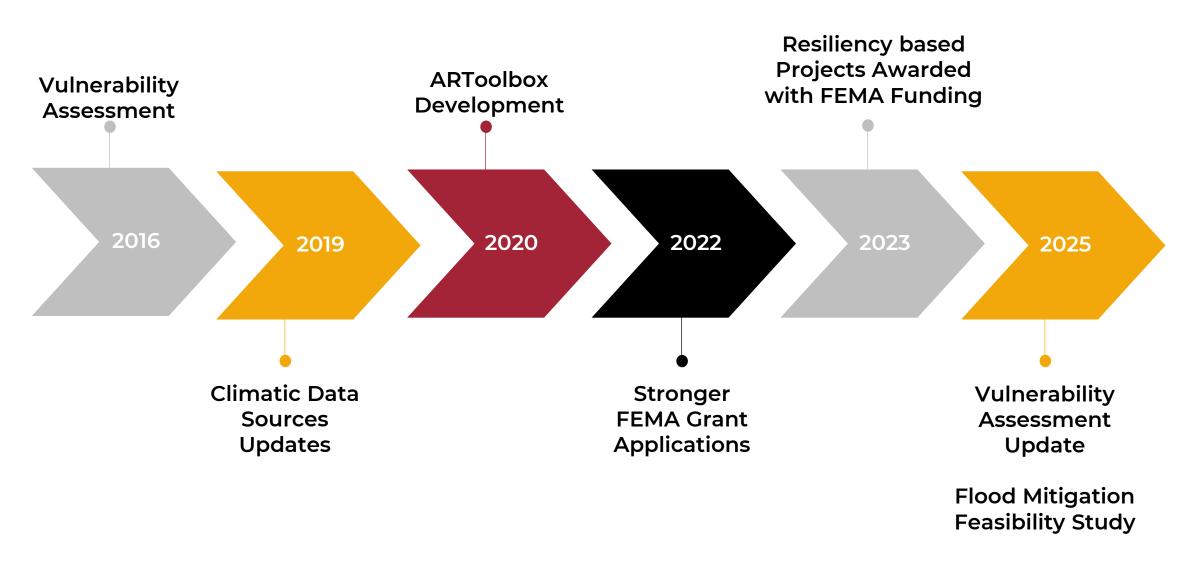
Resiliency Transportation Programs:

Vision: Manage increased climate risk and expedite recovery from weather events through effective and equitable program, project, and purchasing decisions.

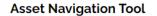
Storm Surge

Fells Point, Baltimore City

Track Wash Outs


Light Rail, Baltimore Highlands

Sea Level Rise


Smith Island, Somerset County

Resiliency Program Timeline of Progress

The Adaptation & Resiliency Toolbox (ARToolbox)

Resiliency Search Tool

Vulnerability Mapping Tool

Library

Funding Resources

Case Studies

Resilience Integration Wins & Projects

Feasibility Study

Station: Flood Mitigation

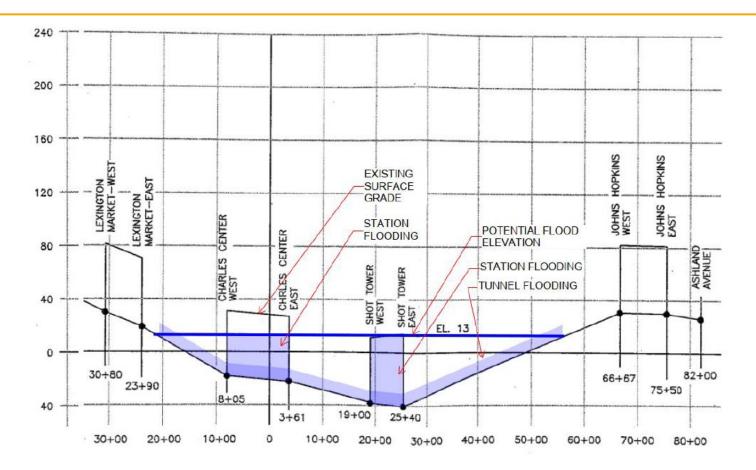
Projects Awarded FEMA Funding

	Location	Problem	Solution	Funding
Design (30%)	Metro Tunnel Pumping Stations (Baltimore City)	 Outdated Pumping Infrastructure at Seven Locations Very High Risk (Due to Sea Level Rise and Floodplain Inundation) Service Interruptions 	■ Track Drainage Study ■ 30% Design	Project Cost: \$750KFederal Share: \$675K(90%)
Construction	Mt Washington Light Rail Protection (Baltimore City)	 Erosion and Bank Instability Potential for Track Overtopping Very High Risk (Due to Floodplain Inundation) 	 Permanent Fix Construction Stabilization to Stream Banks Erosion and Sediment Control Riprap and Gabion Baskets 	Project Cost: \$500KFederal Share: \$450K(90%)

Shot Tower: Flood Mitigation Feasibility Study

Existing Condition Analysis of Station Components

Identification of Flood Risk Reduction Alternatives (Conceptual Engineering Level)


Benefit-Cost Analysis of Alternatives

Support Data for Funding Application (e.g., FEMA Grant Programs)

Existing Conditions

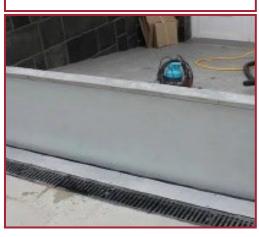
Part of the underground section of the Metro system and located at the lowest elevation.

In an area with Very High risk of flooding due to surge events, major rainfall events, and sea-level rise.

Existing Conditions (cont'd)

Complex solution needed due to the multiple potential water entry points to station, platform, and tunnel.

Proposed Risk Reduction Measures



BCA Findings

Vertical Passive Barrier

Flip-Up Barrier

Horizontal Vent Flood

Waterproof Doors

Alternative 2

 Passively Deployed Mitigation Measures

Total Benefits

\$266 Million

Total Costs

\$17.3 Million

Benefit-Cost Ratio

15.4

Next Steps

Explore a phased approach to implement proposed measures

Finalize the feasibility study

Use the study to pursue funding opportunities through established grant programs (e.g., FEMA, PROTECT) and other potential sources

Replicate the study for other vulnerable MTA assets

THANK YOU! Any Questions?

Environmental Planner

PAriza@mta.maryland.gov

Maryland Transit Administration Office of Statewide Planning Environmental Planning Division

