AIR QUALITY CONFORMITY DETERMINATION OF THE 2011 CONSTRAINED LONG RANGE PLAN FOR THE WASHINGTON METROPOLITAN REGION

November 16, 2011

The preparation of this report was financially aided through grants from the District of Columbia Department of Transportation, the Maryland Department of Transportation, the Virginia Department of Rail & Public Transportation, the Virginia Department of Transportation, the U.S. Department of Transportation, the Federal Highway Administration, and the Federal Transit Administration.

NATIONAL CAPITAL REGION TRANSPORTATION PLANNING BOARD METROPOLITAN WASHINGTON COUNCIL OF GOVERNMENTS

ABSTRACT

TITLE: Air Quality Conformity Determination Of The 2011 Constrained Long Range Plan For The Washington Metropolitan Region

DATE: November 16, 2011

AGENCY: The Metropolitan Washington Council of Governments is the regional planning organization of the Washington area's major local governments. COG works on finding solutions to regional problems, especially those related to regional growth, transportation, housing, human services, and the environment.

ABSTRACT: This report documents the assessment of the 2011 Constrained Long Range Plan (CLRP) with respect to air quality conformity requirements under the 1990 Clean Air Act Amendments. The assessment used criteria and procedures contained in the Environmental Protection Agency (EPA)'s final conformity rule, published in the November 24, 1993 Federal Register, with subsequent amendments and additional federal guidance published by the Environmental Protection Agency (EPA) and by the Federal Highway Administration (FHWA) and the Federal Transit Administration (FTA). The assessment is a responsibility of the National Capital Region Transportation Planning Board (TPB).

The report presents an overview of the conformity requirements contained in the legislation and subsequent guidance, and documents the technical procedures used in the analysis including travel demand forecasting, emissions calculation procedures and impacts of transportation emission reduction measures. The analysis demonstrates that mobile source emissions for each analysis year of the long range plan, adhere to all carbon monoxide, ozone season volatile organic compound and nitrogen oxide, and fine particle (PM2.5) pollutants (direct PM2.5 and precursor nitrogen oxide) emissions budgets established by the Metropolitan Washington Air Quality Committee (MWAQC), which are either approved or under review by the EPA. Additionally, the "action scenario" (forecast year) emissions for fine particles are not greater than the base year 2002 emissions, thus satisfying the requirement for pollutants without an established budget. These results provide a basis for a determination of conformity of the 2011 CLRP.

COPIES AVAILABLE FROM:

Metropolitan Washington Council of Governments 777 N. Capitol St, NE - Suite 300 Washington, DC 20002-4239 http://www.mwcog.org/transportation (202) 962-3200

COPYRIGHT 2011, Metropolitan Washington Council of Governments

ACKNOWLEDGMENTS

Director, Department of Transportation Planning

Ronald F. Kirby

Program Administrator

Elena Constantine

Project Manager

Jane Posey

Project Engineers / Staff

William Bacon
Anant Choudhary
Eulalie Gower-Lucas
Wanda Hamlin
Ronald Milone
Jinchul Park
Daivamani Sivasailam
Daniel Son
Dusan Vuksan
Feng Xie
Jian Yin

EXECUTIVE SUMMARY

This report documents the air quality conformity assessment of the 2011 Constrained Long Range Plan (CLRP) as carried out under the regulations contained in the Environmental Protection Agency's final rule, published in the November 24, 1993 *Federal Register*, with subsequent amendments and additional federal guidance published by the Environmental Protection Agency (EPA) and by the Federal Highway Administration (FHWA) and the Federal Transit Administration (FTA). The process involved consultation with affected agencies such as the EPA, the FHWA, the FTA, and the Metropolitan Washington Air Quality Committee (MWAQC), as well as with the public. The assessment is a responsibility of the National Capital Region Transportation Planning Board.

The following summarizes the pollutants included in this assessment:

- Ozone Season Volatile Organic Compounds (VOC) and Nitrogen Oxides (NOx). Ozone season pollutants must not exceed EPA approved totals from the Metropolitan Washington Air Quality Committee's (MWAQC's) Motor Vehicle Emissions Budgets (MVEBs) from the 8-hour Ozone State Implementation Plan (SIP). MWAQC adopted the 8-hour ozone SIP in May, 2007, and on September 4, 2009, EPA found adequate the 2008 Reasonable Further Progress (RFP) budgets, and stated that the Metropolitan Washington region must use these budgets for future conformity determinations for the 8-hour ozone standard. The RFP budget for VOC is 70.8 tons/day, and for NOx is 159.8 tons/day.
- **Fine Particles (PM_{2.5}).** In the absence of approved budgets EPA, allows for an assessment that shows emissions in "action" scenarios are no greater than those in a 2002 base. This criterion was established and applied, with the concurrence of MWAQC, in prior PM_{2.5} conformity assessments.
- Wintertime Carbon Monoxide (CO). The region is in maintenance for mobile source wintertime CO, and is required to show that pollutants do not exceed the approved budget of 1671.5 tons/day.

Emissions estimates for all pollutants were developed for 2002, 2016, 2020, 2030, and 2040 forecast years, using both network analysis and off-line emissions assessment. The results show that the 2011 CLRP demonstrates adherence to relevant mobile source emissions budgets for all forecast years, and that forecast year fine particles pollutants emissions are not greater than the base year 2002 emissions. This analysis provides a basis for a determination of conformity for the 2011 CLRP.

TABLE OF CONTENTS

I.	Introduction	1
II.	Conformity Regulations	1
III.	Pollutants	2
IV.	Technical Methods	5
V.	Travel Forecasts	9
VI.	Emissions	20
VII.	Conformity Assessment-Criteria and Procedures	50
VIII.	Findings	54

LIST OF EXHIBITS

		<u>Page</u>
1.	Planning Areas Map	3
2.	Analysis Structure	
3.	Emissions Calculation (flowchart)	
4.	Major Transit Improvements	
5.	Coded HOV/HOT Improvements	
6.	Rail & Road Miles	
7.	Household Data	
8.	Employment Data	17
9.	Mode Analysis	
10.	Vehicle Trips and AAWDT to ADT adjustment factors	19
11.	VMT vs. Land Activity	
12.	Running Emission Factors - VOC	23
13.	Running Emission Factors - NOx	24
14.	Emissions Rates - Direct PM _{2.5}	
15.	Mobile Source Emissions - 2011 VOCs	27
16.	Mobile Emissions Inventory Summary Table - VOC & NOx - 8-hr ozo	one area28
17.	Mobile Emissions Inventory Summary Table - Direct PM _{2.5}	30
18.	Mobile Emissions Inventory Summary Table - PM _{2.5} Precursor NOx	31
19.	Mobile Emissions Inventory Summary Table - Wintertime CO	
20.	Mobile Source Emissions - VOC - 8-hr ozone area	
21.	Mobile Emissions – NOx – 8-hr ozone area	34
22.	Mobile Source Emissions - Precursor NOx	35
23.	Mobile Source Emissions - Direct PM _{2.5}	36
24.	Emissions - Wintertime CO	37
25.	TERM Tracking Sheet - ozone	39-43
25.	TERM Tracking Sheet - PM _{2.5}	
26.	Current Conformity Criteria	
27.	TPB Public Involvement Schedule	52

LIST OF APPENDICES

A.	Air Quality Conformity Scope of Work
B.	List of Project Inputs
C.	Interagency and Public Involvement Process
D.	Documentation of Emission Factor Development
E.	Documentation of Mobile Source Emission Calculations (post-processor) E1-E32
F.	Vehicle-related Emissions Calculations
G.	Auto Access Emissions Calculations
H.	Bus Emissions Estimation
I.	TERM Implementation Reports

LIST OF REFERENCES

- 1. <u>Criteria and Procedures for Determining Conformity to State or Federal Implementation Plans of Transportation Plans, Programs, and Projects Funded or Approved Under Title 23 U.S.C. or the Federal Transit Act, Federal Register, November 24, 1993, with updates most recently on March 24, 2010, EPA.</u>
- 2. <u>Transportation Planning Board Consultation Procedures With Respect to Transportation Conformity Regulations Governing TPB Plans and Programs</u>, May 20, 1998, NCRTPB/MWCOG.
- 3. February 22, 1996 memo from Michael J. Clifford to the TPB Technical Committee, "Impacts of Increased Speed Limits on Mobile Emissions".
- 4. "Redesignation of the Metropolitan Washington Carbon Monoxide Area to Attainment and Approval of the Area's Maintenance Plan and Emissions Inventory", SIP revisions submitted to EPA by Virginia on October 4, 1995 and by the District of Columbia and Maryland on October 12, 1995.
- 5. <u>Analysis of Potential Transportation Emissions Reduction Measures (TERMs) For The 2009 CLRP and FY2010-2015 TIP</u>, June 5, 2009, TPB.
- 6. <u>State Implementation Plan (SIP) Revision, Phase II Attainment Plan, for the Washington DC-MD-VA Nonattainment Area</u>, February 3, 2000, MWAQC.
- 7. "Heavy Duty Diesel Vehicles on Local Roads Study", May 8, 2002 technical memorandum from Robert Griffiths to the TPB.
- 8. Responses to a Critique of the Travel Demand and Air Emissions Models of the National Capital Region Transportation Planning Board, A Compendium of Comments, Responses, and Related Documents, June 13, 2002, TPB.
- 9. Technical Guidance on the Use of MOBILE6.2 for Emission Inventory
 Preparation, US EPA August, 2004 and Userzs Guide to MOBILE6.1 and
 MOBILE6.2, Mobile Source Emission Factor Model, US EPA, August, 2003.
- 10. "Methodology for Studying Highway Tolls Using the V2.1/TP+, C Model", December 16, 2003 technical memorandum from Ron Milone to the ICC files.
- 11. Application for Developing MOBILE6 Inputs to Metropolitan Washington Council of Governments (MWCOG) Transportation Model: Draft User's Guide. E.H. Pechan & Associates, July, 2006.

- 12. "Update on Air Quality Planning Activities- Topic 1: VIN Decode Results", May 10, 2006 memorandum from Michael Clifford to the TPB
- 13. "PM_{2.5} and PM₁₀ Hot-Spot Analyses in Project-Level Transportation Conformity Determinations for the New PM_{2.5} and Existing PM₁₀ National Ambient Air Quality Standards" [Federal Register: March 10, 2006 (Volume 71, Number 47)]
- 14. <u>Plan To Improve Air Quality In The Washington, DC-MD-VA Region,</u> State Implementation Plan (SIP) for 8-Hour Ozone Standard Prepared for: District of Columbia Department of Environment, Maryland Department of the Environment and Virginia Department of Environmental Quality on behalf of the Metropolitan Washington Air Quality Committee, May 23, 2007.
- 15. Round 8.0 Cooperative Forecast was approved by the COG Board in November, 2010. Round 8.0 Cooperative Forecasting was updated in 2011 to Round 8.0a to include new land activity data in the Baltimore Region.
- 16. Plan to Improve Air Quality in the Washington DC-MD-VA Region, State Implementation Plan (SIP) for Fine Particle (PM_{2.5}) Standard and 2002 Base Year Inventory for the Washington DC-MD-VA Nonattainment Area. Prepared by: Metropolitan Washington Council of Governments for the District of Columbia Department of Environment, Maryland Department of the Environment, and Virginia Department of Environmental Quality on behalf of the Metropolitan Washington Air Quality Committee, March 7, 2008.
- 17. <u>TPB Version 2.3 Travel Forecasting Model for the 3, 722 Zone Area System:</u> <u>User's Guide-Draft Report, April 29, 2011</u>
- 18. Adequacy Status of the Metropolitan Washington DC Area (DC-MD-VA) 8-Hour Ozone Non-Attainment Area's Reasonable Further Progress Plan Vehicle Emission Budgets for Transportation Conformity Purpose Federal Register 74FR45853, EPA September 21, 2009
- 19. Approval and Promulgation of Air Quality Implementation Plans; District of Columbia, Maryland, and Virginia; 2002 Base year Emission Inventory, Reasonable Further Progress Plan, contingency measures, Reasonably Available Control Measures, and Transportation Conformity Budgets for the Washington, DC 1997 8-Hour Moderate Ozone Nonattainment Area Federal Register 76FR58116, EPA September 20, 2011.
- 20. Approval and Promulgation of Implementation Plans; Designation of Areas for Air Quality Planning Purposes; Redesignation of the Metropolitan Washington Carbon Monoxide Area to Attainment and Approval of the Area's Maintenance

- Plan and Emission Inventory; Commonwealth of Virginia, District of Columbia and State of Maryland. 96FR 1104 January 30, 1996
- 21. Revised Carbon Monoxide Maintenance Plan and Revised 1990 Carbon
 Monoxide Base Year Emissions Inventory for the WASHINGTON DC-MD-VA
 MAINTENANCE AREA, prepared by Metropolitan Washington Council of
 Governments for the District of Columbia Department of Health, Maryland
 Department of the Environment and the Virginia Department of Environmental
 Quality on the behalf of the Metropolitan Washington Air Quality Committee,
 February 19, 2004
- 22. <u>Air Quality Conformity Assessment Maryland Department of Transportation / District of Columbia Department of Public Works Amendments to 1999 Constrained Long Range Plan and FY2000-2005 Transportation Improvement Program, July 19, 2000, TPB.</u>
- 23. "Round 8.0 Based Travel Model Inputs to the Version 2.2 Travel Model", July 26, 2010 technical memorandum from Ronald Milone to DTP Technical staff.
- 24. <u>Participation Plan</u>, December 19, 2007, TPB.

LIST OF ACRONYMS

AWDT Average Weekday Traffic

BMC Baltimore Metropolitan Council CAAA Clean Air Act Amendments of 1990

CAC Citizens Advisory Committee CLRP Constrained Long Range Plan

CMAQ Congestion Mitigation & Air Quality

CO Carbon Monoxide

DC DOT District of Columbia Department of Transportation DTP (COG's) Department of Transportation Planning

FAMPO Fredericksburg Area Metropolitan Planning Organization

FHWA Federal Highway Administration FTA Federal Transit Administration

G/MI Grams Per Mile

HOV High Occupancy Vehicle
I/M Inspection and Maintenance
LOV Low Occupancy Vehicle

MDOT Maryland Department of Transportation MPO Metropolitan Planning Organization

MSA Metropolitan Statistical Area

MWAQC Metropolitan Washington Air Quality Committee MWCOG Metropolitan Washington Council of Governments

NOx Nitrogen Oxides

P's & A's Productions and Attractions

PM_{2.5} Fine Particles PNR Park and Ride Lot

SIP State Implementation Plan
TAD Transportation Analysis District
TAZ Transportation Analysis Zone
TCM Transportation Control Measure

TERM Transportation Emission Reduction Measure

T/D Tons Per Day

TIP Transportation Improvement Program

TPB Transportation Planning Board

US DOT United States Department of Transportation
US EPA United States Environmental Protection Agency

V/C Volume to Capacity Ratio

VDOT Virginia Department of Transportation

VDRPT Virginia Department of Rail and Public Transportation

VMT Vehicle Miles Traveled

VOC Volatile Organic Compounds

WMATA Washington Metropolitan Area Transit Authority

NATIONAL CAPITAL REGION TRANSPORTATION PLANNING BOARD 777 North Capitol Street, N.E. Washington, D.C. 20002

RESOLUTION FINDING THAT THE 2011 CONSTRAINED LONG RANGE PLAN CONFORMS WITH THE REQUIREMENTS OF THE CLEAN AIR ACT AMENDMENTS OF 1990

WHEREAS, the National Capital Region Transportation Planning Board (TPB) has been designated by the Governors of Maryland and Virginia and the Mayor of the District of Columbia as the Metropolit an Planning Organization (MPO) for the Washington Metropolitan Area; and

WHEREAS, the U.S. Environme ntal Protection Agency (EPA), in conjunction with the U.S. Department of Transportation (DOT), under the Clean Air Act Amendments of 1990 (CAAA), issued on November 24, 1993 "Criteria and Procedures for Determining Conformity to State or Federal Implementation Plans of Transportation Plans, Programs, and Projects Funded or Approved Under Title 23 U.S.C. or the Federal Transit Act," and, over the years, subsequently amended these regulations and provided additional guidance, which taken together provide the specific criteria for TPB to make a determination of conformity of its financially Constrained Long Range Transportation Plan (CLRP) with the state implementation plans for air quality attainment within the Metropolitan Washington non-attainment area; and

WHEREAS, a work program was developed to address all proc edures and requirements, including public and interagency consultation, and the work program was released for public comment on February 10 and approved by the TPB at its March 16, 2011 meeting; and

WHEREAS, on March 16, 2011, the TPB approved the projects submitted for inclusion in the air quality conformity assessment for the 2011 CLRP; and

WHEREAS, in each year's update of the CLRP between 2000 and 2011, the TPB ha s explicitly accounted for the funding uncertainties affecting the Metrorail system capacity and levels of service beyond 20 05 by constraining transit ridership to or through the core area; and

WHEREAS, after accounting for the "Metro Matters" commitments for Metro's near-term funding and the Passenger Rail In vestment and Improvement Act of 2008 (PRIIA) legislation and state matching, the transit rider ship constraint to or through the

core area was applied in the both the 2010 CLRP and 2011 CLRP conformity analyses using 2020 ridership levels for 2030 and 2040; and

WHEREAS, on October 11, 2011, the draft result s of the Air Quality Conformity Determination of the 2011 CLRP were released for a 30-day public comment period and inter-agency review; and

WHEREAS, the analysis reported in *Air Quality Conformity Determination of the 2011 Constrained Long Range Plan for the Washington Metropolitan Region*, dated November 16, 2011, demonstrates adherence to all mobile source emissions budgets for volatile organic compounds, nitrogen ox ides, carbon mono xide and fine particle emissions (PM_{2.5}), and demonstrates that PM _{2.5} emissions meet the requirement that such emissions are not great er than 2002 levels, meets all regulatory, planning and interagency consultation requirements, and therefore provides the basis for a finding of conformity of the plan with the requirements of the CAAA; and

WHEREAS, in the attached letter of November 9, 2011, the Metropolitan Washington Air Quality Committee (MWAQC) has provi ded favorable comments on the Air Quality Conformity Determination of the 2011 Constrained Long Range Plan for the Washington Metropolitan Region;

NOW, THEREFORE, BE IT RESOLVED THAT THE NATIONAL CAPITAL REGION TRANSPORTATION PLANNING BOARD determines that the 2011 Constrained Long Range Plan conforms to all requirements of the Clean Air Act Amendments of 1990.

Adopted by the Transportation Planning Board at its regular meeting on November 16, 2011

I. INTRODUCTION

The Washington region is currently designated nonattainment for the federal health standards for ozone and fine particles (PM_{2.5}). Clean air legislation in 1977 provided that a metropolitan planning organization may not approve any transportation project that did not conform to the approved state implementation plan (SIP) for the attainment of clean air standards. This established the responsibility on the part of COG/TPB to review transportation plans and programs and affirm that they conformed to air quality state implementation plans for the region.

This requirement means that TPB plans, programs and projects must be consistent with clean air objectives. In the 1990 Clean Air Act Amendments conformity to an implementation plan is defined as conformity to an implementation plan's purpose of eliminating or reducing the severity and number of violations of the national ambient air quality standards and achieving expeditious attainment of such standards. In addition, Federal activities may not cause or contribute to new violations of air quality standards, exacerbate existing violations, or interfere with timely attainment or required interim emission reductions towards attainment.

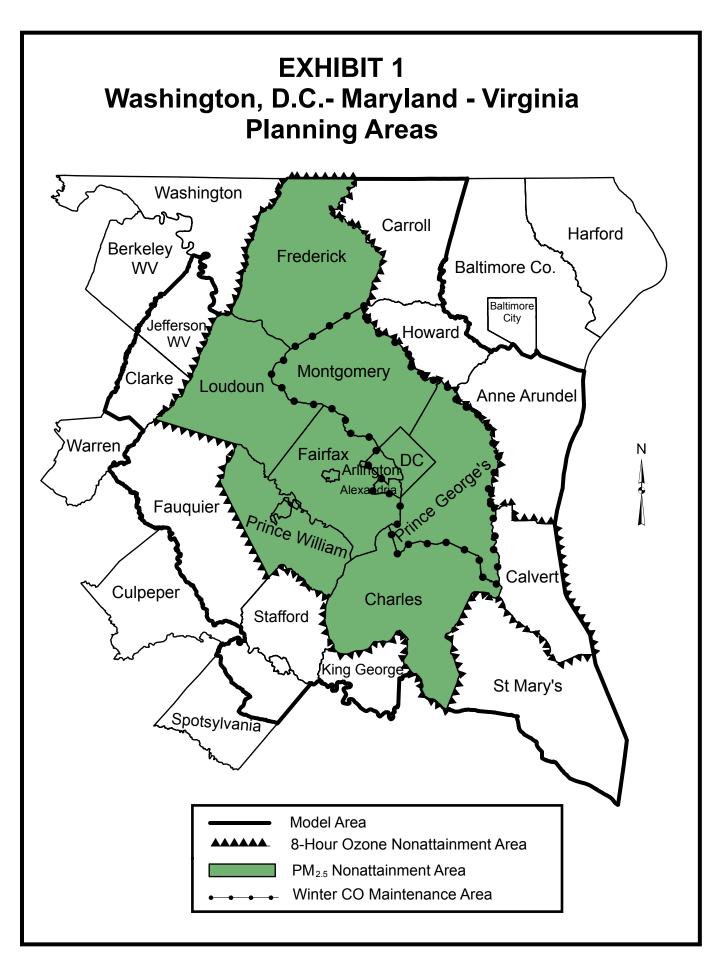
II. CONFORMITY REGULATIONS

Background

On November 15, 1990 President Bush signed into law the Clean Air Act Amendments (CAAA) of 1990. The CAAA establishes standards and procedures for reducing human and environmental exposure to a range of pollutants generated by industry and transportation. The law allows EPA to define the boundaries of "nonattainment" areas for various pollutants. These are geographic areas whose air quality does not meet Federal air quality standards. The law also established nonattainment area classifications ranked according to the severity of the area's air pollution problem. These classifications are marginal, moderate, serious, severe, and extreme. EPA assigns each nonattainment area one of these categories, thus triggering various requirements the area must comply with in order to meet a particular standard. The Washington region is currently designated nonattainment for the federal health standards for ozone and fine particles (PM_{2.5}).

The concept of transportation conformity was introduced in the Clean Air Act (CAA) of 1977 which included a provision to ensure that Federal funding and approval goes to those transportation activities that are consistent with air quality goals. These goals are set in each state's air quality implementation plan (SIP). Conformity requirements were made substantially more rigorous in the CAA Amendments of 1990. The transportation conformity regulations (Reference 1) that detail implementation of the CAA requirements were first issued in the November 24, 1993 Federal Register, and have

been amended several times, most recently on March 24, 2010. The regulations establish the criteria and procedures for transportation agencies to demonstrate that air pollutant emissions from metropolitan Transportation Plans, Transportation Improvement Programs (TIPs), and projects funded or approved by the Federal Highway Administration (FHWA) or the Federal Transit Administration (FTA) are consistent with ("conform to") the State's air quality goals in the SIP.


The conformity regulations are comprehensive, covering definitions and specific technical, procedural, consultation and policy aspects of the analyses. Criteria and procedures to be employed are related to the area's standing with EPA in terms of its status in meeting state implementation plan requirements. Different tests apply depending on the time period and whether SIP revisions have been filed with EPA, which establish emissions budgets leading towards reasonable further progress and attainment of air quality standards.

Consultation

The conformity regulations require that Metropolitan Planning Organizations (MPOs) make Transportation Plans, TIPs, and conformity determinations available to the public, and to accept and respond to public comment. The Transportation Planning Board (TPB) staff went through a lengthy process involving EPA and state and local air quality agencies to develop the region's transportation and air quality conformity consultation procedures. These procedures have been organized into a report, <u>Transportation Planning Board Consultation Procedures with Respect to Transportation Conformity Regulations Governing TPB Plans and Programs</u> (Reference 2). They were adopted by the Board initially on September 21, 1994 and subsequently updated in response to EPA's August 15, 1997 amendments, and formally adopted by the TPB on May 20, 1998. The procedures seek early involvement of the air agencies in the transportation planning process through concurrent mailings to the TPB and consultation agencies of all material relevant to transportation conformity, including announcements of work sessions and public forums in which the materials will be discussed.

III. POLLUTANTS

The Washington Metropolitan Region is currently designated as nonattainment for ozone season volatile organic compounds (VOC) and nitrogen oxides (NOx), as well as for fine particles (PM_{2.5}) pollutants. It is designated as a maintenance area for wintertime carbon monoxide (CO). The geography of the nonattainment area varies by pollutant. The map in Exhibit 1 outlines the boundaries of the each pollutant's nonattainment area.

Ozone Season Pollutants

On April 15, 2004 EPA designated the Washington, DC - MD - VA region as 'moderate' nonattainment for the 1997 8-hour ozone standard. In 2007 the Metropolitan Washington Air Quality Committee (MWAQC) developed an 8-hour ozone SIP (Reference 14). As part of the 8-hour ozone SIP, MWAQC developed mobile budgets for VOC and NOx.

As required by federal guidance, MWAQC established 2008 budgets to show "reasonable further progress" (RFP budgets) in addition to the 2009 and 2010 attainment year budgets. EPA found adequate (Reference 18) the 2008 RFP budgets, and stated that the Washington Metropolitan region must use these budgets for future conformity determinations for the 8-Hour ozone standard. EPA formally approved (Reference 19) these budgets on September 20, 2011. The 2008 RFP budget for VOC is 70.8 tons/day, and for NOx is 159.8 tons/day.

Fine Particles Pollutants

On December 17, 2004 the Environmental Protection Agency (EPA) designated 224 counties, as well as the District of Columbia, that exceeded the health-based standards for fine particles (PM_{2.5}) as nonattainment areas. PM_{2.5} standards refer to particulate matter less than or equal to 2.5 micrometers in diameter. The Washington, DC-MD-VA area was designated nonattainment for PM_{2.5} (see Exhibit 1 for area).

As published in the January 5, 2005 Federal Register, these PM_{2.5} nonattainment designations became effective on April 5, 2005. By this date nonattainment areas were required to submit to EPA a SIP to define the expected methods for reducing the fine particulate matter level in the air and emissions of PM_{2.5} precursors. MWAQC adopted the Plan (Reference 16) on March 7, 2008 and submitted it to EPA prior to the April 5, 2008 deadline. As with other SIPs, MWAQC developed motor vehicle emissions budgets to be used as benchmarks as part of the conformity determination of the CLRP and TIP. The 2009 attainment year budgets are 1,105.4 tons/year and 52,052.9 tons/year for direct PM_{2.5} and precursor NOx, respectively. The 2010 contingency budget, which is only set for precursor NOx, is 51,395.9 tons/year. EPA has yet to approve these budgets, so they are not yet required to be used in an air quality conformity determination. In the absence of approved budgets, EPA allows for an assessment that shows emissions in "action" scenarios are no greater than those in a 2002 base. This criterion was established and applied, with the concurrence of MWAQC, in prior PM_{2.5} conformity assessments.

Wintertime Carbon Monoxide

The Metropolitan Washington DC-MD-VA region attained the federal carbon monoxide standard in the 1990s and submitted a CO maintenance plan covering the period 1996-

2007. EPA approved (Reference 20) this maintenance plan effective March 16, 1996. The region was required to submit a second maintenance plan within eight years of its redesignation as an attainment area. This revised plan (Reference 21) was completed on February 19, 2004, and provides for attainment of the CO standard in the Washington DC-MD-VA attainment area through March 16, 2016. As a maintenance area, the region is required to show that pollutants do not exceed the approved mobile budget of 1671.5 tons/day.

IV. TECHNICAL METHODS

Approach

In developing the work program for this year's conformity assessment, contained as Appendix A of this report, staff identified latest planning assumptions and modeling techniques, and considered requirements of the conformity regulations, as well as requirements associated with, and comments received upon, past conformity analyses. Mobile emissions budgets set in the PM_{2.5} SIP have been submitted to EPA for approval, but have not yet been found adequate. Since it was possible that the budgets could be found adequate before the TPB was scheduled to act on the conformity assessment this year, it was necessary to assess the pollutant levels for each milestone year relative to the new budgets, as well as a comparison to the 2002 base.

Tasks included: preparation of forecast years representing 2002, 2016, 2020, 2030, and 2040 for ozone season, PM_{2.5} precursors, and wintertime CO analysis; use of current land activity forecasts for the region (Round 8.0a Cooperative Forecasts- Reference 15); use of the new Version 2.3 (Reference 17) travel demand modeling process which includes an updated Transportation Analysis Zone (TAZ) structure; use of a refined Mobile Emissions Post-Processor (Appendix E using latest travel demand and mobile emissions planning assumptions), and Mobile6.2. Staff conducted a parallel technical process to identify and analyze Transportation Emission Reduction Measures (TERMs) for ozone season pollutants, as well as for PM_{2.5} pollutants, under the oversight of the TPB Technical Committee and its Travel Management Subcommittee. This work is documented in Reference 5.

Staff drafted a work program for the analysis and presented it to regional technical and policy committees starting in February 2011. Staff also coordinated the draft work program with EPA, FHWA, FTA and the state and local air management agencies through the TPB consultation procedures. This scope was adopted by the TPB on March 16th, 2011. Staff execution of the work activities is described in the following overview.

Technical Work Activities

Technical work activities for the 2011 CLRP included the preparation of: daily ozone season volatile organic compound (VOC) and nitrogen oxide (NOx) emissions; yearly direct $PM_{2.5}$ and $PM_{2.5}$ precursor NOx emissions; and daily wintertime carbon monoxide (CO) emissions inventories for specified years (base year 2002 and forecast years 2016, 2020, 2030, and 2040). These inventories address a primary conformity assessment criterion to demonstrate that the plan adheres to established mobile source emissions budgets for ozone season, $PM_{2.5}$ and wintertime CO pollutants. The inventories also allow the baseline (2002) vs. action (forecast year) comparison required for the $PM_{2.5}$ pollutants until the mobile budgets are found adequate.

The mobile source emissions estimation process utilized in this analysis involved the separate estimation of travel, vehicle and additional components. This structure is shown in Exhibit 2. While lengthy modeling procedures are involved to compute various travel components (number of trips, vehicle miles of travel, system performance, etc.) and rates of emissions (cold start emissions, tailpipe emissions, etc.) for each simulation, the calculation of mobile source emissions ultimately becomes a simple multiplication of a travel component by a rate of emissions associated with that component. As seen in the exhibit, the number of trip origins multiplied by a (gram/trip) cold start emissions rate yields an estimate of startup emissions. Vehicle miles of travel (VMT) multiplied by a (gram/mile) rate yields running emissions, and so on.

Exhibit 2 also illustrates the comprehensive scope of emissions contained in the mobile source inventory, addressing elements not directly available from current travel demand modeling procedures. This includes emissions associated with the number of vehicles in the region, "auto access" emissions and bus emissions.

Emissions impacts associated with Congestion Mitigation and Air Quality (CMAQ) projects were also analyzed, in an off-line basis primarily by the sponsoring agencies, as a requirement associated with their use. These projects, and other similar projects funded by categories other than CMAQ, are also specifically considered in the analysis for the emissions budget and emissions reductions tests. Exhibit 3 presents an overview of the network analysis work activities and shows their interrelationship. This schematic illustrates the major operations only. It is useful, however, in conveying an overview of the major steps of the emissions calculation process from a data processing vantage. The "post-processor" is the emissions calculation software in use at COG for conformity analyses and SIP planning. Spreadsheets 1 - 3 address calculations required in assessing vehicle, auto access, school bus, and transit bus emissions, respectively.

EXHIBIT 2

Analysis Structure for On-Road Mobile Source Emissions

	Transportation Component	X	Emission <u>Factor</u>	=	<u>Emissions</u>
A. Network	1. Trip origins		Cold start rate (g/trip)		Startup
	2. VMT		Stabilized rate (g/mile)		Running
	3. Trip destinations		Hot soak (g/trip)		Hot soak
B. Off-Network	4. Number of vehicles (gasoline fueled)		Diurnal rate (g/day)		Diurnal evaporative
	5. Number of vehicles (gasoline fueled)		Resting loss (g/day)		Resting loss
	6. Auto access to transit		Travel components (above)	3	Startup, running, hot soak
	7. School & transit bus VI	MT	(HDDV) Stabilized (g/mile)	rate	Running
	8. Local Road VMT		Stabilized Rate (g/	mile)	Running

EXHIBIT 3 ON-ROAD MOBILE SOURCE EMISSIONS CALCULATIONS Vehicle Round 8.0a Auto Environmental Characteristics, **HPMS** Access Bus Data Land Characteristics VMT **Heavy Duty** Activity Data Truck Pcts. 4 Step Travel Modeling, Version 2.3 Mobile 6.2 Daily and Local road Annual Emission Spread Sheets VMT, VMT, Rates #1-3 **Growth Rates** Tripends "Post" Processor Resting Loss, Diurnal, Auto Access, and Emissions by **Bus Emissions** Trip Cycle 11CLRPEXH3.VSD 8

V. TRAVEL FORECASTS

As mentioned above, the preparation of travel forecasts for each of the conformity alternatives was carried out using the new Version 2.3 travel modeling process. The Version 2.3 travel demand model was used for the first time in an air quality conformity analysis. The model includes a finer-grain zone system (3722 instead of 2191 TAZs) and a more detailed street base than that of the Version 2.2 model. Staff completely recalibrated and re-validated the new model using the 2007/2008 household survey, numerous on-board transit surveys, 2007 Highway Performance Monitoring System (HPMS) traffic count data, and 2007 American Community Survey (ACS) data. The new model, reviewed extensively by the Travel Forecasting Subcommittee, contains numerous upgrades and additional technical parameters, enabling an improved analysis of travel in the region. For more information, review the December 2010 presentation to the TPB Technical Committee, or the Version 2.3 model documentation (Reference 17), both of which are located on the COG website.

As part of the technical methods originally employed in 2000, transit capacity constraint procedures, constraining trips to and through the regional core at 2020 levels, were applied to better relate transit forecast levels with transit carrying ability. These procedures are documented in Reference 22.

As in recent years' analyses, in addition to existing toll facilities, the 2011 CLRP includes the ICC in Maryland, and portions of the Virginia beltway and Shirley highway as managed facilities, with time-of-day tolls used to ensure that a high level of service is maintained throughout the day. References 10 and 17 document these procedures.

Ozone season and wintertime CO pollutants are reported for an average weekday (tons per day). However PM_{2.5} pollutants are reported using <u>annual</u> totals, which also requires the application of seasonal travel adjustment factors. Since seasonal travel totals have to include weekend travel as well as weekday travel, it was necessary to prepare adjustment factors to represent ADT occurring in each season of the year. The lower table in Exhibit 10 presents the seasonal adjustment factor necessary to develop ADT VMT for each season.

Network Development

Work on this task began last winter with the request for project inputs to the 2011 CLRP. All project submissions were reviewed and organized by DTP staff into transportation networks for appropriate forecast years, according to the project's completion date as estimated by the programming agency. The TPB approved the final project inputs at its March meeting.

In this air quality conformity assessment the definition of what constitutes a "regionally significant" project was changed. In the past, any project that changed any link in the regional highway or transit network was considered "regionally significant". The new definition maintains the same threshold for "regional significant" as in the past, but accounts for the finer-grain zone system and more detailed street base.

Summaries of key assumptions for each forecast year are contained as Exhibits 4 - 6. Exhibit 4 shows major transit elements. Exhibit 5 shows coded HOV & HOT improvements. Exhibit 6 presents mileage summaries for the highway system, according to LOV and HOV/HOT lane miles, and for the rail transit system.

These projects, summarized by state, agency, project characteristics and completion date are contained as Appendix B to this report. The list contains transit, highway, and HOV/HOT projects. Each project submission was reviewed and, where appropriate, coded into gravity model, modal choice and assignment networks. In many cases the project inputs could not be coded into a regional network since such projects did not involve changes in capacity (e.g., transit operating assistance, highway rehabilitation, bridge reconstruction) or were too small to show up at the regional level (e.g., intersection improvements, improvements to a facility which is not contained in the regional networks).

The COG modeled area includes counties outside the MSA to enable better simulation results within the MSA. Project inputs from these outer counties are provided by their respective MPOs, state DOTs, or county DOTs, and are coded, when appropriate, into the highway and transit networks. While travel demand estimates include all counties in the modeled area, emissions estimates are only tabulated for the defined nonattainment area for each pollutant. As stated above, the modeled area, and the nonattainment areas for each pollutant analyzed, are shown in Exhibit 1.

EXHIBIT 4

MAJOR TRANSIT IMPROVEMENTS FROM 2002 BASE

	SERVICE	LIMIT
2002:		
	MARC	Frederick to Pt. of Rocks
2016:		SAME AS 2002, PLUS
		SAIVIE AS 2002, FLOS
	Metrorail	Addison Road to Largo
	Metrorail	NY Avenue Station
	MetroRail / Marc	Silver Spring Intermodal Transit Facility/Phase II
	Metrorail	Dulles Corridor (East Falls Church to VA 772)
	Streetcar	Anacostia Streetcar Phase I (Firth Sterling/S. Capitol St. to Howard Rd/MLK Jr. Ave.)
	Streetcar	Anacostia Streetcar Phase II (Howard Rd/MLK Jr. Ave. SE to Good Hope Rd/MLK Jr. Ave. SE)
	Streetcar	H St. / Benning Rd Streetcar (Union Station to 45th Street/Benning Road Metro)
	Streetcar	Columbia Pike (Skyline Center to Pentagon City)
	Transitway	K St. (Mt. Vernon Sq./9th St. NW to Wash. Circle/ 23rd St. NW)
	VRE	Cherry Hill Commuter Rail Station
	Bus	Georgia Avenue Rapid Bus (Eastern Ave./Silver Spring Metro Station to Archives Navy Memorial Metro Station)
	Bus	Pennsylvania Avenue Rapid Bus (Archives Navy Memorial Metro Station to Naylor Rd Metro Station)
	Bus	ICC Corridor Bus Improvements

EXHIBIT 4

MAJOR TRANSIT IMPROVEMENTS FROM 2002 BASE

	SERVICE	LIMIT
	Bus	New and Modified Service for Beltway HOT lanes-2013 level
	Busway	Crystal City/Potomac Yards Busway (Glebe Road Ext. to Crystal City Metro)
	Busway	Potomac Yard Transit Bus Lanes (Four Mile Run to Braddock Road)
2020:		
		SAME AS 2016, PLUS
	Metrorail	Potomac Yards Station
	Rail	Purple Line Transitway (Bethesda to New Carrollton)
	Corridor Cities Transitway	Shady Grove to Comsat
	Streetcar	Route 1 Corridor (Vicinity of Glebe Rd. ExtCity/County line to Pentagon City Metro Station)
	VRE	Manassas & Fredericksburg lines Service Improvements
	Bus	New and Modified Service for Beltway HOT lanes-2020 level
2030		
		SAME AS 2020, PLUS
	Bus	New and Modified Service for Beltway HOT lanes-2030 level

EXHIBIT 5 09/20/2011

CODED HOV/HOT IMPROVEMENTS FROM 2002 BASE:

	FACILITY	IMPROVEMENT	LIMITS	DEFINITION
2002:				
	US 50	Construct	E. of US 301 / MD 3 to E. of I-95/I-495	2+
2016:				
	I-66	Widen	SAME AS 2002, PLUS VA 234 (Prince Wm. Parkway) to VA 234 Business (Sudley Road)	2+
	I-95 Wilson Bridge	Construct	US 1 (VA) to MD 210	2+
	I-66	Widen	US 29 (Gainesville) to VA 234 (Prince William Parkway)	2+
	I-95/I-395	Widen/Construct	Approx. 2 mi. N of I-495 to VA 17 (Spotsylvania Co. exit 126)	3+
	I-495	Construct	1mi.east of I-395/I-95 to S. of George Washington Parkway (HOT)	3+
2020:				
	I-66	Widen	SAME AS 2016, PLUS US 15 to US 29 (Gainesville)	3+
2030:			CAME AC 2020 PLUC	
	I-270	Const./Re-sign	SAME AS 2020, PLUS Shady Grove Metro to Biggs Ford Road	3+
	I-495	Construct	American Legion Bridge to S. of George Washington Parkway (HOT)	3+
	Fran./Sprfld. Pkwy.	Construct	Ffx. County Pkwy. to Frontier Drive	3+
	Fran./Sprfld. Pkwy.	Upgrade	VA 638 (Rolling Rd.) to VA 617 (Backlick Rd.)	3+
2040:			SAME AS 2030, PLUS	
	Fairfax Co. Pkwy	Construct	VA 267 (Dulles Toll Rd) to I-66	3+

NOTE: All HOV facilites assumed HOV 3+ by 2020

EXHIBIT 6 RAIL AND ROAD MILES

(modeled area)

	LOV	HOV/HOT	METRORAIL	MD/DC*	VA**
				NON-METRO	NON-METRO
	LANE MILES	LANE MILES	MILES	RAIL MILES	RAIL MILES
	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
2002	21,711	187	103	116	95
2016	23,061	341	131	131	100
2020	23,649	341	131	169	100
2030	24,272	372	131	169	100
2040	24,522	372	131	169	100

^{*} Includes MARC, Purple Line Transitway, and Corridor Cities Transitway in Maryland, and Anacostia, H St., & Benning Rd. Street Cars in the District of Columbia

^{**} Includes VRE and Arlington Streetcar (Columbia Pike)

Transportation/Land Use Interaction

The COG Board approved Round 8.0 Cooperative Forecasts in November, 2010. The forecasts reflect both the small area land use distributions throughout the Washington region, and also the latest planning assumptions for areas that are outside the Washington region. When the Baltimore Metropolitan Council recently updated its land use data, COG included those data in a new round of cooperative forecasts, Round 8.0a. The new data were used for the conformity analysis of the 2011 CLRP. Exhibit 7 presents Round 8.0a household data for each of the years in the conformity assessment. Exhibit 8 presents similar data for the employment assumptions. The employment data reflect census adjustments (see Reference 23).

Trip Table Development

After coding the networks, staff proceeded with the trip generation and trip distribution steps within the travel forecasting process. The travel modeling process utilized in this work represents a trip generation and distribution model set based upon results obtained through analysis of the 2007/2008 Household Travel Survey, WMATA on-board transit surveys, and 2007 HPMS traffic count data in model calibration. Separate person trip tables were prepared for home based work and nonwork purposes (for input to the mode choice modeling process) and for all other travel, i.e., taxi, visitor/tourist, school and through trips. The work and nonwork person trip tables were input to the mode choice process, and the output vehicle trip tables from that process were subsequently merged with the other trip purposes for each forecast year and used in traffic Capacity restrained speeds which are output from the traffic assignment process were then fed back into trip distribution and iterations of the entire process occur until equilibrium travel time conditions are achieved throughout the modeling process. Summary mode choice results are shown in Exhibit 9. Summary results from the last iteration of the process, for all trip purposes, are shown in the upper table of Exhibit 10. This table shows vehicle trips in the region increasing by 43%, from 14.8 million in 2002 to 21.2 million in the year 2040. As mentioned above, the lower table in Exhibit 10 presents the seasonal adjustment factor necessary to convert AAWDT to ADT for each season, for use in emissions calculations.

EXHIBIT 7
HOUSEHOLD DATA

MSA:	2002	2016	2020	2030	2040	2040/2002
D.C.	250368	289210	296765	317235	338980	1.35
MONTGOMERY	333721	381202	398000	438000	463000	1.39
PR.GEORGES	293125	321489	331066	348806	360110	1.23
ARLINGTON	89022	109350	114382	121341	124207	1.40
ALEXANDRIA	63658	69544	73678	82884	90555	1.42
FAIRFAX	373857	423440	442272	479839	502041	1.34
LOUDOUN	70936	115614	127409	150209	158299	2.23
PR. WILLIAM	120216	175818	188801	214454	231495	1.93
FREDERICK	73839	97562	104139	123125	147529	2.00
CHARLES	43963	58877	64299	75847	85901	1.95
STAFFORD	31991	53467	59037	72712	86205	2.69
CALVERT	27231	34648	36027	38348	40301	1.48
SUBTOTAL	1,771,927	2,130,221	2,235,875	2,462,800	2,628,623	1.48
ADDITIONAL COUNTIES:						
HOWARD	94669	119279	125600	135486	137773	1.46
ANNE ARUNDEL	184157	212270	217782	229371	234332	1.27
CARROLL	55264	66475	69614	76111	81464	1.47
FREDERICKSBURG (VA)	8372	11852	12462	13971	15469	1.85
JEFFERSON	17015	23743	25957	33075	41527	2.44
N. SPOTSYLVANIA	26738	44243	48536	58796	68631	2.57
FAUQUIER	21446	31932	35730	47502	63154	2.94
CLARKE	5162	6483	6722	7487	8308	1.61
K. GEORGE	6698	10358	11411	14030	16659	2.49
ST. MARY'S	32358	45406	49352	58143	66509	2.06
SUBTOTAL	451,879	572,041	603,166	673,972	733,826	1.62
TOTAL	2,223,806	2,702,262	2,839,041	3,136,772	3,362,449	1.51

SOURCE:

MWCOG Round 8.0a Cooperative Forecasts
BMC Round 7-C Cooperative Forecasts
GWRC/FAMPO Regional Demographic Control Forecasts for 2035 CLRP, June 2008
Tri-County Council for Southern Maryland data for Calvert, Charles and St. Mary's

EXHIBIT 8
EMPLOYMENT DATA

MSA:	2002	2016	2020	2030	2040	2040/2002
D.C.	746305	831978	868256	923988	977163	1.31
MONTGOMERY	483874	548995	585000	673000	723000	1.49
PR.GEORGES	342830	372836	383635	419635	474635	1.38
ARLINGTON	187611	223332	243835	268606	281120	1.50
ALEXANDRIA	95861	118958	124115	142257	160447	1.67
FAIRFAX	624887	738102	788508	863803	917484	1.47
LOUDOUN	104548	175340	206458	257195	285415	2.73
PR. WILLIAM	127700	171087	188769	232597	280697	2.20
FREDERICK	106624	152823	158278	167257	175109	1.64
CHARLES	48557	69099	71731	77537	83138	1.71
STAFFORD	32668	49828	54627	65101	74224	2.27
CALVERT	26637	41736	44457	47159	48955	1.84
SUBTOTAL	2,928,102	3,494,114	3,717,669	4,138,135	4,481,387	1.53
ADDITIONAL COUNTIES.						
ADDITIONAL COUNTIES:	4.40770	400044	404077	224460	024002	4.05
HOWARD	140776	183911	194977	221168	231902	
ANNE ARUNDEL	260720 57356	313692	329042 70813	358320	370904	1.42
CARROLL		69854		72456	74090	1.29
FREDERICKSBURG (VA) JEFFERSON	23746 17010	32013 24093	34848 26115	41034 30675	46360 35780	1.95 2.10
	29775		43578	51966		
N. SPOTSYLVANIA	29775	39756 31551	35762		59240 52578	1.99 2.36
FAUQUIER			7685	43360		1.57
CLARKE	6077	7328		8550	9518	
K. GEORGE ST. MARY'S	9345 49613	11732 64715	13150 67268	16390 71969	19339 75862	2.07 1.53
• • • • • • • • • • • • • • • • • • • •						
SUBTOTAL	616,726	778,645	823,238	915,888	975,573	
TOTAL	3,544,828	4,272,759	4,540,907	5,054,023	5,456,960	1.54

SOURCE:

MWCOG Round 8.0a Cooperative Forecasts
BMC Round 7-C Cooperative Forecasts
GWRC/FAMPO Regional Demographic Control Forecasts for 2035 CLRP, June 2008
Tri-County Council for Southern Maryland data for Calvert, Charles and St. Mary's

NOTE: Includes Census Adjustment

EXHIBIT 9A

2011 CLRP AIR QUALITY CONFORMITY DAILY REGIONAL HOME BASED WORK PURPOSE MODE ANALYSIS BY YEAR (Based on Mode Choice Output - Final Iteration)

	HBW MOTORIZED	TOTAL HBW	HBW SINGLE OCCUPANT	HBW MULTIPLE OCCUPANT	TOTAL HBW	HBW	HBW	HBW TRANSIT
YEAR	PERSON	AUTO PSN	AUTO PSN	AUTO PSN	AUTO DRV	CAR OCC.	TRANSIT	(%)
2002	3,416,996	2,691,684	2,298,111	393,573	2,474,699	1.09	725,312	21.23%
2016	4,112,907	3,248,015	2,747,726	500,289	2,967,341	1.09	864,892	21.03%
2020	4,310,654	3,388,274	2,830,582	557,692	3,061,795	1.11	922,380	21.40%
2030	4,745,051	3,753,714	3,085,649	668,064	3,353,127	1.12	991,337	20.89%
2040	5,077,318	4,025,382	3,281,382	744,000	3,575,200	1.13	1,051,936	20.72%

EXHIBIT 9B

2011 CLRP AIR QUALITY CONFORMITY DAILY REGIONAL ANALYSIS BY YEAR FOR ALL TRIP PURPOSES (Based on Mode Choice Output - Final Iteration)

	TOTAL MOTORIZED	TOTAL	SINGLE OCCUPANT	MULTIPLE OCCUPANT	TOTAL	TOTAL	TOTAL	TRANSIT
YEAR	PERSON	AUTO PSN	AUTO PSN	AUTO PSN	AUTO DRV	CAR OCC.	TRANSIT	(%)
2002	16,937,717	15,845,227	8,292,091	7,553,136	11,348,559	1.40	1,092,489	6.45%
2016	20,156,068	18,860,782	9,691,146	9,169,636	13,378,413	1.41	1,295,286	6.43%
2020	21,044,484	19,660,720	10,002,198	9,658,522	13,867,397	1.42	1,383,764	6.58%
2030	22,985,308	21,494,994	10,761,538	10,733,456	15,032,911	1.43	1,490,314	6.48%
2040	24,456,141	22,879,278	11,340,598	11,538,680	15,917,035	1.44	1,576,862	6.45%

*Note: Starting in 2020, all HOV facilities are HOV3+

EXHIBIT 10

2011 CLRP AIR QUALITY CONFORMITY MODELED AREA TRIPS AND VEHICLE MILES TRAVELED (000's) AVERAGE WEEKDAY TRAFFIC (AWDT) (Based on Final Iteration)

	WORK AND	TRUCKS	MISC + THRU	COMMERCIAL	TOTAL	TOTAL
YEAR	NON-WORK AUTO DRV	(Med + Hvy)	TRIPS	VEHICLES	VEH. TRIPS	VMT
2002	12,189,746	656,922	724,160	1,252,029	14,822,857	149,388,892
2016	14,431,623	759,480	891,964	1,441,057	17,524,124	176,980,133
2020	14,990,638	793,853	944,212	1,512,234	18,240,937	184,427,424
2030	16,283,785	865,458	1,061,848	1,651,593	19,862,684	201,999,848
2040	17,312,204	921,343	1,170,905	1,764,303	21,168,755	217,182,430

Adjustment Factors to Convert AAWDT to Appropriate Season:

Ozone Season AWDT: 1.03

Winter Season AWDT: 0.96

PM_{2.5} Annual:

Season (ADT)	Factor		
Season 1 (Jan- Apr)	0.9177		
Season 2 (May- Sept)	0.9751		
Season 3 (Oct- Dec)	0.9212		

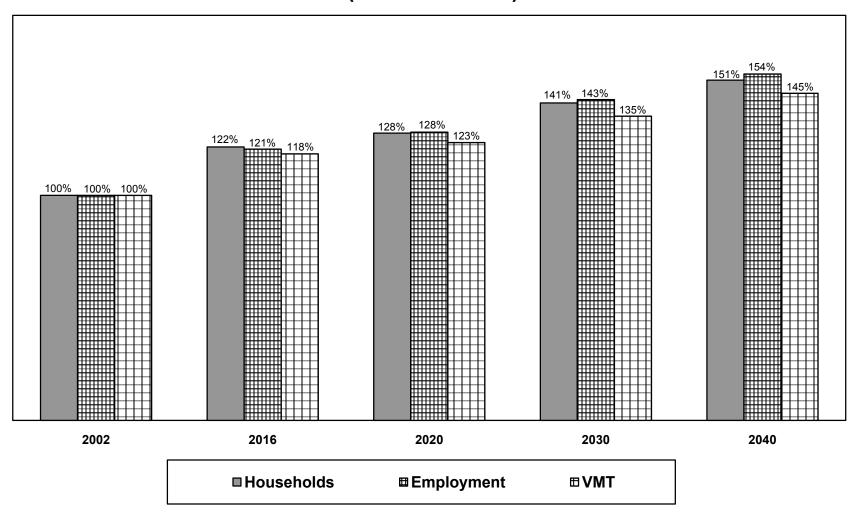
NOTE: AWDT reflects a five day average ADT reflects a seven day average

Modal Choice

Transit networks were coded for all forecast years and mode choice analyses were executed based upon specific transit representations for 2002, 2016, 2020, 2030, and 2040. Transit capacity constraint procedures, in which 2020 constrains later years (Reference 22), were executed for the 2030 and 2040 forecast years.

Transit fares include the latest assumptions for all coded transit service. Transit fares reflect policies such as price differentials for those who use SmarTrip vs. those who use paper fare cards or cash, and surcharges for those who travel in the peak-of-the-peak. The 2011 CLRP shows growth in transit trips, with approximately a 44% increase in transit travel from 2002 to the year 2040.

Traffic Assignment


Following the preparation of total vehicle travel demands, the resulting table was applied in traffic assignment to estimate vehicle loadings on each facility in the region. After multiple iterations of the process using the speed feedback procedures, this concluded the traditional travel forecasting elements of the conformity analysis. VMT summaries, showing a 45% increase from 2002 to 2040, are contained in Exhibit 10. Exhibit 11 shows percentage changes in vehicle miles traveled (VMT) through time compared with percentage changes in households and jobs.

VI. EMISSIONS

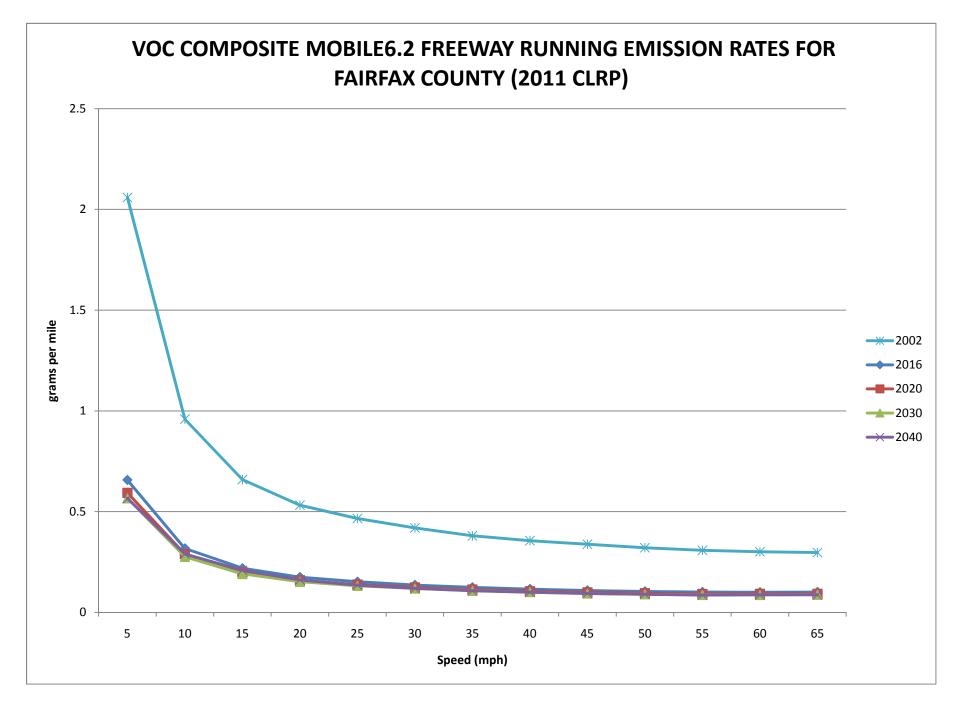
Rates

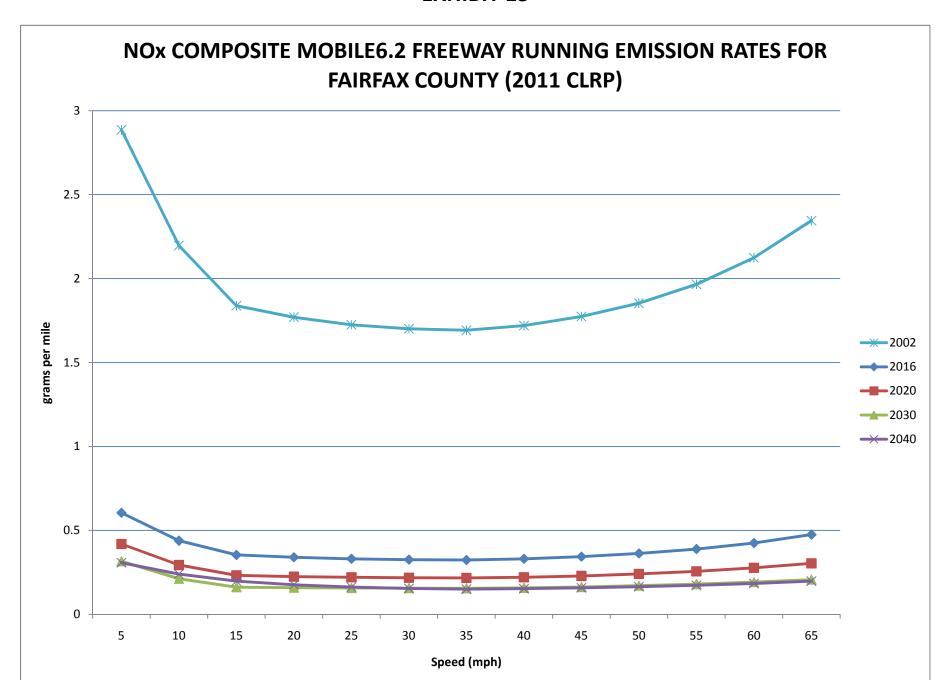
In conjunction with COG's Department of Environmental Programs staff and with consultant assistance of E.H. Pechan and Associates, Transportation Planning staff developed mobile source emission factors for PM_{2.5} pollutants, wintertime CO, and ozone precursors. These factors represented the rates of volatile organic compounds, carbon monoxide, direct particles, and nitrogen oxides produced by cars and trucks on the highway system. This work involved the application of EPA's MOBILE6.2 model, using vehicular and other characteristics specific to the Washington region, to develop factors which would be applied to the travel estimates associated with each forecast year. The model estimates the pollution rates based upon a variety of different vehicle characteristics (vehicle age, type, weight, fuel, speed, inspection/maintenance program) and environmental characteristics (ambient temperature, humidity). This year's emission factors include the use of 2008 vehicle registration data, as well as the Maryland Department of the Environment's (MDE) data reflecting the adoption of Phase I of California's Low-Emission Vehicle II (LEV II) program in Maryland.

EXHIBIT 11
DAILY VMT vs CHANGES IN LAND ACTIVITY
(Modeled Area)

The rates for each pollutant, shown using Fairfax County data as an illustration in Exhibits 12 and 13 for VOC and NOx, respectively, were developed following execution of the model in one mph speed increments, by jurisdiction, for each analysis year. The charts show significantly reduced rates through time, primarily due to the impacts of having cleaner vehicles in the fleet. Exhibit 14 presents direct PM_{2.5} emissions rates through time, by season; data are arrayed in a bar chart since these emissions rates do not vary by vehicle speed.

The mobile emissions post processor, which is a series of programs that uses travel demand and emission rates to calculate mobile source emissions estimates, was updated in the following ways:


- Ozone season factor, used to convert average daily to the ozone season conditions (changed from 1.05 to 1.03)
- Peaking characteristics (to account for the four-hour modeled PM peak period in Version 2.3, instead of three in Version 2.2)
- Hourly vehicle distribution, resulting in different hourly link level volumes, V/C ratios and speeds
- Local VMT modeling


Appendix D documents the input assumptions and Appendix E documents the emission factor results of this work.

Calculations

While travel demand forecasts are prepared for the modeled area, emissions summaries are calculated for each pollutant's specified nonattainment area (or maintenance area, in the case of winter CO). Each of these planning areas is shown in Exhibit 1.

Two types of calculations are made for each pollutant. The first involves applying emissions rates directly to the travel demand results, to yield origin, network running, and destination emissions. The second deals with preparing estimates of emissions associated with diurnals, resting losses, auto access to transit, and buses. These are addressed on an off-line basis since they are not directly derived from the TPB travel demand modeling process. The technical methods associated with performing these off-line assessments are contained in Appendices F to H. Exhibit 3 provides an overview of the analysis structure and emissions calculation process and also identifies where each calculation takes place.

As mentioned earlier, each pollutant is assessed based on varying criteria. The approved mobile emissions budget for ozone season VOC is 70.8 tons/day, and for NOx is 159.8 tons/day. With no approved mobile budgets for PM_{2.5} pollutants, EPA allows for an assessment that shows emissions in "action" scenarios are no greater than those in a 2002 base. This criterion was established and applied, with the concurrence of MWAQC, in all PM_{2.5} conformity assessments done to date. The region is in maintenance for mobile source wintertime CO and is required to show that pollutant levels do not exceed the approved budget of 1671.5 tons/day.

Mobile Emissions Inventories

Prior to calculation of daily mobile source emissions, the above (AAWDT) travel forecasts were first factored by seasonal adjustments (a 1.03 ozone season factor or a 0.96 winter season factor) to yield VMT appropriate to each season being analyzed. Staff then applied the appropriate Mobile6.2 emissions factors to the travel demand forecasts to prepare mobile source emissions inventories for each forecast year. Exhibit 15 shows, for purposes of illustration, emissions for each jurisdiction in the 8-hour ozone nonattainment area. The categories of emissions also include the additional elements of: running emissions on local streets, and vehicle related emissions for diurnals and resting loss; and regional estimates of auto access emissions, and bus emissions.

The emissions results for ozone season pollutants are summarized in Exhibit 16. This chart contains VOC and NOx emissions for network and off-network components for each analysis year, and also compares totals against emissions budgets where relevant. The table shows dramatic reductions throughout time. 2040 VOC and NOx emissions represent about 13 percent and less than 10 percent, respectively, of their 1990 levels. The results reflect the impact of the cleaner fleet (continuing fleet turnover) and related programs, with slowing VMT growth rates through time. Net emissions for each forecast year are shown as the bottom line of the summary table. Both VOC and NOx emissions are within the mobile budgets for all forecast years.

Exhibit 15

Eight-Hour Ozone Area

2011 CLRP

DAILY MOBILE SOURCE EMISSIONS BY JURISDICTION AND TRIP CYCLE

Year: 2016 VOC TONS PER DAY

JURIS	ORIGIN	RUNI	NING	DESTINATION	VEHICLE EMISS		TOTAL CYCLE
		NETWORK	LOCAL		DIURNAL	REST. LOSS	OTOLL
District of Columbia	0.60	2.04	0.69	0.55	0.07	0.32	4.26
Montgomery	0.98	3.50	0.47	0.91	0.22	1.01	7.09
Prince George's	0.82	3.90	0.65	0.80	0.20	1.00	7.38
Calvert	0.12	0.32	0.06	0.12	0.04	0.19	0.85
Charles	0.19	0.55	0.10	0.20	0.05	0.25	1.35
Frederick	0.33	1.47	0.25	0.34	0.08	0.41	2.89
Arlington	0.26	0.74	0.12	0.22	0.03	0.16	1.53
Fairfax	1.24	4.55	0.54	1.00	0.22	1.03	8.58
Loudoun	0.46	1.33	0.22	0.29	0.07	0.32	2.70
Pr.William	0.51	1.61	0.37	0.42	0.09	0.47	3.47
City of Alexandria	0.16	0.41	0.05	0.14	0.03	0.14	0.92
Sub Total	5.68	20.44	3.52	4.98	1.10	5.30	41.02
AUTO ACCESS							0.47
TRANSIT BUS							0.15
SCHOOL BUS							0.24
TOTAL EMISSIONS							41.88

EXHIBIT 16 11/08/11

AIR QUALITY CONFORMITY

Summary Table - 8-Hour Ozone Nonattainment Area

Mobile Source Emissions Inventories for 2011 CLRP

(Tons/Day)

	20	02	20	16	20	20	20	30	20	40
	VOC	NOx	VOC	NOx	VOC	NOx	VOC	NOx	VOC	NOx
I Network										
Start	18.6640	9.4570	5.6780	2.8520	4.8820	2.0560	4.6290	1.6220	4.73	1.65
Running	54.7220	219.0150	20.4350	53.8700	18.7690	36.3390	19.4750	27.1900	21.232	27.876
Soak	8.5290		4.9810		3.8800		3.2250		3.342	
II Off-Network										
Diurnal	2.3600		1.1046		0.8819		0.6385		0.69514	
Resting Loss	11.9300		5.3034		3.6598		2.5344		2.80516	
Local Roads	9.9070	11.3920	3.5190	3.4130	3.1830	2.5220	3.2630	2.1940	3.476	2.308
School Buses	0.4200	5.9700	0.2425	2.5389	0.2152	1.6817	0.1675	0.4888	0.163	0.2663
Transit Buses	0.3800	6.5115	0.1461	1.8584	0.1300	1.0310	0.1305	0.3645	0.1305	0.2753
Auto Access	1.2917	1.5867	0.4675	0.4488	0.4057	0.3502	0.3840	0.3104	0.40354	0.3256
Total	108.2037	253.9322	41.8771	64.9811	36.0066	43.9799	34.4468	32.1697	36.9773	32.7012
TCMs Net Emissions	-0.36 107.84	-0.078 253.85	-0.18 41.70	-0.41 64.58	-0.13 35.88	-0.28 43.70	-0.13 34.32	-0.27 31.90	-0.13 36.85	-0.27 32.43
Mobile Emissions Budgets:	107.64 255.65		66.50	144.30	66.50	144.30	66.50	144.30	66.50	144.30
Budget Adherence Margin:			24.80	79.72	30.62	100.60	32.18	112.40	29.65	111.87

To develop the yearly total PM_{2.5} emissions, travel and emissions were estimated throughout the year by applying (three) seasonal factors to the primary travel data, followed by applying emissions rates for each of the seasons, and summarizing to obtain yearly totals. Direct PM_{2.5} and precursor NOx emissions are shown in Exhibits 17 and 18 and exhibit similar dramatic reductions through time despite the steady increases in vehicle trips and VMT in the forecast years. These reductions are largely attributable to Tier II vehicle standards, cleaner fuels, and the heavy duty engine rule, and will continue to generate additional emissions reductions through time as fleet turnover replaces older vehicles / truck engines with much cleaner ones.

Wintertime CO emissions are shown in Exhibit 19. These same general trends through time of dramatic emissions reductions are also seen here; levels are easily within the CO emissions budget level.

Exhibits 20 and 21 present the VOC and NOx results in a graphical format, which perhaps illustrates even better the steady and significant downward trends occurring in both VOC and NOx emissions. Historical emissions reductions from the clean air act amendments 1990 base have been well documented in the past (especially VOC emissions which dropped from about 295 tons per day (T/D) to about 108 T/D in 2002, but NOx emissions have also dropped by more than 100 T/D from 367 to 254 T/D). From 2002 to year 2016, VOC emissions will be cut further, more than in half, from 108 T/D to about 42 T/D, and NOx emissions experience even greater reductions, from 254 T/D to 65 T/D. Exhibit 22 presents precursor NOx results. Exhibit 23 presents direct PM_{2.5} results. The data show emissions much lower than base year 2002 conditions, as well as being below the budget levels in all cases.

Exhibit 24 portrays similar information for wintertime CO conditions. These exhibits show that the mobile source inventories for the CLRP, for each pollutant in each analysis year and scenario, adhere to each relevant emissions budget.

The data in exhibits 16 - 24 show that estimated emissions are either within the mobile source emissions budget for each pollutant (including $PM_{2.5}$ budgets awaiting EPA's approval actions), or meet emissions reduction requirements in the case of $PM_{2.5}$ pollutants. In recognition of the fact that estimated emissions are within the mobile source budget for each pollutant, no additional transportation emissions reduction measures are required to demonstrate conformity.

EXHIBIT 17 AIR QUALITY CONFORMITY SUMMARY TABLE

Direct PM_{2.5} Emissions Mobile Source Emissions Inventories for 2011 CLRP (Tons)

							Direc	t PM _{2.5}				
2			20	002	20	016	20	020	20	030	20	040
AP		Days	Daily	seasonal	Daily	seasonal	Daily	seasonal	Daily	seasonal	Daily	seasonal
Į	- 7 - 7			490.32	1.82	217.92	1.70	204.48	1.76	210.72	1.85	222.00
₹	Local Roads	120	0.22			17.52	0.15	17.64	0.16	18.84	0.17	20.16
1	School Buses	76	0.33	25.08	0.09	7.19	0.03	2.17	0.02	1.30	0.01	1.02
Z	Transit Buses	120	0.25	30.00	0.03	3.65	0.01	1.58	0.01	1.18	0.01	1.10
SO	Auto Access	83	0.01	0.83	0.01	0.81	0.01	0.86	0.01	0.93	0.01	0.98
∥ ∢	Total (Daily)		4.89				1.90		1.95		-	
SE	TOTAL			572.27		247.09		226.73		232.97		245.26

							Direc	ct PM _{2.5}				
SEP)			20	002	2	016	20	020	20	030	20)40
N.		Days	Daily	seasonal	Daily	seasonal	Daily	seasonal	Daily	seasonal	Daily	seasonal
≽	- 7 7			614.60	1.91	291.77	1.80	275.25	1.86	285.19	1.98	302.5
(MA	Local Roads	153	0.21	1 32.13 0.15		23.41	0.16	23.72	0.17	25.55	0.18	27.2
2 (School Buses	83	0.32			7.26	0.03	2.25	0.02	1.39	0.01	1.12
z	Transit Buses	153	0.25	38.25	0.03	4.41	0.01	1.96	0.01	1.48	0.01	1.40
SO	Auto Access	107	0.01	1.07	0.01	1.12	0.01	1.19	0.01	1.28	0.01	1.36
	Total (Daily)		4.81		2.19		2.01		2.07		-	
SEA	TOTAL			712.61		327.97		304.36		314.90		333.59

							Direc	ct PM _{2.5}				
ပ			20	002	20	016	20	020	20	030	20	040
DEC)		Days	Daily	seasonal	Daily	seasonal	Daily	seasonal	Daily	seasonal	Daily	seasonal
∥ <u>∸</u>	Major Roads	92	3.85	354.29	1.78	163.30	1.69	155.30	1.74	160.17	1.87	171.95
00	Local Roads	92	0.21	19.32	0.15	13.43	0.15	13.43	0.16	14.54	0.17	15.46
3 (6	School Buses	55	0.27			3.26	0.03	1.49	0.01	0.74	0.01	0.74
z	Transit Buses	92	0.22	20.24	0.02	1.96	0.01	1.16	0.01	0.84	0.01	0.84
SO	Auto Access	61	0.01	0.61	0.01	0.60	0.01	0.64	0.01	0.69	0.01	0.73
■ ◀	Total (Daily)		4.56				1.88		1.93			
SE	TOTAL			409.31		182.55	•	172.01		176.98		189.71

ANNUAL					
TOTAL	1,694.19	757.61	703.10	724.84	768.57

Mobile Emissions Budgets: 1105.4
Budget Adherence Margin: 347.79

EXHIBIT 18 AIR QUALITY CONFORMITY SUMMARY TABLE

PM_{2.5} Precursor Emissions: NOx Mobile Source Emissions Inventories for 2011 CLRP (Tons)

							Precurs	or NOx				
PR)			20	02	20	16	20	20	20	30	20	40
Į₹		Days	Daily	seasonal	Daily	seasonal	Daily	seasonal	Daily	seasonal	Daily	seasonal
A A	Major Roads-Starts	120	15.65	1877.40	4.33	519.24	3.00	360.12	2.28	273.96	2.30	276.36
	Major Roads-VMT	120	253.10	30372.48	57.33	6879.36	38.21	4585.08	28.44	3412.32	29.18	3501.48
-	Local Roads	120	14.48	1737.60	3.67	440.52	2.60	312.24	2.18	261.72	2.30	276.12
NO	School Buses	76	4.86	369.36	2.22	168.82	1.48	112.33	0.41	31.24	0.21	16.31
S	Transit Buses	120	6.04	724.80	1.84	220.81	1.00	120.04	0.34	40.95	0.25	30.36
≰	Auto Access	83	2.09	173.47	0.35	29.11	0.26	21.72	0.22	18.66	0.31	26.02
SE,	Total (Daily)		296.22				46.55		33.88			
	SEASON 1 TOTAL			35,255.11		8,257.86	·	5,511.53		4,038.86		4,126.65

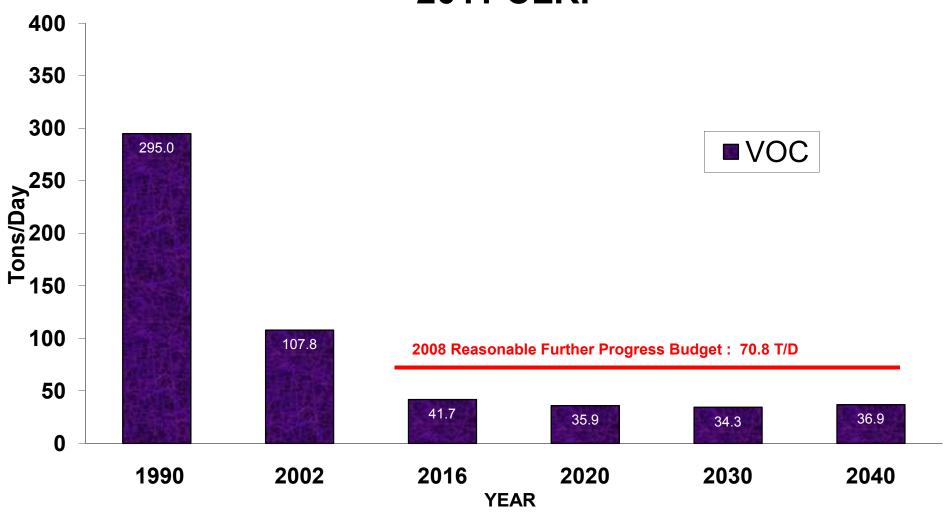
							Precurs	or NOx				
EP)			20	02	20	16	20	20	20	30	20	40
ış-		Days	Daily	seasonal	Daily	seasonal	Daily	seasonal	Daily	seasonal	Daily	seasonal
\	Major Roads-Starts	153	10.32	1578.50	3.13	478.89	2.21	337.67	1.71	262.24	1.73	265.00
È	Major Roads-VMT	153	216.30	33094.36	50.45	7719.31	33.79	5169.56	25.10	3840.45	25.97	3972.95
2 (Local Roads	153	11.40			471.24	2.24	343.33	1.92	294.07	2.03	311.05
Z	School Buses	83	4.81	399.23	2.05	169.82	1.36	112.49	0.39	32.70	0.21	17.81
SO	Transit Buses	153	5.99	916.47	1.73	264.50	0.95	145.01	0.34	51.27	0.25	38.71
A A	Auto Access	107	1.48	158.36	0.27	29.15	0.21	22.38	0.18	19.78	0.26	27.64
SE	Total (Daily)		250.30				40.75		29.65			
	SEASON 2 TOTAL			37,890.97		9,132.91		6,130.44		4,500.50		4,633.16

							Precurs	or NOx				
္ထ			20	02	20	16	20	20	20	30	20	40
ŌĒ		Days	Daily	seasonal	Daily	seasonal	Daily	seasonal	Daily	seasonal	Daily	seasonal
Ċ	Major Roads-Starts	92	14.52	1335.84	3.76	345.64	2.74	251.71	2.16	198.26	2.18	200.56
ĕ	Major Roads-VMT	92	237.16	21819.00	49.39	4543.60	34.82	3203.35	26.99	2483.36	28.52	2623.56
3 (Local Roads 9		13.66	1257.09	3.17	291.73	2.38	218.50	2.07	190.62	2.21	203.23
Z	School Buses	55	4.77	262.35	1.97	108.38	1.30	71.60	0.31	17.04	0.21	11.80
SON	Transit Buses	92	5.78	531.76	1.58	145.16	0.84	77.42	0.29	26.98	0.25	23.28
■ <	Auto Access	61	1.99	121.39	0.31	18.75	0.24	14.71	0.21	13.11	0.30	18.36
SE	Total (Daily)				60.17		42.31		32.04			
	SEASON 3 TOTAL		25,327.42			5,453.26		3,837.29		2,929.37		3,080.79

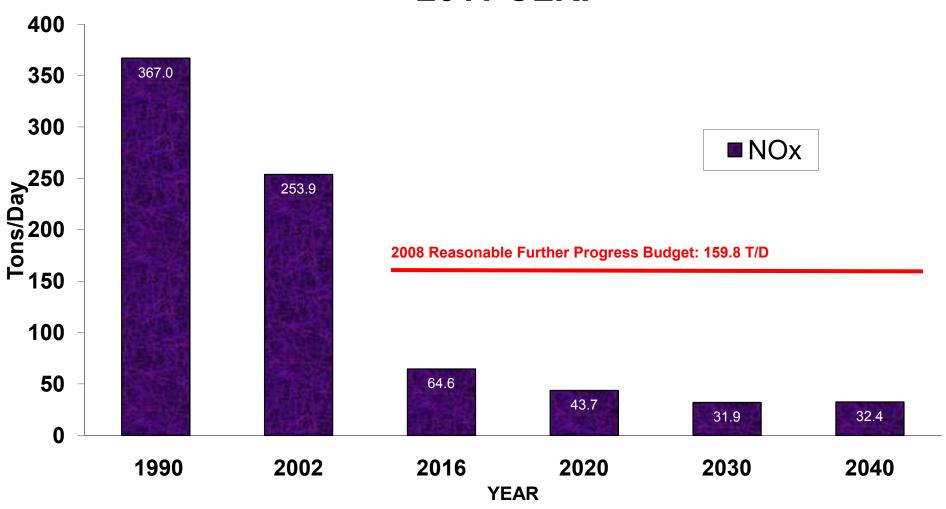
ANNUAL TOTAL	98,473.50	22,844.04	15,479.26	11,468.73	11,840.61

Mobile Emissions Budget: 51,359.90

Budget Adherence Margin: 28,515.86


EXHIBIT 19Summary Table

Mobile Source Emissions Inventories - Winter CO CO Maintenance Area for 2011 CLRP


(Tons/Day)

	1990	2016	2020	2030	2040
	Winter CO				
I Network					
Start	1051.80	216.22	209.92	214.66	220.40
Running	1403.80	262.86	251.33	256.94	270.34
II Off-Network					
Local Roads	97.90	24.30	23.55	24.30	25.57
School Buses	1.20	0.31	0.21	0.10	0.06
Transit Buses	3.50	0.56	0.28	0.16	0.14
Auto Access	31.30	10.75	10.67	11.06	11.70
TOTAL	2589.5	515.0	496.0	507.2	528.2
CO Budget		1671.50	1671.50	1671.50	1671.50

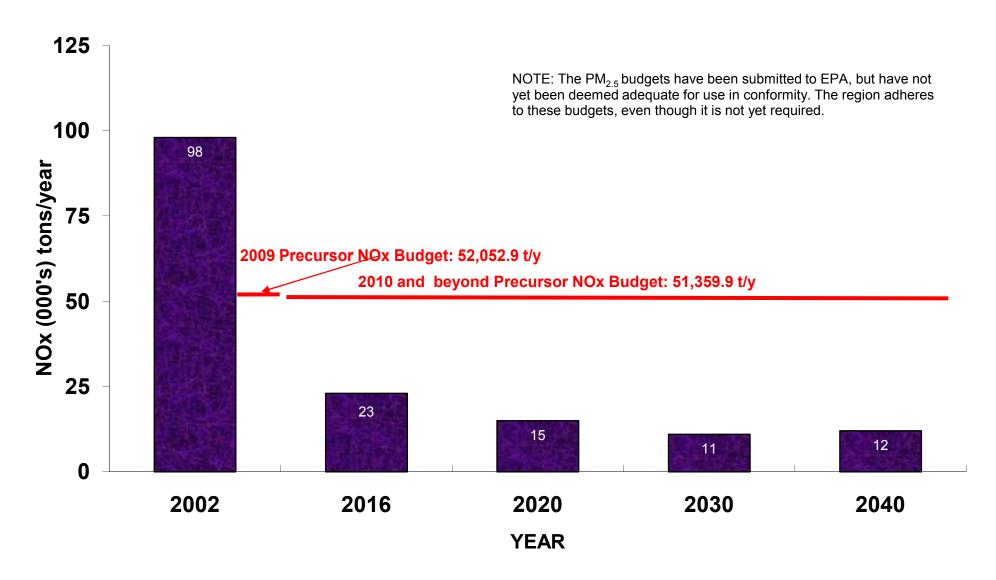

EXHIBIT 20 Mobile Source VOC Emissions for the 8-Hour Ozone Nonattainment Area 2011 CLRP

EXHIBIT 21 Mobile Source NOx Emissions for the 8-Hour Ozone Nonattainment Area 2011 CLRP

EXHIBIT 22 Mobile Source Emissions 2011 CLRP Precursor NOx

EXHIBIT 23 Mobile Source Emissions 2011 CLRP Direct PM_{2.5}

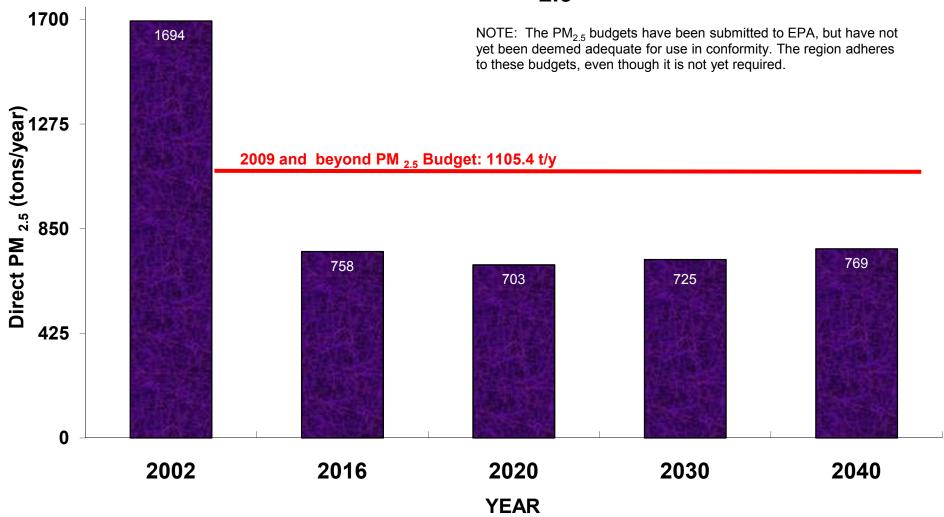
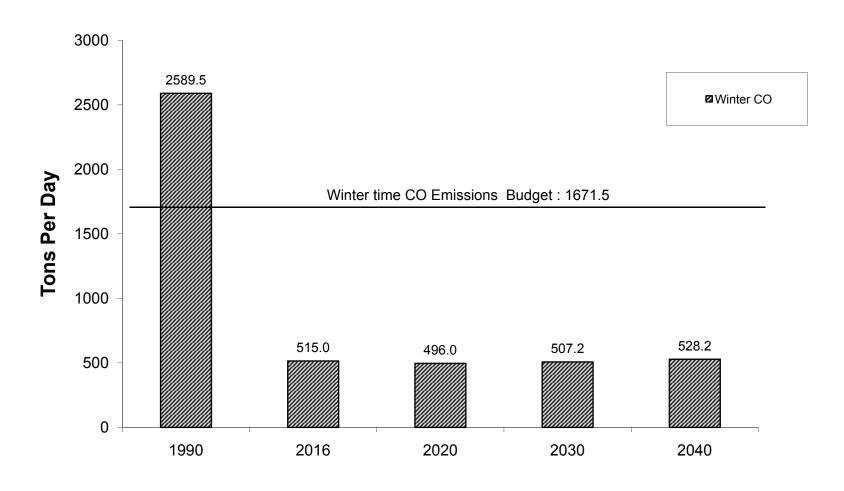



Exhibit 24
Mobile Source Winter CO Emissions
2011 CLRP CO Maintenance Area

Transportation Emissions Reduction Measures

The emissions inventory data contained in the previous summary tables reflect total mobile source network and off-network emissions. However, there are also emissions benefits associated with certain other transportation programs and projects. These benefits, estimated on an off-line basis, are also creditable in conformity analyses. Exhibit 25 represents a summary table of these transportation emissions reduction measures, or TERMs, which have been previously planned or programmed by the TPB. They are arrayed in a 'Tracking Sheet' format to document the implementation status of each, with part A of the table documenting ozone season and part B documenting PM_{2.5} pollutants. The summary result of these measures, shown as the bottom line for each section of the table, amounts to additional reductions in 2011 of better than 2 tons per day of VOC and almost 5 tons per day of NOx, and 18 and 898 tons per year of direct PM_{2.5} and precursor NOx, respectively. Only those projects which have been affirmed by the implementing agency as having been completed, or are on a realistic schedule towards implementation, are being credited in this emissions analysis. These summary tables were prepared following COG staff's review of implementation status reports prepared by programming agencies; the agency status reports are contained in Appendix I. Combining network and offnetwork emissions results shown in each summary table with the additional reductions from TERMs would further improve the emissions margins for each pollutant.

EXHIBIT 25

TERM TRACKING SHEET TRANSPORTATION EMISSION REDUCTION MEASURES Part A - Daily Ozone Precursor Emissions

Project Catego	ry: TR - Traff	lic Stream,	C - Commute, H - Heavy Duty Vehicles (Engine Technology), S		IC VENICIE I I IPI EMENTA			ORIGINAL	ACTUAL																		
				IIV			105																				
NOs CREDIT	TIP CREDITED	A OF NOV	PROJECT	FULL		UNDER- WAY	REM	COMPLETION	COMPLETION DATE	VOC 2	005 NOX	VOC 20	NOX	VOC 20	NOX	VOC 20	NOX	VOC NOX	VOC 20	NOX	VOC 20	NOX	VOC 20	NOX	VOC 20		Project
IAKEN				FULL	BACK	WAY	KEM																				Category *
9 X	1994-99	MDOT	Park & Ride Lot - MD 210/ MD 373	Х				2000	2003	0.001	0.003	0.0006	0.0016	0.0006	0.0014	0.0006	0.0014	0.0005 0.0013	0.0004	0.0007	0.0003	0.0005	0.0003	0.0005	0.0003	0.0005	С
19 X	1994-99	PRTC	VRE Woodbridge Parking Expansion (add 500 spaces)	Х					2002-2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a n/a	n/a	n/a	n/a	n/a	n/a	n/a			-
20 X	1994-99	ALEX	King St. Metrorail access improvements	Х					2006	0.0018	0.0026	0.0013	0.0016	0.0012	0.0014	0.0012	0.0014	0.0009 0.0013	0.0008	0.0007	0.0007	0.0005	0.0006	0.0005	0.0006	0.0005	С
38 X	1995-00	MDOT	Signal Systems - MD 85 Executive Way to MD 355	х				1996	Pre 2000			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	TR
39 X	1995-00	MDOT	Signal Systems - MD 355 ,I-70 ramps to Grove Rd.	¥				1996	n/a			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	TR
44 V	1995-00	MDOT	Signal Systems - MD 410, 62nd Ave. to Riverdale Rd.					1996	2002			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	TD
44 X																											IR
48 X	1995-00	MDOT	MARC Replacement Coaches	Х				1999	2004	0.001	0.003	0.0006	0.0016	0.0006	0.0014	0.0006	0.0014		0.0004	0.0007	0.0003	0.0005	0.0003	0.0005	0.0003	0.0005	C (TCM)
49 X	1995-00	MDOT	MARC Expansion Coaches	Х				1999	2004	0.008	0.024	0.0058	0.0148	0.0054	0.0133	0.0053	0.0132	0.0074 0.0242	0.0035	0.0069	0.0029	0.0051	0.0026	0.0042	0.0026	0.0042	C (TCM)
51 X	1995-00	VDOT	Alexandria Telecommuting Pilot Program	Х					2000 & 2001			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000			0.0000	0.0000	0.0000	0.0000	С
52 X	1995-00	VDOT	Fairfax County Bus Shelter (Fairfax Co. TDM program)			х		2000	2001			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000			0.0000	0.0000	0.0000	0.0000	С
54 X	1995-00	VDOT	City of Fairfax Bus Shelters	×				1999	2004	0.0000	0.0009	0.0000	0.0005	0.0000	0.0005	0.0000	0.0005	0.0000 0.0004	0.0000	0.0002	0.0000	0.0002	0.0000	0.0002	0.0000	0.0002	C (TCM)
56 X	1995-00	VDOT	Cherry Hill VRE Access			~			Jul-08		0.0206			0.0042	0.0114			0.0033 0.0090	0.0028	0.0059	0.0023	0.0044		0.0036	0.0020		C (TCM)
						^		4000				0.0000	0.0500								0.0020	0.0044	0.0020	0.0000			
58 X	1995-00	WMATA	Bus Replacement (172 buses)	X				1998	1998		0.2520	0.0690	0.2520	0.0690	0.2520	0.0690	0.2520		0.0461	0.1323						0.0000	SP (TCM)
59 X	1995-00	MCG	Shady Grove West Park and Ride			Х		2010		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 0.0045	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	С
60 X	1995-00	MCG	White Oak Park and Ride			Х		2010		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 0.0090	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	С
61 X	1995-00	MCG	Bicycle Facilities			х		FY99		0.0028	0.0017	0.0019	0.0011	0.0018	0.0009	0.0018	0.0009	0.0014 0.0009	0.0012	0.0005	0.0010	0.0004	0.0009	0.0003	0.0009	0.0003	С
62 X	1995-00	MCG	Pedestrian Facilities to Metrorail			х				0.0046	0.0069	0.0032	0.0042	0.0030	0.0038	0.0029	0.0038	0.0019 0.0031	0.0020	0.0020	0.0016	0.0015	0.0015	0.0012	0.0015	0.0012	С
63 X	1995-00	MDOT	MARC Replacement Coaches	x				1999	2004	0.0037	0.0103	0.0026	0.0063	0.0024	0.0057	0.0024	0.0057	0.0033 0.0099	0.0016	0.0030	0.0013	0.0022	0.0012	0.0018	0.0012	0.0018	С
64 X	1995-00	MDOT	MARC Expansion Coaches					1999	2004		0.0894	0.0206	0.0550	0.0191	0.0494	0.0189	0.0490		0.0126	0.0257	0.0104	0.0189	0.0094	0.0157	0.0093	0.0157	C (TCM)
																											C (TCM)
66 X	1995-00	VDOT	Commuter Lots - District Wide	Х				varies	1995, 2001		0.0284	0.0071	0.0174	0.0066	0.0157	0.0065	0.0156		0.0043	0.0082	0.0036	0.0060	0.0032	0.0050	0.0032	0.0050	С
67 X	1995-00	VDOT	I-66 and Stringfellow Rd. Park and Ride	Х				2000	2000 end	0.0092	0.0172	0.0065	0.0106	0.0060	0.0095	0.0059	0.0094	0.0047 0.0090	0.0039	0.0050	0.0033	0.0036	0.0029	0.0030	0.0029	0.0030	С
68 X	1995-00	VDOT	Lake Ridge Park and Ride (now called Tacketts Mill lot)	Х					1999/2000	0.0000	0.0086	0.0000	0.0053	0.0000	0.0047	0.0000	0.0047	0.0000 0.0045	0.0000	0.0025	0.0000	0.0018	0.0000	0.0015	0.0000	0.0015	С
69 X	1995-00	VDOT	Bicycle Trails and Facilities (Arlington & Fairfax Co - 7 locations)			х		varies	2010-12	0.0018	0.0146	0.0013	0.0090	0.0012	0.0081	0.0012	0.0080	0.0093 0.0076	0.0008	0.0042	0.0007	0.0031	0.0006	0.0026	0.0006	0.0026	С
70 X	1995-00	VDOT	Improved Acceess to Metrorail Stations (VRE 2 Stn)			x		varies	2000-2012	0.0005	0.0009	0.0002	0.0003	0.0001	0.0002	0.0003	0.0005	0.0005 0.0009	0.0002	0.0002	0.0002	0.0002	0.0001	0.0002	0.0001	0.0002	С
71 X	1995-00	VDOT	I-66 HOV access at Monument Dr.	v					1997		0.0172	0.0065	0.0106	0.0060	0.0095	0.0029		0.0047 0.0090	0.0020	0.0025	0.0033	0.0036	0.0029		0.0029		
		VDOT		^					1991																		
72 X	1995-00	DC	Bicycle Facilities	Х						0.0222	0.0172	0.0155	0.0106	0.0143	0.0095	0.0141	0.0094	0.0116 0.0094	0.0095	0.0050	0.0078	0.0036	0.0070	0.0030		0.0030	С
73 X	1995-00	REGION	COG Regional Ridesharing Support	Х					on-going	0.0000	0.0000	0.0799	0.1474	0.1393	0.2550	0.1380	0.2534	0.0000 0.0000	0.0926	0.1325	0.0778	0.0980	0.0710	0.0818	0.0705	0.0816	С
74 X	1995-00	REGION	M-47 Integrated Ridesharing	Х					on-going	0.0431	0.0897	0.0429	0.0778	0.0503	0.0890	0.0498	0.0884	0.0180 0.0295	0.0333	0.0463	0.0279	0.0342	0.0254	0.0285	0.0252	0.0284	С
75 X	1995-00	REGION	M-92 Telecommuting Support	х					on-going	0.2886	0.6135	0.0714	0.1222	0.1162	0.1891	0.1147	0.1878	0.1794 0.3002	0.0768	0.0985	0.0639	0.0726	0.0576	0.0603	0.0572	0.0602	С
77	1996-01	VDOT	Duke Street Pedestrian Bridge	×				2005	2007	n/a	n/a					n/a	n/a	n/a n/a	n/a	n/a	n/a	n/a	n/a	n/a			l -
79 X	1996-01	VDOT	Fairfax County Bus Shelters (30 shelters with project #85)			~		1999	ummer 200	0.0018	0.0026	0.0013	0.0016	0.0012	0.0014	0.0012	0.0014	0.0009 0.0013	0.0008	0.0007	0.0007	0.0005	0.0006	0.0005	0.0006	0.0005	
						^			1997									0.0010 0.0030							0.0006		
81 X	1996-01	VDOT	Arlington County Metrocheck Program	X				1997	Onwards	0.0018	0.0026	0.0013	0.0016	0.0012	0.0014	0.0012	0.0014		8000.0	0.0007	0.0007	0.0005	0.0006	0.0005		0.0005	С
82 X	1996-01	VDOT	Old Dominion Drive Bike Trail			Х		2000	2010-11	0.0009	0.0009			0.0006	0.0005	0.0006	0.0005	0.0005 0.0004	0.0004	0.0002	0.0003	0.0002	0.0003	0.0002	0.0003	0.0002	С
83 X	1996-01	WMATA	Bus Replacement (see line 58, above)	Х					1998		1		ı	1		Cre	dit taken i	in line 58, above	ı	1		ı	ı	ı			SP
85 X	1996-01	VDOT	Fairfax County Bus Shelters (30 shelters with project #79)	х				1999	2001	0.0009	0.0009	0.0006	0.0005	0.0006	0.0005	0.0006	0.0005	0.0005 0.0013	0.0004	0.0002	0.0003	0.0002	0.0003	0.0002	0.0003	0.0002	С
90 X	1996-01	REGION	M-47c Employer Outreach / Guaranteed Ride Home	×					on-going	0.5595	1.0434	0.5491	0.9096	0.3443	0.5499	0.3398	0.5461	0.2347 0.3449	0.2274	0.2865	0.1887	0.2111	0.1698	0.1753	0.1687	0.1748	С
91 X			M-70a Bicycle Parking			×		1999			0.0060		0.0037	0.0042	0.0033			0.0047 0.0045	0.0028	0.0017	0.0023	0.0013			0.0020		c
				0	d data ?	7.5		1000		5.0000	3.0000	3.00-13	3.0007	5.00-12	3.0000	0.00-1	0.0000	0.0043		0.0000	5.0025	5.0013	3.0020	3.0011	3.0020	5.0011	
92 X			M-92 Telecommuting Support ¹	Combined	d with item #	/5												tt	0.0000								С
95 X	1997-02	MCG	Germantown Transit Center	Х	1			2005		0.0046	0.0163	0.0032	0.0100	0.0030	0.0090	0.0029	0.0090	0.0023 0.0085	0.0020	0.0047	0.0016	0.0035	0.0015	0.0029	0.0015	0.0029	C (TCM)
102 X	1997-02	PG	Prince George's County Bus Replacement	Х				1998	1998	0.0030	0.0090	0.0030	0.0090	0.0030	0.0090	0.0030	0.0090	0.0000 0.0000	0.0020	0.0047							SP (TCM)
106 X	1997-02	VDOT	PRTC Employer Commuting Outreach Program	х					1977 on-going	0.0018	0.0004	0.0013	0.0003	0.0012	0.0002	0.0012	0.0002	0.0009 0.0000	0.0008	0.0001	0.0007	0.0001	0.0006	0.0001	0.0006	0.0001	С
107 X	1997-02	VDOT	PRTC Multimodal Strategic Marketing Implementation Plan	x		Ţ			1977 on-going	0.0000	0.0004	0.0000	0.0003	0.0000	0.0002	0.0000	0.0002	0.0000 0.0004	0.0000	0.0001	0.0000	0.0001	0.0000	0.0001	0.0000	0.0001	С
108 X	1997-02	MDOT	M-103 Taxicab Replacement in Maryland ²	x				2005	Stopped		0.2675	0.0797	0.2675	0.0797	0.2675	0.0797	0.2675		0.0533	0.1405	0.1340	0.1827	0.3120	0.4810			SP
109 X				X				1998			0.0013	0.0014	0.0020	0.0005	0.0006	0.0005	0.0006	0.0005 0.0004	0.0004	0.0003	0.0030		0.0003		0.0002	0.0000	C
	1997-02		M-70b Employer Outreach for Bicycles	X					on going																0.0002	0.0002	Ü
110	1997-02	VDOT	M-77b Vanpool Incentive Programs in Virginia		1		Х	1999	delayed	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a n/a	n/a	n/a	n/a	n/a	n/a	n/a		\longrightarrow	С
111 X	1998-03	WMATA	Bus Replacement (108 buses)	х				1999	1999	0.0450	0.1617	0.0450	0.1617	0.0450	0.1617	0.0450	0.1617	0.0000 0.0000	0.0301	0.0849							SP
112 X	1998-03	MCG	Montgomery County Bus Replacement	х					Ongoing	0.0080	0.0270	0.0080	0.0270	0.0080	0.0270	0.0080	0.0270	0.0020 0.0070	0.0053	0.0142							SP
113 X	1998-03	PG	Prince George's County Bus Replacement	×				1998	Ongoing	0.0010	0.0020	0.0010	0.0020	0.0010	0.0020	0.0010	0.0020	0.0000 0.0000	0.0007	0.0011							SP
113 X	1998-03	ויט	i mice George's County bus Replacement	Х				1990	Ungoing	0.0010	0.0020	0.0010	0.0020	0.0010	0.0020	0.0010	0.0020	TO:0000 TO:0000	0.0007	0.0011	1	1	·	·			SP

EXHIBIT 25

TERM TRACKING SHEET TRANSPORTATION EMISSION REDUCTION MEASURES Part A - Daily Ozone Precursor Emissions

* Proje	ct Catego	ry: TR - Traffic Stream,	C - Commute, H - Heavy Duty Vehicles (Engine Technology),																							
				IM	PLEMENTATION ST	ATUS	ORIGINAL	ACTUAL		1		1			ı					1		1				
NOs	CREDIT	TIP			SCALED- UNDER	t-	COMPLETION	COMPLETION	2	005	20	800	20	109	20	10 2	015	20	116	20.	20	20:	30	204	10	Project
	TAKEN	CREDITED AGENCY	PROJECT	FULL	BACK WAY	REM	DATE	DATE	voc	NOX	VOC	NOX	VOC	NOX	VOC	NOX VOC	NOX	VOC	NOX	VOC	NOX	VOC	NOX	VOC	NOX	Category *
114	х	1998-03 FDC	Frederick County Bus Replacement	x					0.0010	0.0000	0.0010	0.0000	0.0010	0.0000	0.0010	0.0000 0.0000	0.0000	0.0007	0.0000							SP
117				.,			4000	2000												0.0000	0.0000	0.0000	0.0002	0.0000	0.0000	
117	Х	1998-03 VDOT	Arlington County Four Mile Run Bike Trail	Х			1999	2009	0.0009	0.0009	-	-		-	0.0006		0.0004	0.0004	0.0002	0.0003	0.0002				0.0002	С
118	Х	1998-03 VDOT	Northern Virginia Turn Bays	Х			2000	1998	0.0009	0.0015	0.0007	0.0011	0.0006	0.0009	0.0006	0.0009 0.0009	0.0007	0.0004	0.0005	0.0003	0.0003	0.0003	0.0002	0.0003	0.0002	TR
119	х	1998-03 VDOT	Fairfax City Bus Replacement	х			2001	2003	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a n/a	n/a	n/a	n/a							SP
121		1998-03 WMATA	WMATA Bus Replacement (252 buses)	V			2001		0.1060	0.3860	0.1060	0.3860	0.1060	0.3860	0.1060		0.3420	0.0709	0.2027							SP
		1998-03 WMATA	WWATA bus Replacement (252 buses)				2001	2001																		- SP
122	Х	97 & 98 TIP REGION	M-101a Mass Marketing Campagin (Consumer)		X			2005	0.1191	0.2119	0.0434	0.0721	0.0175	0.0310	0.0173	0.0308 0.1015	0.1594	0.0116	0.0161	0.0097	0.0119	0.0088	0.0099	0.0088	0.0099	С
123	Х	1999-04 MDOT	Various Park and Ride Lots(I-270/MD124, 450 & I-170/MD- 75, 54 spaces)		x		2001/1999	2001	0.0074	0.0310	0.0052	0.0190	0.0048	0.0171	0.0047	0.0170 0.0047	0.0188	0.0032	0.0089	0.0026	0.0066	0.0023	0.0054	0.0023	0.0054	С
124	×	1999-04 MDOT	Signal Systems (197/MD-198, MD-382 TO US-301,US301)	¥			2000	2002	0.0110	-0.0030	0.0080	-0.0021	0.0074	-0.0019	0.0073	-0.0018 0.0061	-0.0021	0.0049	-0.0009	0.0041	-0.0005	0.0037	-0.0004	0.0037	-0.0003	TR
125	Х	1999-04 VDOT	Transit Center at 7 Corners	Х			2002	2001	0.0009	0.0017	0.0006	0.0011	0.0006	0.0009	0.0006	0.0009 0.0005	0.0009	0.0004	0.0005	0.0003	0.0004	0.0003	0.0003	0.0003	0.0003	С
126	Х	1999-04 VDOT	Falls Church Clean Diesel Bus Service	Х			2000	2003	0.0040	0.0050	0.0040	0.0050	0.0040	0.0050	0.0040	0.0050 0.0000	0.0000	0.0027	0.0026							SP
127	х	1999-04 VDOT	VA 234 Bike Trail		×		2001	2010	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	С
128		1999-04 VDOT		×						0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	_
128	Х	1999-04 VDOT	PRTC Ridesharing	_^_			on-going	2000 ongoing																		C
130	Х	1996-01 VDOT	M-14: I-66 Feeder Bus Fare Buy Down	Х				1998 onward	0.0231	0.0473	0.0161	0.0291	0.0149	0.0261	0.0147	0.0259 0.0102	0.0206	0.0099	0.0136	0.0082	0.0100	0.0073	0.0083	0.0073	0.0083	С
131	Х	2000-05 MDOT	Various park and Ride Lots	x			2002	2003	0.0064	0.0280	0.0045	0.0172	0.0041	0.0154	0.0041	0.0153 0.0043	0.0175	0.0027	0.0080	0.0023	0.0059	0.0020	0.0049	0.0020	0.0049	С
132	y	2000-05 MDOT	Signal Systems	~			Varies	on-going		0.0000	0.0020	0.0000	0.0018	0.0000	0.0018		0.0000	0.0012	0.0000	0.0016	0.0000	0.0009	0.0000		0.0000	TR
	^_			^																						IK
133	Х	2000-05 VDOT	250 Spaces at Gambrill/Hooes Rds. Park and Ride	Х			2002	2004	0.0065	0.0155	0.0045	0.0095	0.0042	0.0085	0.0041	0.0085 0.0028	0.0069	0.0028	0.0045	0.0023	0.0033	0.0020	0.0027	0.0020	0.0027	С
134	Х	2000-05 VDOT	300 Spaces at Backlick Rd	Х			2003	2007	0.0046	0.0112	0.0032	0.0069	0.0030	0.0062	0.0029	0.0061 0.0021	0.0049	0.0020	0.0032	0.0016	0.0024	0.0015	0.0020	0.0015	0.0020	С
135	×	2000-05 VDOT	Accotink-Gateway Connector Trail	×			2002	2005	0.0065	0.0086	0.0045	0.0053	0.0042	0.0047	0.0041	0.0047 0.0028	0.0038	0.0028	0.0025	0.0023	0.0018	0.0020	0.0015	0.0020	0.0015	С
													******		0.0005						0.0045					
136	Х	2000-05 VDOT	Columbia Pike Trail	Х			2000	2009		0.0069					0.0035		0.0029	0.0024	0.0020	0.0020	0.0015	0.0018	0.0012		0.0012	С
137	Х	2000-05 VDOT	Lee Highway trail	Х			2000	2007	0.0028	0.0034	0.0019	0.0021	0.0018	0.0019	0.0018	0.0019 0.0012	0.0016	0.0012	0.0010	0.0010	0.0007	0.0009	0.0006	0.0009	0.0006	С
138	х	2000-05 VDOT	Arlington Bus Shelter Improvements	х			2005	2005	0.0009	0.0009	0.0006	0.0005	0.0006	0.0005	0.0006	0.0005 0.0005	0.0004	0.0004	0.0002	0.0003	0.0002	0.0003	0.0002	0.0003	0.0002	С
139		2000-05 VDOT	Pentagon Metrostation Improvements	×				2003	0.0074	0.0146	0.0052	0.0090	0.0048	0.0081	0.0047		0.0063	0.0032	0.0042	0.0026	0.0031	0.0023	0.0026	0.0023	0.0026	_
1.00																										
140	Х	2000-05 MDOT	East/West Intersection Improvements		X		2005	2005	0.0379	0.0215	0.0265	0.0132	0.0245	0.0119	0.0242	0.0118 0.0640	0.0327	0.0162	0.0062	0.0134	0.0046	0.0120	0.0038	0.0119	0.0038	С
141	Х	2001-06 Feds	Federal Transit/Ridesharing subsidy	х			on-going		0.0942	0.1642	0.0658	0.1010	0.0610	0.0907	0.0601	0.0900 0.0386	0.0555	0.0402	0.0473	0.0333	0.0348	0.0298	0.0288	0.0296	0.0288	С
142	· ·	2002-07 WMATA	100 CNG buses	×			2002		0 0000	0.1358	0.0000	0.1358	0.0000	0.1358	0.0000	0.1358 0.0000	0.1358	0.0000	0.0713							SP (TCM)
143	Х	2002-07 WMATA	ULSD with CRT filters	Х			2006	Jun-06	0.2100	0.0000	0.2100	0.0000	0.2100	0.0000	0.2100	0.0000 0.4300	0.0000	0.1404	0.0000	0.4300	0.0000	0.4300	0.0000	0.4271	0.0000	H (TCM)
144		2003-08 DC	Replace-23 12 Taxicabs with CNG cabs			х	2005	2006	0.0089	0.0157	0.0089	0.0157	0.0089	0.0157	0.0089	0.0157		0.0059	0.0082							н
145	х	2003-08 DC	D.C.Incident Response & TrafficManagement System	х			2005	2004	0.0254	0.0746	0.0183	0.0520	0.0170	0.0468	0.0169	0.0439 -	0.0341	0.0111	0.0200	0.0094	0.0130	0.0085	0.0089	0.0084	0.0089	TR
146	٧.	2002 00 00		V			2005	2000		0.0153	0.0107	0.0094	0.0099	0.0085			0.0053	0.0066	0.0044	0.0054	0.0032	0.0049	0.0027		0.0027	C (TCM)
	Х	2003-08 DC	Bicycle Lane in D. C. (35 Mile)	X				2008							0.0098											- (,
147	Х	2003-08 DC	Bicycle Racks in D. C. (500)	Х			2005	2004	0.0021	0.0017	0.0015	0.0011	0.0014	0.0010	0.0014	0.0009 0.0009	0.0006	0.0009	0.0005	0.0008	0.0004	0.0007	0.0003	0.0007	0.0003	C (TCM)
148	Х	2003-08 DC	External Bicycle Racks on WMATA Buses in D. C. (600)	х			2005	2003	0.0031	0.0056	0.0022	0.0034	0.0020	0.0031	0.0020	0.0031 0.0013	0.0019	0.0013	0.0016	0.0011	0.0012	0.0010	0.0010	0.0010	0.0010	C (TCM)
149		2003-08 DC	CNG Rental Cars (18)			×	2005		0,000	0.0002	0.0000	0.0002	0.0000	0.0002	0.0000	0.0002		0.0000	0.0001							SP
140		2000 00 00														******										
150	Х	2003-08 DC	Sidewalks in D.C. (\$ 5 million)	Х	 	1	2005	2004		0.1008	0.0404	0.0619	0.0374	0.0556	0.0369		0.0334	0.0247	0.0290	0.0204	0.0213	0.0183	0.01//	0.0182	0.01/6	С
151	Х	2003-08 DC	CNG Refuse Haulers (2)	Х			2005	2004	0.0001	0.0020	0.0001	0.0020	0.0001	0.0020	0.0001	0.0020 0.0001	0.0020	0.0000	0.0011							H (TCM)
152	х	2003-08 DC	Circulator /Feeder Bus Routes	x			2005	2003	0.0211	0.0363	0.0147	0.0223	0.0136	0.0201	0.0134	0.0199 0.0089	0.0121	0.0090	0.0105	0.0074	0.0077	0.0067	0.0064	0.0066	0.0064	С
153	~	2003-08 MDOT	Commuter Tax Credit	v			2005	n/a		0.2219	0.0881	0.1364	0.0816	0.1225	0.0805		0.0736	0.0538	0.0639	0.0445	0.0470	0.0399	0.0300	0.0397	0.0380	
	X			X		1		11/8									0.0730			0.0445	0.0470	0.0399	0.0390	0.0397	0.0369	U
155		2003-08 MDOT	Employer Vanpool Program (WWB)			X	2005		0.0030	0.0075	0.0021	0.0046	0.0019	0.0041	0.0019	0.0041		0.0013	0.0022						\longrightarrow	С
156	Х	2003-08 MDOT	Green Line Link		x		2005	n/a	0.0041	0.0085	0.0029	0.0052	0.0027	0.0047	0.0026	0.0047 0.0017	0.0028	0.0018	0.0024	0.0015	0.0018	0.0013	0.0015	0.0013	0.0015	С
157	×	2003-08 MDOT	Park & Ride Lots - Southern Maryland				2005	2005	0.0080	0.0197	0.0056	0.0121	0.0052	0.0109	0.0051	0.0108 0.0033	0.0064	0.0034	0.0057	0.0028	0.0042	0.0025	0.0035	0.0025	0.0035	
1.00	^				1 1 ^																					
158	Х	2003-08 MDOT	Prince George's County- Bus Exp		×		2005	n/a	0.0578		0.0404	0.0732	0.0374	0.0657	0.0369		0.0392	0.0247	0.0343	0.0204	0.0252	0.0183	0.0209		0.0209	C
159	Х	2003-08 MDOT	MTA - Bus Service Expansion		×		2005	n/a	0.0131	0.0285	0.0091	0.0175	0.0085	0.0157	0.0083	0.0156 0.0055	0.0093	0.0056	0.0082	0.0046	0.0060	0.0041	0.0050	0.0041	0.0050	С
160	x	2003-08 MDOT	Ride- On - Super Discount		×		2005	n/a	0.0015	0.0026	0.0010	0.0016	0.0010	0.0014	0.0009	0.0014 0.0006	0.0009	0.0006	0.0007	0.0005	0.0005	0.0005	0.0005	0.0005	0.0004	С
161	Х	2003-08 Regional	Regional Traveler Information Systems		×	1	2005	A:2000 befo			0.1154	0.6787	0.1067	0.6106	0.1060		0.4451	0.0709	0.3005	0.0594	0.1701		0.1157		0.1154	TR
162	Х	2003-08 MDOT	Universal Transportation Access (MD + WMATA)		x		2005	n/a	0.0259	0.0452	0.0181	0.0278	0.0168	0.0249	0.0165	0.0248 0.0109	0.0150	0.0111	0.0130	0.0091	0.0096	0.0082	0.0079	0.0081	0.0079	С
163	х	2003-08 MCG	Construction of 1300 additional Parking Spaces at Grosvenor Metro Garage	х			2004		0.0074	0.0189	0.0051	0.0117	0.0048	0.0105	0.0047	0.0104 0.0030	0.0062	0.0031	0.0055	0.0026	0.0040	0.0025	0.0036	0.0024	0.0036	C (TCM)
164	v	2003-08 MCG	Bethesda Shuttle Bus Services	v			2004		0.0050		0.0035	0.0053	0.0032	0.0048	0.0032		0.0029	0.0021	0.0025	0.0018	0.0018	0.0016	0.0015		0.0015	
		2003-08 MCG	External Bicycle Racks on Ride-On Buses in Montgomery	X																						- U
165	Х	2003-08 MCG	County	Х			2004		0.0010	0.0017	0.0007	0.0011	0.0006	0.0010	0.0006	0.0010 0.0004	0.0006	0.0004	0.0005	0.0003	0.0004	0.0003	0.0003	0.0003	0.0003	С
166	х	2003-08 MCG	New CNG Powered Light Duty Vehicle fleet in the County	х			2004		0.0000	0.0001	0.0000	0.0001	0.0000	0.0001	0.0000	0.0001		0.0000	0.0001							SP
							-							•				-								

EXHIBIT 25

TERM TRACKING SHEET TRANSPORTATION EMISSION REDUCTION MEASURES Part A - Daily Ozone Precursor Emissions

* Proje	ct Categor	y: TR - Traf	fic Stream,	C - Commute, H - Heavy Duty Vehicles (Engine Technology), S																						
					IN	IPLEMENTA	ATION STA	TUS ORIGINAL	ACTUAL						1										\longrightarrow	—
NOs	CREDIT	TIP				SCALED-	UNDER-	COMPLETION	ON COMPLETION	N 2005	20	008	20	09	20	10 2	015	20	16	20:	20	20	30	204	40	Project
	TAKEN	CREDITED	AGENCY	PROJECT	FULL	BACK	WAY	REM DATE	DATE	VOC NOX	VOC	NOX	VOC	NOX	VOC	NOX VOC	NOX	VOC	NOX	VOC	NOX	VOC	NOX	VOC	NOX	Category *
167	х	2003-08	MCG	Free Bus Service on Selected Routes on I-270	х			2004		0.0017 0.0030	0.0012	0.0018	0.0011	0.0017	0.0011	0.0016 0.0007	0.0010	0.0007	0.0009	0.0006	0.0006	0.0005	0.0005	0.0005	0.0005	С
168	_	2003-08	MCG	Annual Sidewalk Program	_			2004		0.0275 0.0480	0.0192	0.0295	0.0178	0.0265	0.0176	0.0263 0.0116	0.0159	0.0117	0.0138	0.0097	0.0102	0.0087	0.0084	0.0087	0.0084	
108		2003-08	MDOT	Annual Sidewalk Program	^																					C
169		2003-08		Bethesda Breeze/International Express Metrobus				X 2005	Removed	0.0060 0.0097	0.0042	0.0059	0.0039	0.0053	0.0038	0.0053 0.0025	0.0032	0.0026	0.0028	0.0021	0.0020	0.0019	0.0017	0.0019	0.0017	С
170		2003-08	MDOT	Bethesda-8, Silver Spring Downtown Dasher and Prince Georges Co. Shuttles at 3 PNR lot				X 2005	Removed	0.0142 0.0189	0.0099	0.0116	0.0092	0.0104	0.0091	0.0104 0.0060	0.0064	0.0061	0.0054	0.0050	0.0040	0.0045	0.0033	0.0045	0.0033	С
171		2003-08	MDOT	Proposed Transportation Management District in Montgomery County (Rockville and Gaithersburg)				X 2005	Removed	0.0093 0.0142	0.0065	0.0087	0.0060	0.0078	0.0059	0.0078 0.0039	0.0047	0.0040	0.0041	0.0033	0.0030	0.0029	0.0025	0.0029	0.0025	
17.1			MDOT																							
172	X	2003-08		Sidewalks (Bikes/Pedestrian) at / near Rail Stations	Х			2005	2002	0.0150 0.0267	0.0105	0.0164	0.0097	0.0147	0.0096	0.0146 0.0063	0.0088	0.0064	0.0077	0.0053	0.0057	0.0048	0.0047	0.0047	0.0047	С
173	х	2003-08	MDOT	Neighborhood Sidewalks Improvements (Bike/Pedestrian)	Х			2005	2004	0.0052 0.0030	0.0037	0.0018	0.0034	0.0017	0.0033	0.0016 0.0023	0.0011	0.0022	0.0009	0.0018	0.0006	0.0017	0.0005	0.0016	0.0005	С
174	×	2003-08	MDOT	Neighborhood Conservation Program - Neighborhood Sidewalks Improvements (Bikes/Pedestrian)		×		2005	Ongoing	0.0046 0.0026	0.0032	0.0016	0.0030	0.0014	0.0029	0.0014 0.0020	0.0010	0.0020	0.0008	0.0016	0.0006	0.0015	0.0005	0.0014	0.0005	С
175		2003-08	MDOT	Maryland bus Transit Service Expansion				2005	2004	0.0228 0.0586	0.0159	0.0360	0.0147	0.0323	0.0145		0.0191	0.0097	0.0169	0.0080		0.0072	0.0103	0.0072	0.0103	C
	X	2003-08		1	Х																0.0124					
176	х	2003-08	VDOT	Universal Transportation Access Program	Х			2005	2005-07	0.0019 0.0034	0.0013	0.0021	0.0012	0.0019	0.0012	0.0019 0.0008	0.0011	0.0008	0.0010	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	С
177	×	2003-08	VDOT	Interactive Rideshare & Kiosk Initiative			×	2008 onw	ard	0.0006 0.0013			0.0004	0.0007	0.0004	0.0007 0.0003	0.0004	0.0003	0.0004	0.0002	0.0003	0.0002	0.0002	0.0002	0.0002	С
178	~	2003-08	VDOT	Mobile Commuter Stores	_			2005	2005	0.0035 0.0071	0.0024	0.0044	0.0022	0.0039	0.0022	0.0039 0.0014	0.0033	0.0015	0.0020	0.0012	0.0015	0.0011	0.0012	0.0011	0.0012	
179	Х	2003-08	VDOT	Telework Incentive Program (Telework VA) ¹	Х	1		2005	Fall 2006	0.0012 0.0022	0.0008	0.0013	0.0008	0.0012	0.0008	0.0012 0.0005	0.0007	0.0005	0.0006	0.0004	0.0005	0.0004	0.0004	0.0004	0.0004	С
180	х	2003-08	VDOT	Commuter Choice	х			2005		0.0015 0.0025	0.0011	0.0016	0.0010	0.0014	0.0010	0.0014 0.0007	0.0008	0.0007	0.0007	0.0005	0.0005	0.0005	0.0004	0.0005	0.0004	С
181	_	2003-08	VDOT	Employer Shuttle Services				x 2005		0.0184 0.0301	0.0128	0.0185	0.0119	0.0166	0.0117	0.0165 0.0077	0.0100	0.0078	0.0087	0.0065	0.0064	0.0058	0.0053	0.0058	0.0053	_
									pp. eee -								3.0100			3.0003	3.0004	5.0000	3.0000	5.0000	2.0000	
184	Х	2003-08	VDOT	Van Start / Van Save	Х			2005	till 2006	0.0022 0.0047	0.0016	0.0029	0.0015	0.0026	0.0014	0.0025		0.0010	0.0013							С
185	×	2003-08	VDOT	Metro Shuttle Bus			x	2005	1999-2005	0.0019 0.0047	0.0013	0.0029	0.0012	0.0026	0.0012	0.0026 0.0008	0.0015	0.0008	0.0013	0.0007	0.0010	0.0006	0.0008	0.0006	0.0008	С
187	×	2003-08	VDOT	VRE Mid-Day Train Service	x			2005	2002	0.0025 0.0053	0.0018	0.0033	0.0016	0.0029	0.0016	0.0029 0.0011	0.0017	0.0011	0.0015	0.0009	0.0011	0.0008	0.0009	0.0008	0.0009	С
190	Х	2003-08	VDOT	Employer Vanpool Program (Bridge deck)	Х			2005	2004 - 200	8 0.0015 0.0034	0.0011	0.0021	0.0010	0.0019				0.0000	0.0000						\longrightarrow	С
191	х	2003-08	VDOT	Town of Leesburg P&R Lot	Х			2005	2010	0.0031 0.0071					0.0020	0.0039 0.0013	0.0023	0.0013	0.0020	0.0011	0.0015	0.0010	0.0012	0.0010	0.0012	С
192	×	2003-08	VDOT	District-wide P&R Lots	х			2005	2001-2005	0.0182 0.0406	0.0127	0.0249	0.0118	0.0224	0.0116	0.0222 0.0076	0.0133	0.0078	0.0117	0.0064	0.0086	0.0058	0.0071	0.0057	0.0071	С
193			VDOT		.,			2005	2005	0.0235 0.0604		0.0372	0.0152	0.0334	0.0150		0.0197	0.0100	0.0174	0.0083	0.0128	0.0074	0.0106	0.0074		
193	X	2003-08		Additional Parking at 4 Metro stations	X				2005											0.0063	0.0128	0.0074	0.0106	0.0074	0.0106	C
196	Х	2003-08	WMATA	64 CNG Buses (Purchased in 2001)	Х			2005	2004	0.0021 0.0870	0.0021	0.0870	0.0021	0.0870	0.0021	0.0870 0.0021	0.0870	0.0014	0.0457							SP (TCM)
197	×	2003-08	WMATA	250 CNG Buses (175 buses by Dec. 2004; 75 buses by mid 2006)	х			2005	Jun-06	0.0083 0.3400	0.0083	0.3400	0.0083	0.3400	0.0083	0.3400 0.0083	0.3400	0.0055	0.1786							SP
198	· ·	2003-08	WMATA	60 Engine Replacement (MY 1992 & 1993 MY buses)	v			2004	2004	0.0138 0.0755	0.0138	0.0755	0.0138	0.0755	0.0138	0.0755 0.0138	0.0755	0.0092	0.0396							SP
					^																					
199	Х	2003-08	WMATA	Car Sharing Program	Х			2005	2004	0.0013 0.0033	0.0009	0.0020	0.0008	0.0018	0.0008	0.0018 0.0005	0.0011	0.0005	0.0009	0.0005	0.0007	0.0004	0.0006	0.0004	0.0006	С
200	х	2003-08	WMATA	Bikes Racks on WMATA Buses in VA (372 Bike Racks)	Х			2005	2004	0.0020 0.0035	0.0014	0.0021	0.0013	0.0019	0.0012	0.0019 0.0008	0.0012	0.0008	0.0010	0.0007	0.0007	0.0006	0.0007	0.0006	0.0007	C (TCM)
202		2003-08	MDOT	Fleet Replacement (state auto fleet, gas to hybrid, 250 vehicles)				X 2005		0.0055 0.013	0.0055	0.0133	0.0055	0.0133	0.0055	0.0133 0.0055	0.013	0.004	0.007	0.0055	0.0133					SP
				Replace 55 Montgomery County 10 yr. old buses w/ new																						-
203	X	2003-08	MDOT	CNG buses			X	2005	Ongoing	0.0459 0.1628	0.0459	0.1628	0.0459	0.1628	0.0459	0.1628	0.2861	0.0307	0.0855	0.0459	0.1628				-	SP
204		2003-08	MDOT	Neighborhood Bus Shuttle (5 circulator routes)				X 2005		0.0121 0.0221	0.0084	0.0136	0.0078	0.0122	0.0077	0.0121 0.0051	0.007	0.005	0.006	0.0043	0.0047	0.0038	0.0039	0.0038	0.0039	С
205	×	2003-08	MDOT	New Surface Parking at Transit Centers (500 spaces)			×	2005	2005	0.0042 0.0108	0.0030	0.0066	0.0027	0.0060	0.0027	0.0059 0.0017	0.0035	0.0018	0.0031	0.0015	0.0023	0.0013	0.0019	0.0013	0.0019	С
206		2003-08	MDOT	Additional Bike Lockers at Metro-Stations						0.0213 0.0379	0.0149	0.0233	0.0138		0.0136		0.0125	0.0091	0.0109	0.0075	0.0080	0.0067	0.0067	0.0067	0.0066	_
			III.DO1	Bike Facilities at PnR Lots or other similar location				X 2005						0.0209												C
207	Х	2003-08	MDOT			1	Х	2005	2005	0.0150 0.0300	0.0105	0.0185	0.0097	0.0166	0.0096	0.0165 0.0063	0.0099	0.0064	0.0086	0.0053	0.0064	0.0048	0.0053	0.0047	0.0053	С
208		2003-08	MDOT	CNG Fueling Stations				X 2005		0.1270 0.1170	0.1270	0.1170	0.1270	0.1170	0.1270	0.1170		0.0849	0.0614							SP
209		2003-08	MDOT	Gas cap replacements (ROP Credit)				X 2005		N/A N/A	N/A	N/A	N/A	N/A	N/A	N/A	-	N/A	N/A	N/A	N/A	N/A	N/A			SP
				Gas can turnover (ROP Credit)						N/A N/A					N/A	N/A	_	N/A	N/A	N/A	N/A	N/A	N/A			
210		2003-08	MDOT	(-	X 2005	_	IN/A	N/A	N/A	N/A	N/A	13//	13073	-	11//	11/7	14/7	14/7	11/7	17/			SP
211	х	2003-08	MDOT	External Bicycle Racks on WMATA Buses (486 MD buses)	х			2005	2002	0.0023 0.0040	0.0016	0.0025	0.0015	0.0022	0.0014	0.0022 0.0009	0.0013	0.0010	0.0012	0.0008	0.0008	0.0007	0.0007	0.0007	0.0007	C (TCM)
212	x	2003-08	MDOT	Bike \ Pedestrian Trail - Anacostia River Walk			х	2005	Ongoing	0.0009 0.0008	0.0007	0.0005	0.0006	0.0005	0.0006	0.0005 0.0004	0.0003	0.0004	0.0002	0.0003	0.0002	0.0003	0.0001	0.0003	0.0001	С
			MDC-	Transit Prioritization - Queue Jumps				X 2005		0.0050 0.0068	0.0035		0.0032		0.0032				0.002		0.0014	0.0016	0.0012	0.0016	0.0012	
213		2003-08	MDOT			1						0.0042		0.0037				0.002		0.0018						С
214	Х	2003-08	MDOT	Commuter Choice Benefit/Tax Credit - Marketing Expansion Improvements to Pedestrian Access in TOD areas (4	Х			2005	Ongoing	0.0881 0.1559	0.0615	0.0958	0.0570	0.0860	0.0562	0.0854 0.0370	0.0517	0.0376	0.0449	0.0311	0.0330	0.0279	0.0274	0.0277	0.0273	С
215	х	2003-08	MDOT	Improvements to Pedestrian Access in TOD areas (4 locations)	L_		х	2005	Ongoing	0.0096 0.0158	0.0067	0.0097	0.0062	0.0087	0.0061	0.0087 0.0040	0.0053	0.0041	0.0045	0.0034	0.0033	0.0030	0.0028	0.0030	0.0028	С
216	_	2003-08	MDOT	Telecommuting Expansion ¹	v			2005	Ongoing	0.1041 0.2192	0.0727	0.1348	0.0673	0.1210	0.0664	0.1201 0.0435	0.0721	0.0444	0.0631	0.0367	0.0464	0.0330	0.0385	0.0327	0.0384	С
	^			Replace older Diesel Engine in Public Sector vehicles	_^				Origolity											0.0007	3.0404	0.0000	0.0000	0.0021	0.0004	
217		2003-08	MDOT	3		1		X 2005		0.0237 0.1300	0.0237	0.1300	0.0237	0.1300	0.0237	0.1300 0.0237	0.1300	0.0158	0.0683							Н
218	Х	2003-08	VDOT	MV-92 Telecommuting Program - Expanded ¹	х			2005	2005	0.1112 0.2341	0.0777	0.1439	0.0719	0.1292	0.0709	0.1283 0.0464	0.0769	0.0474	0.0674	0.0392	0.0496	0.0352	0.0411	0.0350	0.0410	С
219	×	2003-08	VDOT	MV-123 Employer Outreach for Public Sector Employees ²	¥			2005	2003	0.0247 0.0430	0.0172	0.0264	0.0160	0.0237	0.0157	0.0236 0.0104	0.0143	0.0105	0.0124	0.0087	0.0091	0.0078	0.0076	0.0078	0.0075	c
				Signal System Optimization																						
220	Х	2003-08	REGION		Х	1		2005	2005	0.6737 0.2720	0.4871	0.1897	0.4505	0.1707	0.4478	0.1599 0.3447	0.1244	0.2956	0.0728	0.2509	0.0475	0.2252	0.0324	0.2194	0.0310	TR
221	Х	2007-12	MDOT	Two P & R Lots in Frederick County (99 spaces)	х			2007	2008				0.0006	0.0012	0.0009	0.0017		0.0006	0.0009	0.0005	0.0007	0.0005	0.0005	0.0004	0.0005	С
222	x	2007-12	MDOT	MDOT P & R Lots at US 340 (66-99 spaces, Frederick Co.)	×			2007	2007		1						1 7	Credite shown in	TS 221 (for 99 s	naces)]]		Ţ	1
1 222	· ^ [100/-12	IMDOI	INIDOT F & K LOIS at US 340 (66-99 spaces, Frederick Co.)	_ ^	1	1	2007	2007	1		I			1	l		oredits snown in	10 221 (IUI 99 S	paud5)						

TERM TRACKING SHEET

TRANSPORTATION EMISSION REDUCTION MEASURES
Part A - Daily Ozone Precursor Emissions

- Proje	a Catego	ry: TR - Tran	nc Stream,	C - Commute, H - Heavy Duty Venicies (Engine Technology),	SP- Specii	ic venicie i	ype, ICM - I	rransporta	tion Control Measur	es																			
					IN	IPLEMENTA	TION STAT	rus	ORIGINAL	ACTUAL																			
NOs	CREDIT	TIP				SCALED-	UNDER-		COMPLETION	COMPLETION	20	005	20	108	20	109	20	110	20	115	20	16	20	20	20	30	20	040	Project
	TAKEN	CREDITED	AGENCY	PROJECT	FULL	BACK	WAY	REM	DATE	DATE	VOC	NOX	VOC	NOX	VOC	NOX	VOC	NOX	VOC	NOX	VOC	NOX	VOC	NOX	VOC	NOX	VOC	NOX	Category *
223	х	2008-13	MDOT	MCG/MDOT P & R Lots at US 340 & Mt Zion Rd. (37 speces)	х				2008	2008							0.0007	0.0013			0.0004	0.0007	0.0004	0.0005	0.0003	0.0004	0.0003	0.0004	
224	x	2008-13	MDOT	MCG/MDOT P & R Lots at US 340 & Mt Zion Rd expansion (39	speces)		х		2011	2011											Credits included	in TS 224 (for 37	+ 39 spaces)						
225	х	2008-13	MDOT	MCG/MDOT P & R Lots at I 70 & MD 355 (100 speces)			х		2010	2010							0.0009	0.0017			0.0006	0.0009	0.0005	0.0007	0.0005	0.0006	0.0005	0.0006	
226	х	2008-13	MDOT	MCG/MDOT P & R Lots at I 270 & MD 80 (164 speces)			2009	2009							0.0014	0.0028			0.0010	0.0015	0.0008	0.0011	0.0007	0.0009	0.0007	0.0009			
227	х	2008-13	MDOT	MDOT Syglal System Reviewing			x		2010	on-going											Credits shown in	Regional signal	TERM - TS 220						
228	х	2008-13	MDOT	MDOT Takoma Langely Transit Center	x		2012	2012							0.0000	0.0000			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
								Availa	ble Emission	s Credits	3.716	7.556	2.752	5.400	2.471	4.856	2.456	4.797	2.164	3.704	1.639	2.505	1.430	1.113	1.284	0.747	1.271	0.744	

TRANSPORTATION EMISSION REDUCTION MEASURES (CLRP Projects Only)

Part A - Daily Ozone Precursor Emissions

Project Category: TR - Traffic Stream, C - Commute, H - Engine Technology (Heavy Dudy Vehicles), SP- Specific Vehicle Type

					IN	IPLEMENTA	TION STAT	US	PROJECTED	ACTUAL			TONS/D	AY REDUC	CTION CRE	DITED			
NOs	CREDIT	TIP				SCALED-	UNDER-		COMPLETION	COMPLETION	20	16	202	20	20)30	20)40	Project
	TAKEN	CREDITED	AGENCY	PROJECT	FULL	BACK	WAY	REM	DATE	DATE	VOC	NOx	VOC	NOx	VOC	NOx	VOC	NOx	Category
221	Χ	1995-00 TIP	REGION	M-24 Speed Limit Adherence	Х				2010		-0.0050	0.1437	-0.0021	0.1206	0.0005	0.0377	0.0005	0.0376	TR
222		1996-01 TIP	MGC	Rock Spring Park Pedestrian Amenities				Х			0.0007	0.0021	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-
223	X	1996-01 TIP	MGC	Olney Transit Center Park and Ride					2015		0.0013	0.0042	0.0009	0.0030	0.0003	0.0007	0.0003	0.0007	С
224	Х	1996-01 TIP	MGC	Damascus Park and Ride						2003	0.0007	0.0021	0.0004	0.0015	0.0001	0.0003	0.0001	0.0003	С
225	Х	1996-01 TIP	DC	M-103 Taxicab Replacement (DC)				Х	2015		0.0000	0.0000	0.1745	0.3000	0.3490	0.6000	0.3467	0.5984	Н
226	Х	STADIUM	ANALYSIS	M-103 Taxicab Replacement (MD)				Х	2008		0.0000	0.0000	0.1560	0.2400	0.1560	0.2400	0.1550	0.2394	Н
227	Χ	1997-02 TIP	MDOT	Shady Grove West Transit Center Park and Ride				X			0.0000	0.0053	0.0000	0.0038	0.0000	0.0009	0.0000	0.0009	С
228	X	1997-02 TIP	MGC	Olney Transit Center Park and Ride					2015		0.0000	0.0000	0.0004	0.0012	0.0003	0.0007	0.0003	0.0007	С
229	Х	1997-02 TIP	MGC	White Oak Park and Ride					2008		0.0000	0.0105	0.0000	0.0076	0.0000	0.0017	0.0000	0.0017	С
230	Χ	1997-02 TIP	MGC	Damascus Park and Ride						2003	0.0000	0.0000	0.0002	0.0005	0.0001	0.0003	0.0001	0.0003	С
231	X	1997-02 TIP	MGC	Four Corners Transit Center					2015		0.0000	0.0005	0.0000	0.0004	0.0000	0.0001	0.0000	0.0001	С
232		1997-02 TIP	MGC	Burtonsville Transit Center				Х			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-
233	Х	1997-02 TIP	MGC	Silver Spring Transit Access							0.0000	0.0005	0.0000	0.0003	0.0000	0.0002	0.0000	0.0002	С
234	Χ	1997-02 TIP	MGC	Shady Grove Parking Construction						2003	0.0033	0.0100	0.0021	0.0072	0.0007	0.0017	0.0007	0.0017	С

PLAN TOTAL	0.0004	0.1715	0.0019	0.1424	0.0022	0.0434	0.0021	0.0432
GRAND TOTAL (Current Measures + CLRP plan)	1.639	2.676	1.432	1.255	1.286	0.791	1.274	0.787

DEFINITIONS:

Project Numbers implemented fully prior to 2000 were removed from the TERM Tracking Sheet

CREDIT TAKEN (X means emissions reduction credits taken):

TIP - Emissions credits are taken for projects being implemented, according to the progress reporting schedules provided by

the implementing agencies (contained in Appendix J of Conformity Document). No credit has been taken for projects in which only some components of the measure have been implemented.

CLRP - Credit is taken for each of these elements of the CLRP according to the schedule provided by the implementing agency.

IMPLEMENTATION STATUS:

FULL = project is completed as planned at the time of analysis.

SCALED BACK = project is completed, but at a different level than assumed at the time of analysis (i.e., purchased 50 buses instead of 100)

UNDERWAY = project is not complete, but is close enough that credit may be taken (i.e., under construction, NOT just out for bid)

REMOVED = project no longer expected to be implemented or constructed

COMPLETION DATE:

PROJECTED = project completion date originally expected (i.e., at time of emissions analysis)

ACTUAL = actual year project was open for use, or expected to be open for use if under construction

REMOVED

projects 1 Emissions credits are not counted in toal available emissions credits

Line items 218, 216, 179, 92 are all credited as part of M-92 Regional Telecommute Support TERM, line item # 75

Line item 108 & 219 credits are taken only for year 2010

TERM TRACKING SHEET

TRANSPORTATION EMISSION REDUCTION MEASURES Part B - Yearly PM $_{\rm 2.5}$ and Precursor NOx Emissions

* Project Category TP Troffic Str	room C Commute H Heavy D	thy Vohiolog (Engine Technology) SD Specific	Vehicle Type, TCM - Transportation Control Measures

* Projec	ct Catego	ory: TR - Traffic Stream,	C - Commute, H - Heavy Duty Vehicles (Engine Technology															
				IM	PLEMENTA		ATUS	ORIGINAL	ACTUAL									+
NOs	CREDIT	TIP			SCALED-	UNDER-		COMPLETION	COMPLETION		Precursor	_	020 Precursor	_	9030 Precursor	_	040 Precursor	Project
	TAKEN	CREDITED AGENCY	PROJECT	FULL	BACK	WAY	REM	DATE	DATE	PM2.6	NOx	PM2.5	NOx	PM2.5	NOx	PM2.6	NOx	Category *
9	Х	1994-99 MDOT	Park & Ride Lot - MD 210/ MD 373	х				2000	2003	0.0095	0.1374	0.0095	0.1000	0.0095	0.0830	0.0095	0.0689	С
19	Х	1994-99 PRTC	VRE Woodbridge Parking Expansion (add 500 spaces)	Х					2002-2003	n/a	n/a	n/a	n/a	n/a	n/a			-
20	Х	1994-99 ALEX	King St. Metrorail access improvements	х					2006	0.0095	0.1374	0.0095	0.1000	0.0095	0.0830	0.0095	0.0689	С
38	Х	1995-00 MDOT	Signal Systems - MD 85 Executive Way to MD 355	х				1996	Pre 2000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	TR
39	Х	1995-00 MDOT	Signal Systems - MD 355 ,I-70 ramps to Grove Rd.	х				1996	n/a	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	TR
44	Х	1995-00 MDOT	Signal Systems - MD 410, 62nd Ave. to Riverdale Rd.	х				1996	2002	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	TR
48	х	1995-00 MDOT	MARC Replacement Coaches	х				1999	2004	0.0095	0.1374	0.0095	0.1000	0.0095	0.0830	0.0095	0.0689	C (TCM)
49	х	1995-00 MDOT	MARC Expansion Coaches	х				1999	2004	0.0891	1.2820	0.0891	0.9332	0.0891	0.7745	0.0891	0.6428	C (TCM)
51	х	1995-00 VDOT	Alexandria Telecommuting Pilot Program	х					2000 & 2001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	С
52	х	1995-00 VDOT	Fairfax County Bus Shelter (Fairfax Co. TDM program)			х		2000	2001	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	С
54	х	1995-00 VDOT	City of Fairfax Bus Shelters	х				1999	2004	0.0032	0.0458	0.0032	0.0333	0.0032	0.0277	0.0032	0.0230	C (TCM)
56	х	1995-00 VDOT	Cherry Hill VRE Access			х			Jul-08	0.0764	1.0988	0.0764	0.7999	0.0764	0.6639	0.0764	0.5510	C (TCM)
58	х	1995-00 WMATA	Bus Replacement (172 buses)	х				1998	1998									SP (TCM)
59	х	1995-00 MCG	Shady Grove West Park and Ride			х		2010		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	С
60	Х	1995-00 MCG	White Oak Park and Ride			х		2010		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	С
61	х	1995-00 MCG	Bicycle Facilities			х		FY99		0.0064	0.0916	0.0064	0.0667	0.0064	0.0553	0.0064	0.0459	С
62	х	1995-00 MCG	Pedestrian Facilities to Metrorail			х				0.0255	0.3663	0.0255	0.2666	0.0255	0.2213	0.0255	0.1837	С
63	х	1995-00 MDOT	MARC Replacement Coaches	х				1999	2004	0.0382	0.5494	0.0382	0.4000	0.0382	0.3319	0.0382	0.2755	С
64	х	1995-00 MDOT	MARC Expansion Coaches	х				1999	2004	0.3309	4.7617	0.3309	3.4663	0.3309	2.8768	0.3309	2.3875	C (TCM)
66	х	1995-00 VDOT	Commuter Lots - District Wide			х		varies	1995, 2001	0.1050	1.5109	0.1050	1.0999	0.1050	0.9128	0.1050	0.7576	С
67	x	1995-00 VDOT	I-66 and Stringfellow Rd. Park and Ride	x				2000	2000 end	0.0636	0.9157	0.0636	0.6666	0.0636	0.5532	0.0636	0.4591	С
68	Х	1995-00 VDOT	Lake Ridge Park and Ride (now called Tacketts Mill lot)	X					1999/2000	0.0318	0.4579	0.0318	0.3333	0.0318	0.2766	0.0318	0.2296	С
69	Х	1995-00 VDOT	Bicycle Trails and Facilities (Arlington & Fairfax Co - 7 locations)			х		varies	2010-12	0.0541	0.7783	0.0541	0.5666	0.0541	0.4702	0.0541	0.3903	С
70	X	1995-00 VDOT	Improved Acceess to Metrorail Stations (VRE 2 Stn)			X		varies	2000-2012	0.0032	0.0458	0.0032	0.0333	0.0032	0.0277	0.0032	0.0230	C
71	X	1995-00 VDOT	I-66 HOV access at Monument Dr.	×		^		varies	1997	0.0636	0.9157	0.0636	0.6666	0.0636	0.5532	0.0636	0.4591	C
72	X	1995-00 DC	Bicycle Facilities	×					1007	0.0636	0.9157	0.0636	0.6666	0.0636	0.5532	0.0636	0.4591	С
73		1995-00 REGION	COG Regional Ridesharing Support	×					on-going	1.7913	24.4149	1.7913	17.8484	1.7913	14.9204	1.7913	12.3829	С
74	X	1995-00 REGION	M-47 Integrated Ridesharing	X					on-going	0.6199	8.5312	0.6199	6.2319	0.6199	5.2028	0.6199	4.3180	С
75		1995-00 REGION	M-92 Telecommuting Support						on-going	1.2883	18.1945	1.2883	13.2638	1.2883	11.0351	1.2883	9.1583	С
77	^			×				2005	2007	n/a	n/a	n/a	n/a	n/a	n/a	1.2003	3.1303	
			Duke Street Pedestrian Bridge	^								0.0095	0.1000		0.0830	0.0095	0.0689	-
79	X	1996-01 VDOT	Fairfax County Bus Shelters (30 shelters with project #85)	.,		Х		1999 1997	Summer 2001	0.0095	0.1374		0.1000	0.0095	0.0830	0.0095		С
81	X	1996-01 VDOT	Arlington County Metrocheck Program	X		.,			1997 Onwards	0.0095		0.0095					0.0689	
82		1996-01 VDOT	Old Dominion Drive Bike Trail			Х		2000	2010-11	0.0032	0.0458	0.0032	0.0333	0.0032	0.0277	0.0032	0.0230	С
83	X	1996-01 WMATA	Bus Replacement (see line 58, above)	X				1000	1998	0.0000			line 58, abo		0.0077	0.0000	0.0000	SP
85	X	1996-01 VDOT	Fairfax County Bus Shelters (30 shelters with project #79)	X				1999	2001	0.0032	0.0458	0.0032	0.0333	0.0032	0.0277	0.0032	0.0230	С
90	X	1996-01 REGION	M-47c Employer Outreach / Guaranteed Ride Home	X	+			4000	on-going	3.7262	52.9524	3.7262	38.5840	3.7262	32.0744	3.7262	26.6195	С
91	X	1996-01 REGION	M-70a Bicycle Parking		1	X		1999		0.0223	0.3205	0.0223	0.2333	0.0223	0.1936	0.0223	0.1607	С
92	Х	STADIUM ANALYSIS	M-92 Telecommuting Support ¹		d with item	#75												С
95	Х	1997-02 MCG	Germantown Transit Center	Х		-		2005		0.0605	0.8699	0.0605	0.6333	0.0605	0.5256	0.0605	0.4362	C (TCM)
102	Х	1997-02 PG	Prince George's County Bus Replacement	Х				1998	1998									SP (TCM)

TERM TRACKING SHEET

TRANSPORTATION EMISSION REDUCTION MEASURES Part B - Yearly PM $_{\rm 2.5}$ and Precursor NOx Emissions

Project Catego	ory: TR - Tra	ffic Stream,	C - Commute, H - Heavy Duty Vehicles (Engine Technology							l								т—
				IMI	PLEMENTA	ATION STA	TUS	ORIGINAL	ACTUAL								L	+
NOs CREDIT	TIP				SCALED-	UNDER-		COMPLETION	COMPLETION	20	16 Precursor		2020 Precursor		9030 Precursor		040 Precursor	Project
TAKEN	CREDITED	AGENCY	PROJECT	FULL	BACK	WAY	REM	DATE	DATE	PM2.6	NOx	PM2.5	NOx	PM2.5	NOx	PM2.6	NOx	Category *
106 X	1997-02	VDOT	PRTC Employer Commuting Outreach Program	Х					1977 on-going	0.0016	0.0229	0.0016	0.0167	0.0016	0.0138	0.0016	0.0115	С
107 X	1997-02	VDOT	PRTC Multimodal Strategic Marketing Implementation Plan	х					1977 on-going	0.0016	0.0229	0.0016	0.0167	0.0016	0.0138	0.0016	0.0115	С
108 X	1997-02	MDOT	M-103 Taxicab Replacement in Maryland ²	х				2005	Stopped									SP
109 X	1997-02	REGION	M-70b Employer Outreach for Bicycles	х				1998	on going	0.0035	0.0587	0.0035	0.0423	0.0035	0.0344	0.0035	0.0286	С
110	1997-02	VDOT	M-77b Vanpool Incentive Programs in Virginia				x	1999	delayed	n/a	n/a	n/a	n/a	n/a	n/a			С
111 X	1998-03	WMATA	Bus Replacement (108 buses)	х				1999	1999									SP
112 X	1998-03	MCG	Montgomery County Bus Replacement	х					Ongoing									SP
113 X	1998-03	PG	Prince George's County Bus Replacement	х				1998	Ongoing									SP
114 X	1998-03	FDC	Frederick County Bus Replacement	х														SP
117 X	1998-03	VDOT	Arlington County Four Mile Run Bike Trail	х				1999	2009	0.0032	0.0458	0.0032	0.0333	0.0032	0.0277	0.0032	0.0230	С
118 X	1998-03	VDOT	Northern Virginia Turn Bays	х				2000	1998	0.0056	0.0806	0.0056	0.0587	0.0056	0.0487	0.0056	0.0404	TR
119 X	1998-03	VDOT	Fairfax City Bus Replacement	х				2001	2003									SP
121 X	1998-03	WMATA	WMATA Bus Replacement (252 buses)	х				2001	2001									SP
122 X	97 & 98 TIF	REGION	M-101a Mass Marketing Campagin (Consumer)			х			2005	0.21571884	2.9697	0.2157	2.1692	0.2157	1.8109	0.2157	1.5029	С
123 X	1999-04	MDOT	Various Park and Ride Lots(I-270/MD124, 450 & I- 170/MD-75, 54 spaces)		х			2001/1999	2001	0.1146	1.6483	0.1146	1.1999	0.1146	0.9958	0.1146	0.8265	С
	1999-04	MDOT	Signal Systems (197/MD-198, MD-382 TO US- 301,US301)	х				2000	2002	-0.0112	-0.1612	-0.0112	-0.1173	-0.0112	-0.0974	-0.0112	-0.0808	TR
	1999-04	VDOT	Transit Center at 7 Corners	х				2002	2001	0.0064	0.0916	0.0064	0.0667	0.0064	0.0553	0.0064	0.0459	С
126 X	1999-04	VDOT	Falls Church Clean Diesel Bus Service	х				2000	2003									SP
127 X	1999-04	VDOT	VA 234 Bike Trail			х		2001	2010	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	С
128 X	1999-04	VDOT	PRTC Ridesharing	х				on-going	2000 ongoing	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	С
130 X	1996-01	VDOT	M-14: I-66 Feeder Bus Fare Buy Down	х				J. J.	1998 onward	0.1750	2.5182	0.1750	1.8331	0.1750	1.5214	0.1750	1.2626	С
	2000-05	MDOT	Various park and Ride Lots	x				2002	2003	0.1035	1.4885	0.1035	1.0836	0.1035	0.8993	0.1035	0.7464	С
132 X	2000-05	MDOT	Signal Systems	х				Varies	on-going	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	TR
	2000-05	VDOT	250 Spaces at Gambrill/Hooes Rds. Park and Ride	X				2002	2004	0.0573	0.8241	0.0573	0.5999	0.0573	0.4979	0.0573	0.4132	С
	2000-05	VDOT	300 Spaces at Backlick Rd	x				2003	2007	0.0414	0.5952	0.0414	0.4333	0.0414	0.3596	0.0414	0.2984	С
	2000-05	VDOT	Accotink-Gateway Connector Trail	x				2002	2005	0.0318	0.4579	0.0318	0.3333	0.0318	0.2766	0.0318	0.2296	С
136 X	2000-05	VDOT	Columbia Pike Trail			х		2000	2009	0.0255	0.3663	0.0255	0.2666	0.0255	0.2213	0.0255	0.1837	С
	2000-05	VDOT	Lee Highway trail	х				2000	2007	0.0127	0.1831	0.0127	0.1333	0.0127	0.1106	0.0127	0.0918	С
	2000-05	VDOT	Arlington Bus Shelter Improvements	X				2005	2005	0.0032	0.0458	0.0032	0.0333	0.0032	0.0277	0.0032	0.0230	C
	2000-05	VDOT	Pentagon Metrostation Improvements	X					2003	0.0541	0.7783	0.0541	0.5666	0.0541	0.4702	0.0541	0.3903	С
	2000-05	MDOT	East/West Intersection Improvements			x		2005	2005	0.0795	1.1446	0.0795	0.8332	0.0795	0.6915	0.0795	0.5739	С
	2001-06	Feds	Federal Transit/Ridesharing subsidy	х				on-going	2000	0.6078	8.7450	0.6078	6.3660	0.6078	5.2833	0.6078	4.3848	С
	2002-07	WMATA	100 CNG buses	X				2002		3.00.0	5	3.00.0	5.5555	3.55.0	5.2555	3.00.0		SP (TCM)
143 X	2002-07	WMATA	ULSD with CRT filters	×				2006	Jun-06	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	H (TCM)
143 X	2002-07	DC	Replace-23 12 Taxicabs with CNG cabs	^			~	2005	2006	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	H (TCM)
	2003-08	DC	D.C.Incident Response & TrafficManagement System	x			^	2005	2004	0.2761	3.9730	0.2761	2.8922	0.2761	2.4003	0.2761	1.9921	TR
	2003-08	DC	Bicycle Lane in D. C. (35 Mile)	×				2005	2004	0.0428	0.8392	0.0428	0.6134	0.0428	0.4896	0.0428	0.4064	C (TCM)
140 X		DC	Bicycle Lane in D. C. (35 Mile) Bicycle Racks in D. C. (500)	X				2005	2008	0.0040	0.0955	0.0428	0.0699	0.0428	0.4896	0.0428	0.4064	C (TCM)
147			Dicycle Nacks III D. C. (000)	Α.	1	1		2000	ZUU4	0.0040	0.0900	0.0040	0.0099	0.0040	0.0047	0.0040	0.0404	C (ICM)
147 X 148 X	2003-08	DC	External Bicycle Racks on WMATA Buses in D. C. (600)	х				2005	2003	0.0206	0.2982	0.0206	0.2171	0.0206	0.1800	0.0206	0.1494	C (TCM)

TERM TRACKING SHEET

TRANSPORTATION EMISSION REDUCTION MEASURES Part B - Yearly PM $_{\rm 2.5}$ and Precursor NOx Emissions

110,0	ct Oatcy	ory. Tre- fre	ino ou cum,	C - Commute, H - Heavy Duty Venicies (Engine Technology)		PLEMENTA			ORIGINAL	ACTUAL									
NOs	CREDIT	TIP				SCALED-	UNDER-		COMPLETION	COMPLETION	20	116	2	1020	2	030	21	040	Project
1403				200 1505							PM2.6	Precursor NOx	PM2.5	Precursor NOx	PM2.5	Precursor NOx	PM2.6	Precursor NOx	
		CREDITED		PROJECT	FULL	BACK	WAY	REM	DATE	DATE	0.0000		0.0000		0.0000		0.0000		Category *
150	Х	2003-08	DC	Sidewalks in D.C. (\$ 5 million)	Х				2005	2004	0.3688	5.3710	0.3688	3.9106	0.3688	3.2400	0.3688	2.6889	С
151	Х	2003-08	DC	CNG Refuse Haulers (2)	Х				2005	2004									H (TCM)
152	Х	2003-08	DC	Circulator /Feeder Bus Routes	Х				2005	2003	0.1325	1.9373	0.1325	1.4106	0.1325	1.1681	0.1325	0.9694	С
153	Х	2003-08	MDOT	Commuter Tax Credit	Х				2005	n/a	0.8145	11.8243	0.8145	8.6087	0.8145	7.1356	0.8145	5.9220	С
155		2003-08	MDOT	Employer Vanpool Program (WWB)				Х	2005										С
156	Х	2003-08	MDOT	Green Line Link			Х		2005	n/a	0.0326	0.4503	0.0326	0.3276	0.0326	0.2735	0.0326	0.2270	С
157	Х	2003-08	MDOT	Park & Ride Lots - Southern Maryland			Х		2005	2005	0.0704	0.9256	0.0704	0.6728	0.0704	0.5660	0.0704	0.4697	С
158	Х	2003-08	MDOT	Prince George's County- Bus Exp			Х		2005	n/a	0.4574	6.3152	0.4574	4.5942	0.4574	3.8360	0.4574	3.1836	С
159	Х	2003-08	MDOT	MTA - Bus Service Expansion			Х		2005	n/a	0.1108	1.5063	0.1108	1.0955	0.1108	0.9168	0.1108	0.7609	С
160	х	2003-08	MDOT	Ride- On - Super Discount			х		2005	n/a	0.0094	0.1366	0.0094	0.0995	0.0094	0.0824	0.0094	0.0684	С
161	х	2003-08	Regional	Regional Traveler Information Systems			х		2005	/A:2000 before	3.6007	51.8103	3.6007	37.7158	3.6007	31.3014	3.6007	25.9780	TR
162	х	2003-08	MDOT	Universal Transportation Access (MD + WMATA)			х		2005	n/a	0.1654	2.4082	0.1654	1.7534	0.1654	1.4527	0.1654	1.2056	С
163	х	2003-08	MCG	Construction of 1300 additional Parking Spaces at Grosvenor Metro Garage	х				2004		0.0765	0.9986	0.0765	0.7258	0.0765	0.6113	0.0765	0.5073	C (TCM)
164	х	2003-08	MCG	Bethesda Shuttle Bus Services	х				2004		0.0316	0.4617	0.0316	0.3362	0.0316	0.2784	0.0316	0.2310	С
165	x	2003-08	MCG	External Bicycle Racks on Ride-On Buses in Montgomery County	х				2004		0.0064	0.0930	0.0064	0.0677	0.0064	0.0561	0.0064	0.0466	С
166	X	2003-08	MCG	New CNG Powered Light Duty Vehicle fleet in the County	x				2004			0.0000	3.000				0.000	310.100	SP
167	×	2003-08	MCG	Free Bus Service on Selected Routes on I-270	Х				2004		0.0110	0.1599	0.0110	0.1164	0.0110	0.0965	0.0110	0.0801	С
	X	2003-08	MCG	Annual Sidewalk Program	X				2004		0.1756	2.5576	0.1756	1.8622	0.1756	1.5428	0.1756	1.2804	С
168	^	2003-08	MDOT	Bethesda Breeze/International Express Metrobus	^			Х	2004	Removed	0.0345	0.5169	0.0345	0.3765	0.0345	0.3107	0.0345	0.2579	С
			MDOT	Bethesda-8, Silver Spring Downtown Dasher and Prince															
170		2003-08	MDOT	Georges Co. Shuttles at 3 PNR lot Proposed Transportation Management District in				X	2005	Removed	0.0623	1.0184	0.0623	0.7427	0.0623	0.6058	0.0623	0.5028	С
171		2003-08	MDOT	Montgomery County (Rockville and Gaithersburg)				Х	2005	Removed	0.0496	0.7591	0.0496	0.5531	0.0496	0.4550	0.0496	0.3776	С
172	Х	2003-08	MDOT	Sidewalks (Bikes/Pedestrian) at / near Rail Stations Neighborhood Sidewalks Improvements	Х				2005	2002	0.0983	1.4213	0.0983	1.0347	0.0983	0.8581	0.0983	0.7122	С
173	Х	2003-08	MDOT	(Bike/Pedestrian) Neighborhood Conservation Program - Neighborhood	Х				2005	2004	0.0038	0.1712	0.0038	0.1259	0.0038	0.0944	0.0038	0.0783	С
174	Х	2003-08		Sidewalks Improvements (Bikes/Pedestrian)		Х			2005	Ongoing	0.0033	0.1498	0.0033	0.1102	0.0033	0.0826	0.0033	0.0685	С
175	Х	2003-08	MDOT	Maryland bus Transit Service Expansion	Х				2005	2004	0.2366	3.0876	0.2366	2.2442	0.2366	1.8900	0.2366	1.5685	С
176	Х	2003-08	VDOT	Universal Transportation Access Program	Х				2005	2005-07	0.0124	0.1806	0.0124	0.1315	0.0124	0.1090	0.0124	0.0904	С
177	Х	2003-08	VDOT	Interactive Rideshare & Kiosk Initiative			Х		2008 onward		0.0049	0.0682	0.0049	0.0496	0.0049	0.0414	0.0049	0.0344	С
178	Х	2003-08	VDOT	Mobile Commuter Stores	Х				2005	2005	0.0273	0.3772	0.0273	0.2744	0.0273	0.2291	0.0273	0.1901	С
179	Х	2003-08	VDOT	Telework Incentive Program (Telework VA) ¹	х				2005	Fall 2006	0.0080	0.1153	0.0080	0.0839	0.0080	0.0696	0.0080	0.0578	С
180	Х	2003-08	VDOT	Commuter Choice	Х				2005		0.0091	0.1356	0.0091	0.0988	0.0091	0.0816	0.0091	0.0677	С
181	Х	2003-08	VDOT	Employer Shuttle Services				х	2005		0.1081	1.6096	0.1081	1.1723	0.1081	0.9682	0.1081	0.8035	С
184	Х	2003-08	VDOT	Van Start / Van Save	х				2005	till 2006									С
185	х	2003-08	VDOT	Metro Shuttle Bus			х		2005	1999-2005	0.0188	0.2468	0.0188	0.1794	0.0188	0.1509	0.0188	0.1253	С
187	х	2003-08	VDOT	VRE Mid-Day Train Service	х				2005	2002	0.0204	0.2804	0.0204	0.2040	0.0204	0.1704	0.0204	0.1414	С
190	х	2003-08		Employer Vanpool Program (Bridge deck)	х				2005	2004 - 2008									С
191	х	2003-08	VDOT	Town of Leesburg P&R Lot	х				2005	2010	0.0280	0.3755	0.0280	0.2730	0.0280	0.2289	0.0280	0.1900	С
192	x	2003-08	VDOT	District-wide P&R Lots	X				2005	2001-2005	0.1589	2.1456	0.1589	1.5604	0.1589	1.3072	0.1589	1.0848	С
193	X	2003-08	VDOT	Additional Parking at 4 Metro stations	X				2005	2005	0.2440	3.1849	0.2440	2.3149	0.2440	1.9495	0.2440	1.6180	C
196	X	2003-08	WMATA	64 CNG Buses (Purchased in 2001)	X				2005	2004	5.2110	3.1049	J.2110	2.0140	3.2440	1.0400	3.2440	1.0100	SP (TCM)
	Χ			250 CNG Buses (175 buses by Dec. 2004; 75 buses by															
197	Х	2003-08	WMATA	mid 2006)	Х	1	L		2005	Jun-06					1				SP

TERM TRACKING SHEET

TRANSPORTATION EMISSION REDUCTION MEASURES Part B - Yearly PM $_{\rm 2.5}$ and Precursor NOx Emissions

* Projec	t Catego	ory: TR - Ti	raffic Stream,	C - Commute, H - Heavy Duty Vehicles (Engine Technology														l	т
					IM	PLEMENT	ATION STA	TUS	ORIGINAL	ACTUAL									-
NOs	REDIT	TIP				SCALED-	UNDER-		COMPLETION	COMPLETION	20	16	2	020	2	030	20	040	Project
	ΓAKEN	CREDITE	D AGENCY	PROJECT	FULL	BACK	WAY	REM	DATE	DATE	PM2.6	Precursor NOx	PM2.5	Precursor NOx	PM2.5	Precursor NOx	PM2.6	Precursor NOx	Category *
198	х	2003-08	WMATA	60 Engine Replacement (MY 1992 & 1993 MY buses)	х				2004	2004									SP
199	Х	2003-08	WMATA	Car Sharing Program	х				2005	2004	0.0133	0.1732	0.0133	0.1259	0.0133	0.1060	0.0133	0.0880	С
200	Х	2003-08	WMATA	Bikes Racks on WMATA Buses in VA (372 Bike Racks)	х				2005	2004	0.0128	0.1854	0.0128	0.1350	0.0128	0.1119	0.0128	0.0929	C (TCM)
202		2003-08	MDOT	Fleet Replacement (state auto fleet, gas to hybrid, 250 vehicles)				Х	2005		0.0492	0.7082	0.0492	0.5155					SP
203	Х	2003-08	MDOT	Replace 55 Montgomery County 10 yr. old buses w/ new CNG buses			х		2005	Ongoing	0.6024	8.6685	0.6024	6.3103					SP
204		2003-08	MDOT	Neighborhood Bus Shuttle (5 circulator routes)				Х	2005		0.0824	1.1787	0.0824	0.8580	0.0824	0.7126	0.0824	0.5914	С
205	Х	2003-08	MDOT	New Surface Parking at Transit Centers (500 spaces)			х		2005	2005	0.0436	0.5700	0.0436	0.4143	0.0436	0.3488	0.0436	0.2895	С
206		2003-08	MDOT	Additional Bike Lockers at Metro-Stations				Х	2005		0.1395	2.0172	0.1395	1.4685	0.1395	1.2179	0.1395	1.0107	С
207	Х	2003-08	MDOT	Bike Facilities at PnR Lots or other similar location			х		2005	2005	0.1144	1.5933	0.1144	1.1592	0.1144	0.9667	0.1144	0.8023	С
208		2003-08	MDOT	CNG Fueling Stations				Х	2005										SP
209		2003-08	MDOT	Gas cap replacements (ROP Credit)				Х	2005		N/A	N/A	N/A	N/A	N/A	N/A			SP
210		2003-08	MDOT	Gas can turnover (ROP Credit)				х	2005		N/A	N/A	N/A	N/A	N/A	N/A			SP
211	Х	2003-08	MDOT	External Bicycle Racks on WMATA Buses (486 MD buses)	х				2005	2002	0.0148	0.2137	0.0148	0.1556	0.0148	0.1290	0.0148	0.1071	C (TCM)
212	Х	2003-08	MDOT	Bike \ Pedestrian Trail - Anacostia River Walk			х		2005	Ongoing	0.0022	0.0463	0.0022	0.0339	0.0022	0.0268	0.0022	0.0223	С
213		2003-08	MDOT	Transit Prioritization - Queue Jumps				Х	2005		0.0225	0.3639	0.0225	0.2654	0.0225	0.2168	0.0225	0.1799	С
214	Х	2003-08	MDOT	Commuter Choice Benefit/Tax Credit - Marketing Expansion	х				2005	Ongoing	0.5732	8.3042	0.5732	6.0457	0.5732	5.0126	0.5732	4.1601	С
215	Х	2003-08	MDOT	Improvements to Pedestrian Access in TOD areas (4 locations)			х		2005	Ongoing	0.0567	0.8434	0.0567	0.6142	0.0567	0.5074	0.0567	0.4211	С
216	Х	2003-08	MDOT	Telecommuting Expansion ¹	х				2005	Ongoing	0.8466	11.6148	0.8466	8.4488	0.8466	7.0611	0.8466	5.8602	С
217		2003-08	MDOT	Replace older Diesel Engine in Public Sector vehicles				Х	2005										Н
218	Х	2003-08	VDOT	MV-92 Telecommuting Program - Expanded ¹	х				2005	2005	0.9041	12.4039	0.9041	9.0228	0.9041	7.5408	0.9041	6.2584	С
219	Х	2003-08	VDOT	MV-123 Employer Outreach for Public Sector Employees	х				2005	2003	0.1574	2.2923	0.1574	1.6690	0.1574	1.3828	0.1574	1.1476	С
220	Х	2003-08	REGION	Signal System Optimization	х				2005	2005	1.0065	14.4817	1.0065	10.5421	1.0065	8.7492	1.0065	7.2612	TR
221	Х	2007-12	MDOT	Two P & R Lots in Frederick County (99 spaces)	х				2007	2008	0.0121	0.1636	0.0086	0.0831	0.0086	0.0709	0.0086	0.0589	С
222	Х	2007-12	MDOT	MDOT P & R Lots at US 340 (66-99 spaces, Frederick Co.)	х				2007	2007									
223	Х	2008-13	MDOT	MCG/MDOT P & R Lots at US 340 & Mt Zion Rd. (37 speces)	x				2008	2008	0.0093	0.1256	0.0093	0.0913	0.0093	0.0765	0.0093	0.0635	
224	Х	2008-13	MDOT	MCG/MDOT P & R Lots at US 340 & Mt Zion Rd expansion (39 speces)			х		2011	2011									
225	Х	2008-13	MDOT	MCG/MDOT P & R Lots at I 70 & MD 355 (100 speces)			х		2010	2010	0.0123	0.1653	0.0123	0.1202	0.0123	0.1007	0.0123	0.0836	
226	Х	2008-13	MDOT	MCG/MDOT P & R Lots at I 270 & MD 80 (164 speces)	х				2009	2009	0.0201	0.2710	0.0201	0.1971	0.0201	0.1652	0.0201	0.1371	
227	Х	2008-13	MDOT	MDOT Syglal System Reviewing			х		2010	on-going									
228	Х	2008-13	MDOT	MDOT Takoma Langely Transit Center			х		2012	2012	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
								4	vailable Emis	sions Credits	17.655	283.411	15.744	187.199	15.141	150.310	15.141	124.747	

TRANSPORTATION EMISSION REDUCTION MEASURES (CLRP Projects Only) Part B - Yearly PM 2.5 and Precursor NOx Emissions

Project Category: TR - Traffic Stream, C - Commute, H - Engine Technology (Heavy Dudy Vehicles), SP- Specific Vehicle Type

				onimate, 11 - Engine Technology (Fleavy Dudy Ve		IPLEMENTA			PROJECTED	ACTUAL		TONS/A	NNUM RED	UCTION CRE	DITED				
NOs	CREDIT	TIP				SCALED-	UNDER-		COMPLETION	COMPLETION	20	116	2	2020	2	2030	20)40	Project
	TAKEN	CREDITED	AGENCY	PROJECT	FULL	BACK	WAY	REM	DATE	DATE	PM2.5	Precursor NOx	PM2.5	Precursor NOx	PM2.5	Precursor NOx	PM2.6	Precursor NOx	Category
221		1995-00 TIP		M-24 Speed Limit Adherence	TOLL	BAOK	****	IXLIVI	2010	DATE	1.8471	26.5777	2.1072	22.0719	0.7941	6.9030	0.7941	5.7290	TR
222				Rock Spring Park Pedestrian Amenities				Х			0.0270	0.3886	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-
223	Х	1996-01 TIP		Olney Transit Center Park and Ride					2015		0.0540	0.7772	0.0531	0.5559	0.0147	0.1279	0.0147	0.1062	С
224	Х	1996-01 TIP		Damascus Park and Ride						2003	0.0270	0.3886	0.0265	0.2780	0.0074	0.0640	0.0074	0.0531	С
225	Х	1996-01 TIP	DC	M-103 Taxicab Replacement (DC)				Х	2015		0.0000	0.0000	5.2412	54.8984	12.6415	109.8936	12.6415	91.2039	Н
226	Х	STADIUM A	ANALYSIS	M-103 Taxicab Replacement (MD)				Х	2008		0.0000	0.0000	4.1929	43.9187	5.0566	43.9574	5.0566	36.4816	Н
227	X	1997-02 TIP	MDOT	Shady Grove West Transit Center Park and Ride				Х			0.0675	0.9715	0.0663	0.6949	0.0184	0.1599	0.0184	0.1327	С
228	Х	1997-02 TIP	MGC	Olney Transit Center Park and Ride					2015		0.0000	0.0000	0.0218	0.2280	0.0147	0.1279	0.0147	0.1062	С
229	Х	1997-02 TIP	MGC	White Oak Park and Ride					2008		0.1350	1.9431	0.1327	1.3898	0.0368	0.3199	0.0368	0.2655	С
230	Х	1997-02 TIP	MGC	Damascus Park and Ride						2003	0.0000	0.0000	0.0082	0.0855	0.0055	0.0480	0.0055	0.0398	С
231	Х	1997-02 TIP	MGC	Four Corners Transit Center					2015		0.0068	0.0972	0.0066	0.0695	0.0018	0.0160	0.0018	0.0133	С
232		1997-02 TIP	MGC	Burtonsville Transit Center				Х			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-
233	Х	1997-02 TIP	MGC	Silver Spring Transit Access							0.0068	0.0972	0.0054	0.0570	0.0037	0.0320	0.0037	0.0265	С
234	Х	1997-02 TIP	MGC	Shady Grove Parking Construction						2003	0.1283	1.8459	0.1261	1.3204	0.0350	0.3039	0.0350	0.2522	С

PLAN TOTAL	0.3579	31.7268	0.3804	26.0561	0.1196	7.9425	0.1196	6.5917
GRAND TOTAL (Current Measures + CLRP plan)	18.013	315.138	16.124	213.255	15.261	158.252	15.261	131.338

DEFINITIONS:

Project Numbers implemented fully prior to 2000 were removed from the TERM Tracking Sheet

CREDIT TAKEN (X means emissions reduction credits taken):

TIP - Emissions credits are taken for projects being implemented, according to the progress reporting schedules provided by

the implementing agencies (contained in Appendix J of Conformity Document). No credit has been taken for projects in which only some components of the measure have been implemented.

CLRP - Credit is taken for each of these elements of the CLRP according to the schedule provided by the implementing agency.

IMPLEMENTATION STATUS:

FULL = project is completed as planned at the time of analysis.

SCALED BACK = project is completed, but at a different level than assumed at the time of analysis (i.e., purchased 50 buses instead of 100)

UNDERWAY = project is not complete, but is close enough that credit may be taken (i.e., under construction, NOT just out for bid)

REMOVED = project no longer expected to be implemented or constructed

COMPLETION DATE

PROJECTED = project completion date originally expected (i.e., at time of emissions analysis)

ACTUAL = actual year project was open for use, or expected to be open for use if under construction

REMOVED

projects Emissions credits are not counted in toal available emissions credits

Line items 218, 216, 179, 92 are all credited as part of M-92 Regional Telecommute Support TERM, line item #75

Line item 108 & 219 credits are taken only for year 2010

VII. CONFORMITY ASSESSMENT - CRITERIA AND PROCEDURES

EPA's conformity regulations identify criteria and procedures for the determination of conformity. These regulations vary according to pollutants and to different actions being considered and according to the time period and the area's standing with EPA in terms of meeting SIP milestone requirements. The March 24, 2010 amendments to EPA's regulations represent the current transportation conformity requirements. The following sections indicate: (1) the appropriate sections of the regulations which must be adhered to in this conformity analysis, and (2) the manner in which the regulations have been met.

Conformity Criteria

This section identifies the criteria (sections of the regulations) which the CLRP must meet in order to conform to current implementation plans in the District of Columbia, Maryland and Virginia. Exhibit 26 lists all sections of the regulations relevant at this time to assessment of the 2011 CLRP. The following discussion indicates the manner in which each criterion was met.

Sec. 93.110 Criteria and procedures: Latest planning assumptions.

The conformity assessment is based upon the most current planning assumptions available for the Washington region. Round 8.0a Cooperative Forecasts were approved for use in the conformity analysis of the 2011 CLRP. These forecasts were developed and reviewed with an explicit perspective on transportation and land use interaction.

Travel demand modeling methods incorporating the latest travel time refinements were used in this study. Other refinements include development and use of a comprehensive set of transit and HOV networks. As with previous conformity analyses, transit fares are modeled explicitly in the modal choice process. The analysis includes actual fares for the base year simulation, with forecast year fares based on current (March 2011) fares with increases through time as a function of increases in the consumer price index. Base year fares are modeled to reflect the WMATA tariff and other actual charges levied by each transit provider; the updated fare tariffs provided the basis for future analysis years. Transit operating policies, such as hours and frequency of service, are updated annually and modeled explicitly to reflect actual conditions in the peak and off-peak hours. The overall travel demand modeling process is continually monitored and refined as needed to reflect changing conditions, whether related to travel patterns, TERM effectiveness or other changes, as new data become available.

Exhibit 26

Conformity Criteria

All Actions at all times:

Sec. 93.110 Latest planning assumptions. Sec. 93.111 Latest emissions model.

Sec. 93.112 Consultation.

Transportation Plan:

Sec. 93.113(b) TCMs.

Sec. 93.118 and/or Emissions budget and /or Interim

Sec. 93.119 emissions.

TIP:

Sec. 93.113(c) TCMs.

Sec. 93.118 and/or Emissions budget and /or Interim

Sec. 93.119 emissions.

Project (From a Conforming Plan and TIP):

Sec. 93.114 Currently conforming plan and TIP.
Sec. 93.115 Project from a conforming plan and TIP.

Sec. 93.116 CO, PM_{10} , and $PM_{2.5}$ hot spots.

Sec. 93.116 CO, PM_{10} , and $PM_{2.5}$ not spots. Sec. 93.117 PM_{10} and $PM_{2.5}$ control measures.

Project (Not From a Conforming Plan and TIP):

Sec. 93.113(d) TCMs.

Sec. 93.114 Currently conforming plan and TIP.
Sec. 93.116 CO, PM₁₀, and PM_{2.5} hot spots.
Sec. 93.117 PM₁₀ and PM_{2.5} control measures.
Sec. 93.118 and/or Emissions budget and/or Interim

Sec. 93.119 emissions

Sec. 93.111 Criteria and procedures: Latest emissions model.

The current analysis used MOBILE6.2, the latest emission factor model specified by EPA for use in preparation of state implementation plans and conformity assessments.

Sec. 93.112 Criteria and procedures: Consultation.

The TPB offers many opportunities for public comment. Since the initial consultation procedures were developed, TPB has expanded the opportunity for public involvement through a series of initiatives. Examples include: the public comment period at the start of each TPB meeting; regular public forums and workshops on major topics; a monthly newsletter; and the institution of the Citizens Advisory Committee. The procedures are summarized into a report called the TPB <u>Participation Plan</u> (Reference 24).

Exhibit 27 lists the schedule for public involvement/consultation opportunities associated with the conformity analysis of the 2011 CLRP. Additional materials are contained as Appendix C.

Sec. 93.113 Criteria and procedures: Timely implementation of TCMs.

The policy element of the 2011 CLRP specifically addresses the implementation of projects and measures designed to achieve air quality attainment goals. Previous TIPs contained CMAQ-funded TERMs and TCM projects which are elements of the regional ozone attainment plan. As a means of addressing this section of the conformity regulations, implementing agencies prepared progress reports on the implementation status of each of these projects. Appendix I contains the responses from each implementing agency, which document the implementation progress. Some are subject to normal delays associated with the programming process.

Sec. 93.114 Criteria and procedures: Currently conforming transportation plan and TIP.

There is a currently conforming plan and program in the Washington region. This current conformity analysis is designed to update and supersede the (conforming) 2010 CLRP, adopted by the TPB in October, 2010, and amended in July, 2011.

Schedule for the 2011 Financially Constrained Long-Range Transportation Plan (CLRP)

*October 20, 2010	TPB is Briefed on Draft Call for Projects		
*November 17, 2010	TPB Releases Final Call for Projects - Transportation Agencies Begin Submitting Project Information through On-Line Database		
January 21, 2011	<u>DEADLINE:</u> Transportation Agencies Complete On-Line Submission of Draft Project Inputs.		
February 4, 2011	Technical Committee Reviews Draft CLRP Project Submissions and Draft Scope of Work for the Air Quality Conformity Assessment		
February 10, 2011 Released	CLRP Project Submissions and Draft Scope of Work for Public Comment		
*February 16, 2011	TPB is Briefed on Project Submissions and Draft Scope of Work		
March 12, 2011	Public Comment Period Ends		
*March 16, 2011	TPB Reviews Public Comments and is asked to Approve Project Submissions and Draft Scope of Work		
July 1, 2011	<u>DEADLINE:</u> Transportation Agencies Finalize Congestion Management Documentation Forms (where needed) and CLRP Forms ¹ . (Submissions must not impact conformity inputs; note that the deadline for conformity inputs was March 1, 2010).		
*September 21, 2011	TPB Receives Status Report on the Draft CLRP and Conformity Assessment		
October 13, 2011	Draft CLRP and Conformity Assessment Released for Public Comment at Citizens Advisory Committee (CAC)		
*October 19, 2011	TPB Briefed on the Draft CLRP and Conformity Assessment		
November 12, 2011	per 12, 2011 Public Comment Period Ends		
*November 16, 2011	TPB Reviews Public Comments and Responses to Comments, and is Presented the Draft CLRP and Conformity Assessment for Adoption		

^{*}TPB Meeting

¹ By this date, the CLRP forms must include information on the Planning Factors, Environmental Mitigation, Congestion Management Information, and Intelligent Transportation Systems; separate Congestion Management Documentation Forms (where needed) must also be finalized.

Sec. 93.115 Criteria and procedures: Projects from a plan and TIP.

All projects advanced for implementation will come from a conforming plan and program.

Sec. 93.116 Criteria and procedures: Localized CO and PM₁₀ violations (hot spots).

Any project advanced in the current TIP must first have met this criterion as an element of its environmental study. (The Washington area is now in attainment for both carbon monoxide and PM_{10} .)

Sec. 93.117 Criteria and procedures: Compliance with PM_{10} and $PM_{2.5}$ control measures.

The Washington area is in attainment for PM_{10} . Per $PM_{2.5}$ requirements, a SIP for the Washington nonattainment area was developed and submitted to EPA in April, 2008.

93.118 Motor vehicle emissions budget

As discussed in earlier in this report, this analysis includes use of the: (1) existing budgets developed as part of the 8-hour ozone SIP, and (2) direct PM_{2.5} and precursor NOx emissions budgets contained in the April 2008 PM_{2.5} SIP submittal which are awaiting EPA's approval or adequacy finding for use in conformity. Total VOC, NOx, PM_{2.5}, and CO emissions for all plan milestone analysis years are within their respective emissions budgets.

Sec. 93.119 Criteria and procedures: Interim emissions in areas without motor vehicle budgets

The forecast year PM_{2.5} pollutant emissions are below those of the 2002 base year.

NOTE: See EPA's conformity regulations for the full text associated with each section's requirements.

VI. FINDINGS

The analytical results described above provide a basis, in relation to US EPA conformity regulations, for a determination of conformity of the year 2011 Constrained Long Range Plan for The Washington Metropolitan Region, with requirements of the Clean Air Act Amendments of 1990.

APPENDIX A

Air Quality Conformity Scope of Work

AIR QUALITY CONFORMITY ASSESSMENT: 2011 CONSTRAINED LONG RANGE PLAN AMENDMENTS

SCOPE OF WORK

I. INTRODUCTION

Projects solicited for the 2011 Constrai ned Long Range Plan (CLRP) are so heduled to be finalized at the March 16, 2011 TPB m eeting. This scope of work reflects the tasks and schedule designed for the air quality conformity assessment leading to adoption of the plan on November 16, 2011. This w ork effort addresses requirements associated with attainment of the ozone st andards (volatile organic com pounds (VOC) and nitrogen oxides (NOx) as ozone pr ecursor pollutants), and fine particles (PM 2.5) standards (direct particles and precursor NOx), as well as maintenance of the winter time carbon monoxide (CO) standard.

The plan must m eet air quality con formity regulations: (1) as originally published by the Environm ental Protection Agency (EPA) in the N ovember 24, 1993 Fede ral Register, and (2) as subsequently amended, most recently on March 24, 2010, and (3) as detailed in periodic FHWA / FTA and EPA guidance. These regulations specify both technical criteria and consultation procedur es to f ollow in perf orming the assessment.

This scope of work provides a context in which to perf orm the conformity analyses and presents an outline of the work tasks required to address all regulations currently applicable.

II. REQUIREMENTS AND APPROACH

A. Criteria (See Exhibit 1)

As described in the 1990 Clean Air Act Am endments, conformity is demonstrated if transportation plans and programs:

- 1. Are consistent with most recent estimates of mobile source emissions,
- 2. Provide expeditious implementation of TCMs, and
- 3. Contribute to annual emissions reductions.

Assessment criteria for ozone, CO, and PM_{2.5} are discussed below.

Ozone season pollutants will be assessed by comparing the "action" scenarios to the 8-hour ozone area 2008 Reasonable Further Progress (RFP) VOC and NOx emissions budgets which were deemed adequate for use in conformity by EPA in September 2009.

The region is in maintenance for mobile source wintertime CO and, as in prior conformity assessments, is required to show that pollutant levels do not exceed the approved budget.

PM_{2.5} pollutants will be assessed both by comparing the "action" scenarios to a 2002 base and by comparing the pollutant levels to the budgets submitted by the MWAQC to EPA in April, 2008. PM _{2.5} emissions will be inventoried for yearly totals (instead of on a daily basis as performed for Ozone and CO).

B. Approach (See Table 1 – Summary of Technical Approach)

The analytical approach has several changes since the last conformity assessment. A new version of the travel demand model, Version 2.3, will be released for use in February. A finer-grain zone system (3722 instead of 2191 TAZs), with a more detailed street base, was developed for use with the new model. Ozone season pollutants will no longer be assessed against the 1-hour ozone budgets. Round 8.0 Cooperative Forecasting was updated to Round 8.0a to reflect the inclusion of new land activity data in the Baltimore Region. A new definition of what classifies a project as "regionally significant" was designated (Attachment B).

In addition to the elements below, explicit inputs include: a summary list of major policy and technical input assumptions, shown as Attachment A; and all transportation network elements which will be finalized at the March 16, 2011 TPB meeting.

TABLE 1 – Summary of Technical Approach

	Ozone	Wintertime CO	PM _{2.5}
Pollutant:	VOC, NOx	СО	Direct particles, Precursor NOx
Emissions Assessment Criteria:	8-hour 2008 Reasonable Further Progress (RFP) ozone budgets	Approved wintertime CO emissions budget	Reductions from base 2002 inventory & comparison to budgets
Emissions Analysis Time-frame:	Daily	Daily	Annual
Geography:	8-hour ozone non-attainment area	DC, Arl., Alex., Mont., Pr. Geo.	8-hr. area less Calvert County
Network Inputs:	Regionally significant projects		
Land Activity:	NEW! Round 8.0a		
Modeled Area:	NEW! 3722 TAZ SYSTEM		
Travel Demand Model:	NEW! Version 2.3		
Mobile Model:	MOBILE6.2 emissions factors, consistent with the procedures utilized to establish the VOC and NOx mobile source emissions budgets	MOBILE6.2 Consistent with procedures used to establish the budget	MOBILE6.2 'Seasonal' approach, consistent with procedures used to establish the budget
Emissions Factor Refinements:	Use of 2008 vehicle registration data for all jurisdictions		

III. CONSULTATION

1. Execute TPB consultation procedures (as outlined in the consultation procedures report adopted by the TPB on May 20, 1998).

- 2. Participate in m eetings of MWAQC, its Te chnical Advisory Comm ittee and its Conform ity Subcommittee to discuss the scope of work activities, TERM development process, and other elements as needed; discuss at TPB meetings or forums, as needed, the following milestones:
 - CLRP Call for Projects
 - Scope of work
 - TERM proposals
 - Project submissions: documentation and comments
 - Analysis of TERMs, list of mitigation measures
 - Conformity assessment: documentation and comments
 - Process: comments and responses

IV. WORK TASKS

- 1. Receive project inputs from programming agencies and organize into conformity documentation listings (endorsement of financially constrained project submissions scheduled for March 16, 2011)
 - Project type, limits, NEPA approval, etc.
 - Phasing with respect to forecast years
 - Transit operating parameters, e.g. schedules, service, fares
 - Action scenarios
- 2. Review and Update Land Activity files to reflect Round 8.0 Cooperative Forecasts
 - Households by auto ownership, population and employment
 - Zonal data files
- 3. Prepare forecast year highway, HOV, and transit networks
 - Develop 2002, 2016, 2020, 2030, & 2040 highway networks
 - Prepare 2002, 2016, 2020, 2030, & 2040 transit network input files
 - Update transit fares and highway tolls, as necessary
- 4. Prepare 2002 travel and emissions estimates
 - Execute travel demand modeling
 - Calculate emissions (daily for ozone season VOC and NOx for ozone standard requirements; daily for winter CO; yearly for PM_{2.5} direct particles and precursor NOx)
- 5. Prepare 2016 travel and emissions estimates
 - Execute travel demand modeling
 - Develop Mobile6.2 emission factors
 - Calculate emissions (daily for ozone season VOC and NOx for ozone standard requirements; daily for winter CO; yearly for PM_{2.5} direct particles and precursor NOx)
- 6. Prepare 2020 travel and emissions estimates
 - Tasks as in year 2016 analysis
- 7. Prepare 2030 travel and emissions estimates

- Tasks as in year 2020 analysis
- Apply "transit constraint" using 2020 levels
- 8. Prepare 2040 travel and emissions estimates
 - Tasks as in year 2030 analysis, including transit constraint
- 9. Identify extent to which plan provides for expe ditious implementation of TCMs contained in ozone state implementation plans and emissions mitigation requirements of previous CLRP commitments (TERMs)
 - In the CLRP Call f or Projects document staff identified previous TCM and TERM commitments and requested a status report from the implementing agencies
 - Staff will review these reports as they are received and update the TERM tracking sheet that was included in the November 17, 2010 air quality conformity report
 - The status reports and the updated TERM tracking sheet will be included in the air quality conformity report.
- 10. Coordinate / analyze emissions reductions associated with CMAQ and similar projects
 - Obtain project-specific emissions reductions from programming agencies
 - Summarize daily ozone season VOC and NOx reductions for each milestone year
 - Summarize annual direct PM _{2.5} and precursor NOx PM _{2.5} pollutant reductions; explore additional TERMS
 - With oversight from the Travel Management Subcommittee, as needed, propose and analyze additional measures for their em issions benefits, costs, cost effectiv eness, and oth er evaluation criteria
- 11. Analyze results of above technical analysis
 - Reductions from 1990 (ozone season VOC and NOx and winter CO) and 2002 base (PM_{2.5})
 - 8-hour ozone season 2008 RFP VOC and NOx budgets, direct PM _{2.5} and precursor NOx budgets, and winter CO emissions budgets
 - With oversight from the Travel Managem ent Subcommittee, the Technical Committee and the TPB, identify and recomm end additional measures should the plan or program fail any test and incorporate measures into the plan
- 12. Assess conformity and document results in a report
 - Document methods
 - Draft conformity report
 - Forward to technical committees, policy committees
 - Make available for public and interagency consultation
 - Receive comments
 - Address comments and present to TPB for action
 - Finalize report and forward to FHWA, FTA and EPA

V. SCHEDULE

The schedule for the execution of these work activ ities is shown in Exhibit 2. The tim e line shows completion of the analytical tasks, preparation of a draft report, public and interagency review, response to comments and action by the TPB on November 16, 2011.

Exhibit 1

Conformity Criteria

All Actions at all times:

Sec. 93.110 Latest planning assumptions. Sec. 93.111 Latest emissions model.

Sec. 93.112 Consultation.

Transportation Plan:

Sec. 93.113(b) TCMs.

Sec. 93.118 and/or Emissions budget and /or Interim

Sec. 93.119 emissions.

TIP:

Sec. 93.113(c) TCMs.

Sec. 93.118 and/or Emissions budget and /or Interim

Sec. 93.119 emissions.

Project (From a Conforming Plan and TIP):

Sec. 93.114 Currently conforming plan and TIP.
Sec. 93.115 Project from a conforming plan and TIP.

Sec. 93.116 CO, PM_{10} , and $PM_{2.5}$ hot spots. Sec. 93.117 PM_{10} and $PM_{2.5}$ control measures.

Project (Not From a Conforming Plan and TIP):

Sec. 93.113(d) TCMs.

Sec. 93.114 Currently conforming plan and TIP.
Sec. 93.116 CO, PM₁₀, and PM_{2.5} hot spots.
Sec. 93.117 PM₁₀ and PM_{2.5} control measures.
Sec. 93.118 and/or Emissions budget and/or Interim

Sec. 93.119 emissions

Sec. 93.110 Criteria and procedures: Latest planning assumptions.

The conformity determination must be based upon the most recent planning assumptions in force at the time of the conformity determination.

Sec. 93.111 Criteria and procedures: Latest emissions model.

The conformity determination must be based on the latest emission estimation model available.

Sec. 93.112 Criteria and procedures: Consultation.

Conformity must be determined according to the consultation procedures in this subpart and in the applicable implementation plan, and according to the public involvement procedures established in compliance with 23 CFR part 450.

Sec. 93.113 Criteria and procedures: Timely implementation of TCMs.

The transportation plan, TIP, or any FHWA/FTA project which is not from a conforming plan and TIP must provide for the timely implementation of TCMs from the applicable implementation plan.

Sec. 93.114 Criteria and procedures: Currently conforming transportation plan and TIP.

There must be a currently conforming transportation plan and currently conforming TIP at the time of project approval.

Sec. 93.115 Criteria and procedures: Projects from a plan and TIP.

The project must come from a conforming plan and program.

Sec. 93.116 Criteria and procedures: Localized CO, PM₁₀, and PM_{2.5} violations (hot spots).

The FHWA/FTA project must not cause or contribute to any new localized CO, PM₁₀, and/or PM_{2.5} violations or increase the frequency or severity of any existing CO, PM₁₀, and /or PM_{2.5} violations in CO, PM₁₀, and PM_{2.5} nonattainment and maintenance areas.

Sec. 93.117 Criteria and procedures: Compliance with PM₁₀ and PM_{2.5} control measures.

The FHWA/FTA project must comply with PM_{10} and $PM_{2.5}$ control measures in the applicable implementation plan.

Sec. 93.118 Criteria and procedures: Motor vehicle emissions budget

The transportation plan, TIP, and projects must be consistent with the motor vehicle emissions budget(s).

Sec. 93.119 Criteria and procedures: Interim emissions in areas without motor vehicle budgets

The FHWA/FTA project must satisfy the interim emissions test(s).

NOTE: See EPA's conformity regulations for the full text associated with each section's requirements.

Schedule for the 2011 Financially Constrained Long-Range Transportation Plan (CLRP)

*October 20, 2010	TPB is Briefed on Draft Call for Projects
*November 17, 2010	TPB Releases Final Call for Projects - Transportation Agencies Begin Submitting Project Information through On-Line Database
January 21, 2011	<u>DEADLINE:</u> Transportation Agencies Complete On-Line Submission of Draft Project Inputs.
February 4, 2011	Technical Committee Reviews Draft CLRP Project Submissions and Draft Scope of Work for the Air Quality Conformity Assessment
February 10, 2011 Released	CLRP Project Submissions and Draft Scope of Work for Public Comment
*February 16, 2011	TPB is Briefed on Project Submissions and Draft Scope of Work
March 12, 2011	Public Comment Period Ends
*March 16, 2011	TPB Reviews Public Comments and is asked to Approve Project Submissions and Draft Scope of Work
July 1, 2011	<u>DEADLINE:</u> Transportation Agencies Finalize Congestion Management Documentation Forms (where needed) and CLRP Forms ¹ . (Submissions must not impact conformity inputs; note that the deadline for conformity inputs was March 1, 2010).
*September 21, 2011	TPB Receives Status Report on the Draft CLRP and Conformity Assessment
October 13, 2011	Draft CLRP and Conformity Assessment Released for Public Comment at Citizens Advisory Committee (CAC)
*October 19, 2011	TPB Briefed on the Draft CLRP and Conformity Assessment
November 12, 2011	Public Comment Period Ends
*November 16, 2011	TPB Reviews Public Comments and Responses to Comments, and is Presented the Draft CLRP and Conformity Assessment for Adoption

*TPB Meeting

¹ By this date, the CLRP forms must include information on the Planning Factors, Environmental Mitigation, Congestion Management Information, and Intelligent Transportation Systems; separate Congestion Management Documentation Forms (where needed) must also be finalized.

WORK SCOPE ATTACHMENT A

POLICY AND TECHNICAL INPUT ASSUMPTIONS AIR QUALITY CONFORMITY ANALYSIS OF 2011 CLRP

1. Land Activity

- Round 8.0a Cooperative Forecasts

2. Policy and Project Inputs

- Highway, HOV, and transit projects and operating parameters
- Financially constrained project submissions to be advanced by the TPB on 3/16/2011

3. Travel Demand Modeling Methods

- Version 2.3 Travel Model
- All HOV facilities at HOV-3 in 2020 & beyond
- Transit "capacity constraint" procedures (2020 constrains later years)

4. Emissions Factors

- Use MOBILE6.2 emissions factors incorporating 2008 vehicle registration data
- Seasonal PM_{2.5} factors for total directly emitted particles and precursor NOx

5. Emissions Modeling Methods / Credits

- Yearly PM_{2.5} emissions (total PM_{2.5} and precursor NOx) using seasonal traffic adjustments and above emissions factors
- Offline emissions analyses

6. Conformity Assessment Criteria

- Emissions budgets for ozone precursors, PM_{2.5} pollutants, and wintertime CO
- Analysis years: 2002, 2016, 2020, 2030, & 2040

ATTACHMENT B

National Capital Region Transportation Planning Board

777 North Capitol Street, N.E., Suite 300, Washington, D.C. 20002-4290 (202) 962-3310 Fax: (202) 962-3202

January 28, 2011 **MEMORANDUM**

TO: TPB Technical Committee

FROM: Jane A. Posey

Transportation Engineer

SUBJECT: Defining Regional Significance for Conformity

Transportation projects that are defined as "regionally significant" must be included in an air quality conformity analysis before they may be included in the Constrained Long Range Plan (CLRP) or Transportation Improvement Program (TIP). Currently, any project that changes a link in the regional highway or transit network is considered "regionally significant". With the recent development of a finergrain zone system, including a more detailed street base and splitting of links to add new connectors to zone centroids, it is necessary to redefine "regionally significant" in order to maintain the same threshold for "regionally significant" as in the past conformity procedures. The conformity regulations define regional significance as follows:

Regionally significant project means a transportation project (other than an exempt project) that is on a facility which serves regional transportation needs (such as access to and from the area outside of the region, major activity centers in the region, major plan ned developments such as ne w retail malls, sports complexes, etc., or transportati on terminals as w ell as most terminals themselves) and would normally be included in the modeling of a metropolitan area's transportation network, including at a minimum all princip al arterial highways and all fixed -guideway transit fa cilities that offer an alternative to regional highway travel.

The following proposed new definition of a "regionally significant" project has been developed to meet the requirements of the conformity regulations while maintaining the same threshold for "regional significance" as in past conformity procedures:

- 1) Any project on a facility that is included in the coded regional network that adds or removes at least one continuous vehicular lane from one major road to the next, or adds a new access/egress location or capacity; or
- 2) Any transit project that adds or modifies fixed-guideway transit facilities (heavy rail, light rail, streetcar, bus rapid transit)

The new definition will be used for all future air quality conformity analysis, starting with the conformity analysis of the 2011 CLRP.

APPENDIX B

List of Project Inputs

Key to the Air Quality Conformity Table:

COLUMN 1:

Agency - identification of submitting agency

COLUMN 2:

Project ID - project identification number (for reference purposes)

COLUMN 3:

Type of improvement - defined as follows:

Construct = build a new facility

W iden = increase the number of lanes on an existing facility

Upgrade = improve the facility type of a roadway

Relocate = construct an existing facility on a new right-of-way

Reconstruct = modify an existing f acility with no capacity in crease i.e.,

shoulder paving, geometric improvements

Rehabilitate = repair existing structures - no capacity increase

Study = to review alternative transportation improvements- project

planning or preliminary engineering only

COLUMN 4:

Facility - name of facility to be studied or improved

COLUMNS 5 and 6:

From and To - limits of the project

COLUMN 7:

Facility Type - defined as follows:

1 = Interstate

2 = Major Arterial

3 = Minor Arterial

4 = Collector

5 = Expressway or Freeway with at-grade intersections

If a facility is being upgraded, the old facility type is in the "from" column, and the new facility type is in the "to" column. If the facility is not being upgraded, the "from" and "to" columns are the same.

COLUMN 8:

Number of Lanes - same explanation of "from" and "to " columns as above

COLUMN 9:

Currently under construction or right-of-way acquired? -

"yes" = the facility is currently under construction and/or

right-of-way has been acquired

"no" = the facility is not currently under construction and

right-of-way has not been acquired

"completed" = the facility is open for use

COLUMN 10:

Project Completion Date or Status - date project will be open for use.

"not coded" indicates that project is not included in the conformity analysis

Excerpts from February 16, 2011 TPB Item 11

National Capital Region Transportation Planning Board

777 North Capitol Street, N.E., Suite 300, Washington, D.C. 20002-4290 (202) 962-3310 Fax: (202) 962-3202 TDD: (202) 962-3213

MEMORANDUM

February 10, 2011

To: Transportation Planning Board

From: Ronald F. Kirby

Director, Department of Transportation Planning

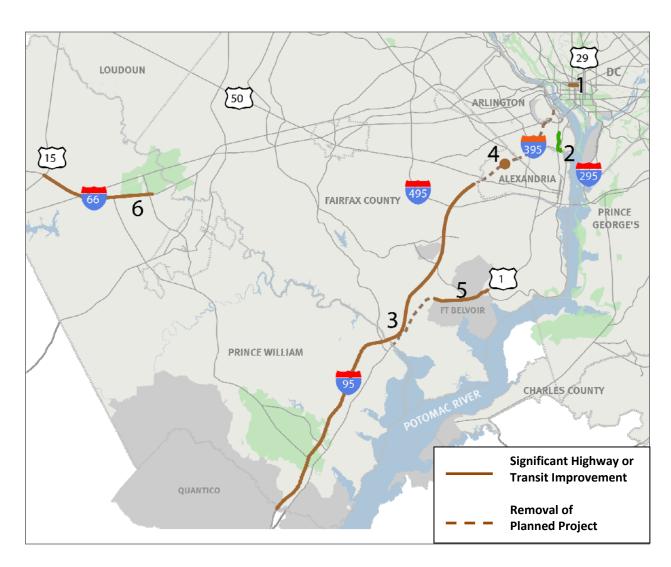
Re: Proposed Significant Additions and Changes to the 2011 Constrained Long-Range

Plan for Air Quality Conformity Analysis

On February 10, 2011 the Transportation Planning Board (TPB) released the draft project submissions for the 2011 Update to the National Capital Region's Financially Constrained Long-Range Transportation Plan (CLRP) and the Scope of Work for the Air Quality Conformity Analysis for public comment. The 30-day public comment period will end at midnight on Saturday, March 12, 2011. Interested parties may submit their comments online at www.mwcog.org/transportation/public/, by phone at (202) 962-3262 or TDD: (202) 962-3213, or in person at the TPB meeting on February 16.

The TPB is scheduled to approve the project submissions and the Air Quality Conformity Scope of Work at its meeting on March 16. After approval, these projects will be included in the Air Quality Conformity Analysis of the 2011 CLRP. This process takes several months and is done to ensure that the proposed projects do not prevent the region from meeting its air quality improvement goals in the decades ahead. Once the conformity modeling process is complete, the projects along with the results of the Conformity Analysis will be released for a final 30-day comment period, currently scheduled for October 13 through November 13, 2011.

Information on the project submissions is presented in two pieces. First, in this memo, is a list of proposed significant additions and changes to the 2011 CLRP. These include new projects and changes to existing projects. This listing covers changes only to those projects that are considered to be regionally significant, i.e., interstates, principal arterials and some minor arterials, as well as transit facilities. The second piece is a complete listing of all proposed projects and changes titled, "2011 CLRP Air Quality Conformity Inputs." This document is available for review online at http://www.mwcog.org/clrp/resources/.


The 2011 Update to the CLRP contains three new major projects and three significant changes to existing projects. The District Department of Transportation is proposing to implement a Bus-Only lane during peak periods on H Street, NW between 17th Street and New York Avenue. The Virginia Department of Transportation (VDOT) is proposing the remainder of the proposed additions and changes. The new projects include a Streetcar system in the US 1 corridor between Pentagon City and the Alexandria city limits, and a reversible on/off ramp connecting I-395 and Seminary Road to and from the south.

The significant changes to major projects proposed by VDOT include limit changes to the I-395/I-95 HOV/Bus/HOT Lanes project, a limit change to the widening of US 1 in Fairfax County, and the widening of general purpose lanes on I-66 in Prince William County.

In addition to including the reconfigured I-395/I-95 HOV/HOT lanes project for the 2011 CLRP inputs, VDOT is requesting to accelerate the approval of this project by making an amendment to the 2010 CLRP. Following this 30-day public comment period, the TPB will be asked to approve this project for inclusion in a separate air quality conformity analysis which will be completed by June. The project amendment and the results of the conformity analysis will be released for a final 30-day public comment period from June 9th to July 9th before the TPB will be asked to approve the amendment to the 2010 CLRP on July 20th. For more information on this amendment, please see Item 15 in the February 16, 2011 TPB meeting materials, where it is included as a notice item.B

Significant Additions and Changes to The 2011 Update to the Financially Constrained Long-Range Transportation Plan

Significant Additions and Changes to the CLRP

- 1. H STREET, NW PEAK PERIOD BUS-ONLY LANE
- 2. CRYSTAL CITY POTOMAC YARD STREETCAR
- 3. I-395/I-95 HOV and HOT Lanes Project Limit Changes
- 4. I-395 HOV Lanes Reversible Ramp from/to Seminary Road
- 5. WIDENING OF US 1 PROJECT LIMIT CHANGE
- 6. WIDEN I-66 GENERAL PURPOSE AND HOV LANES

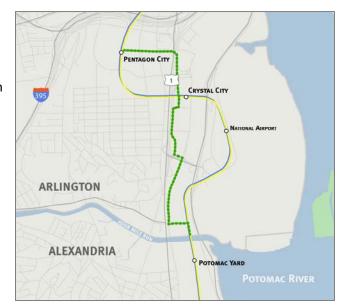
DISTRICT OF COLUMBIA

H Street, NW Peak Period Bus-Only Lane from 17th St. to New York Ave.

H Street NW is one-way, running eastbound between 17th Street and New York Avenue. Parking restrictions are in effect on both sides of the street during morning (7:00 – 9:30 a.m.) and evening (4:00 – 6:30 p.m.) peak periods, allowing for five lanes of traffic. This project proposes to use one of those five lanes as a bus-only lane during the peak periods.

Complete: 2012 Length: 0.5 mile Cost: \$250,000 Funding: Local

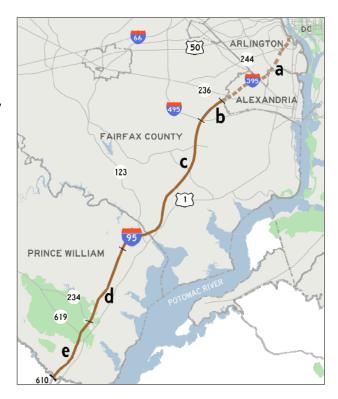
See the project description in Attachment A for more information.


VIRGINIA

2. Crystal City – Potomac Yard Streetcar in Arlington County

This project will construct and operate a streetcar system that runs parallel to US 1 (Jefferson Davis Highway) from the Pentagon City Metro station to Four Mile Run at the city limit of Alexandria. The CLRP currently includes an exclusive bus transitway project along most of the same route that is scheduled to open in 2013. The streetcar system will replace the bus service in 2018.

Complete: 2018
Length: 2.25 miles
Cost: \$160 million


Funding: Federal, state and local

See the project description in Attachment A for more information.

3. I-395/I-95 HOV and HOT Lanes from 2 miles north of I-495 to VA 610

This project is currently included in the CLRP as a system of High-Occupancy Toll, or HOT lanes between Eads Street in Arlington County and VA 610 (Garrisonville Road) in Stafford County. HOT lanes will be available to HOV-3, transit and emergency response vehicles free of charge. Other vehicles may use the facility by paying an electronic toll. Tolls will vary based on time of day, day of week, and level of congestion in order to maintain free-flow conditions. VDOT is proposing to reconfigure the project, including the elimination of the implementation of HOT lanes on I-395 inside the Capital Beltway. The changes are summarized in the table below:

Map Index	Current CLRP	VDOT Proposed Change to Current CLRP Project	Description of
	Project Includes	•	Proposed Configuration
а	3 HOT Lanes	2 HOV Lanes	Eliminate the implementation of HOT lanes
			on I-395 inside the Capital Beltway
b	3 HOT Lanes	3 HOT Lanes	Widen the existing HOV facility from 2 to 3
		(no change)	lanes on I-395 from I-495 (Capital Beltway) to
			approximately 2 miles north, in the vicinity of
			Turkeycock Run and maintain as HOV lanes
С	3 HOT Lanes	2 HOT Lanes	Widen the existing HOV facility from 2 to 3
			lanes on I-95 from I-495 to VA 3000, Prince
			William Parkway and convert to HOT lanes
d	2 HOT Lanes	2 HOT Lanes	Convert the existing 2-lane HOV facility
		(no change)	from VA 3000, Prince William Parkway to
			VA 234 (Dumfries Road) into HOT lanes
е	2 HOT Lanes	2 HOT Lanes	Construct 2 new HOT lanes from VA 234
		(no change)	(Dumfries Rd.) to VA 610 (Garrisonville Rd.)
f	2 HOT Lanes	2 HOT Lanes	Two HOT lanes will continue10 miles south to
		(no change)	the VA 17/US 1 Massaponax exit in
			Spotsylvania County. This portion of the
			project is outside the TPB's planning area and
			will be coordinated with the Fredericksburg
			area MPO (FAMPO).

I-395/I-95 HOV and HOT Lanes (continued)

Transit Service Plan

At this time, VDOT is also proposing to remove the elements of the transit service plan that had previously been included in the CLRP as a part of the I-95/I-395 HOV/Bus/HOT Lanes project. VDOT is working with local jurisdictions and transit agencies to develop a revised set of transit and transportation demand management (TDM) improvements for the corridor. These transit and TDM measures will be proposed as a separate project for inclusion in the CLRP at a later date. Please see the table that follows the CLRP project description form in Attachment A for a full listing of the elements from transit service plan being removed.

Complete: 2015

Length: 27 miles (not including southern portion from VA 610 to VA17/US 1)

Cost: \$1.01 billion

Funding: Federal, state, local and private

See the project description in Attachment A for more information.

4. I-395 HOV Lanes Reversible Ramp from/to Seminary Road

VDOT is proposing to construct a new reversible on/off ramp that connects Seminary Road and the I-395 HOV lanes to and from the south. This project adds HOV and transit access to accommodate the expected increase in travel generated by Department of Defense employees at the nearby Mark Center.

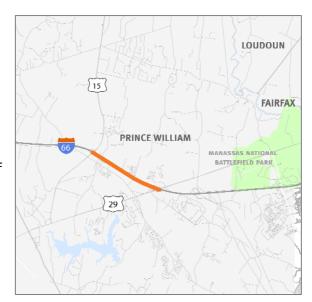
Complete: 2015
Cost: \$80 million
Funding: Federal and state

ARLINGTON

ALEXANDRIA

95

FAIRFAX


See the project description in Attachment A for more information.

5. Widening of US 1 – Project Limit Change from VA 235 South to VA 611

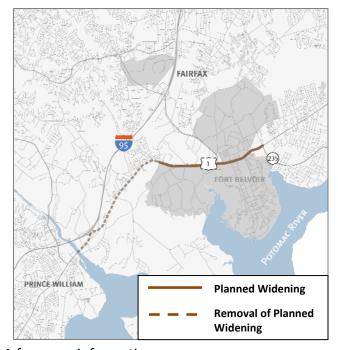
This project is currently included in the CLRP as a widening of US 1 (Richmond Highway) from 4 to 6 lanes from VA 235 South (Mt. Vernon Memorial Highway) to the Occoquan River/Prince William County Line. VDOT is proposing to remove approximately 4 miles of widening from the southern end of the project and change the southern limit to VA 611 (Telegraph Road).

Complete: 2020 Length: 3.5 miles

Funding: Federal and state

See the project description in Attachment A for more information.

6. Widen I-66 General Purpose and HOV Lanes


from US 15 to US 29 (near Gainesville)

This project is currently included in the CLRP as a widening to construct HOV Lanes on I-66 between US 15 (James Madison Highway) and US 29 (Lee Highway) in Gainesville. VDOT is proposing to also add an additional general purpose lane in each direction to I-66 within the same limits. The completion date of the project is advancing from 2020 to 2018.

Length: 2.5 miles Complete: 2018

Cost: \$131.9 million

Funding: Federal

See the project description in Attachment A for more information.

(Transit)

						Under Const.	Complt.
	Project					or ROW	Date or
Agency	ID	Improv.	Facility	From	То	acquired?	Status
Washing	gton Me	etropolitan	Area Transit Authority				
WMATA		Modify	Revised Metrorail Operating Plan				2010
WMATA		Modify	Revised Metrorail Operating Plan				2011
WMATA		Modify	Revised Metrorail Operating Plan				2015
***************************************		Modify	New Hampshire Avenue bus				2010
WMATA		Implement	improvements				2011
WMATA		Implement	U Street / Garfield bus improvements				2011
WMATA		Implement	Greenbelt / Twinbrook bus improvements				2012
WMATA		Implement	George's County) improvements				2012
WMATA		Implement	Anacostia / Congress Heights bus improvements				2012
WMATA		Implement	Little River Turnpike / Duke Street bus improvements				2012
WMATA		Implement	West Highway bus improvements				2013
WMATA		Implement	Rhode Island Avenue Metro to Laurel bus improvements				2013
WMATA		Implement	Rhode Island Avenue (DC) bus improvements				2013
WMATA		Implement	Eastover / Addison bus improvements				2014
WMATA		Implement	Pike - MD US 29 bus improvements				2014

(Transit)

						Under Const.	Complt.
	Project					or ROW	Date or
Agency	ID	Improv.	Facility	From	То	acquired?	Status
WMATA		Implement	North Capitol Street bus improvements				2015
District	of Colu	mbia					
DDOT		Construct	Anacostia Streetcar project Phase I (replaces CSX Shepherd Branch project)	Firth Sterling and S. Capitol St. SE	Howard Rd. and MLK Jr. Ave. SE		2012
DDOT		Construct	Anacostia Streetcar Phase	Howard Rd and MLK Jr. Ave SE	Good Hope Rd. and MLK Jr. Ave. SE		2012
DDOT		Construct	H St. / Benning Rd Streetcar	Union Station	Oklahoma Ave., NE		2012
DDOT		Implement	H St. Bus Lane- peak only	17th St. , NW	New York Ave., NW		
DDOT		Construct	Benning Rd. Streetcar	Oklahoma Ave., NE	45th St. / Benning Rd. Metro		2015
DDOT		Study	Union Station Streetcar	Union Station	Mt. Vernon Sq./ 7th St. NW		not coded
DDOT		Study	K St. Streetcar	Mt. Vernon Sq./9th St. NW	Wisconsin Ave.		not coded
DDOT		Operational Improvements	Pennsylvania Rapid Bus (Operation Enhancements)	Archives Navy Memorial Metro Station	Naylor Road Metrorail Station		2011
DDOT		Reconstruct	K St. Transitway	Mt. Vernon Sq./7th St. NW	Wash.Circle / 23rd St. NW		
DDOT		Implement	16th St. Bus Priority Improvements (TIGER Grant)				by 2016
DDOT		Implement	Georgia Ave Bus Priority Improvements				by 2016
DDOT		Implement	H St./ Benning Rd. Bus Priority Improvements (TIGER Grant)	16th St. NW	Capitol Heights Metro Station		by 2016
DDOT		Implement	Wisconsin Ave. Bus Priority Improvements (TIGER Grant)	Friendship Heights Metro Station	Naylor Road Metrorail Station		by 2016

B-11

c12trn0309A 10/14/2011

(Transit)

	Project					Under Const.	Complt.
Agency	ID	Improv.	Facility	From	То	acquired?	Status
DDOT		Implement	Theodore Roosevelt Bridge to K St. Bus Priority Improvements (TIGER Grant)			·	by 2016
DDOT		Implement	14th St. Bus Priority Improvements (TIGER Grant)				by 2016
DDOT		Study	Georgia Ave. Streetcar	U Street/Florida Ave NW	New Hampshire Ave. NW		not coded
DDOT		Study	Capitol Hill/8th Street Streetcar	H St. NE	M St. SE		not coded
DDOT		Study	M St. SE Streetcar	11th St. Bridge/MLK Ave. SE	Buzzard Point/SW Waterfront		not coded
DDOT		Study	14th St. NW Streetcar	K St. NW	U St. NW		not coded
Marylan	d						
MTA		Construct	Purple Line Transitway	Bethesda	New Carrollton	No	2020
MTA		Construct	Silver Spring Transit Center	Phase II		Yes	2011
MTA		Construct	Corridor Cities Transitway	Shady Grove	COMSAT		2020
MTA		Construct	Southern MD Commuter Bus Initiative	Park-and-Ride lots and increase bus service	Waldorf		2010
MTA		Implement	ICC Corridor Bus Service Improvements			No	2012
MTA		Construct	Takoma/ Langley Park Transit Center	Intersection New Hampshire Ave and University Blvd.	Takoma / Langley Park	No	2011
MDSHA		Study	MD 97 (Georgia Avenue) Busway	Glenmont	Olney		not coded
		Implement	Addison Rd. Transit Improvements (TIGER Grant)	near Seat Pleasant	Southern Ave. Metro Station		by 2016
		Implement	US 1 (MD) Bus Priority Improvements (TIGER Grant)				by 2016

(Transit)

Agency	Project ID	Improv.	Facility	From	То	Under Const. or ROW acquired?	Complt. Date or Status
			. comy			aoquirou	Otatao
Montgo Mont.Co.	MCT7	Construct	Olney Transit Center	adjacent to or north of MD		No	2015
Mont.Co.	III O I I	Construct	University Blvd Bus Enhancement	Kensington	Silver Spring	No	2020
Mont.Co.	MCT22	Construct	Veirs Mill Road Bus Enhancement	Rockville	Wheaton	No	2015
Virginia							
VDOT		Widen	US 1 (bus/right-turn lanes)	VA 235 North	SCL Alexandria (I-95 Capital Beltway)	No	2035
Arlington Co.		Construct	Crystal City / Potomac Yard Busway (2-lane)	Vicinity of Glebe Rd. Ext City/County line	Crystal City Metro Station	ROW acquired	2013
Arlington Co.		Construct	Route 1 Corridor Streetcar	Vicinity of Glebe Rd. Ext City/County line	Pentagon City Metro Station		2018
VDOT		Construct	Potomac Yard Transit Bus lanes (2 lanes)	Four Mile Run	Braddock Rd.	No	2013
Alex.		Study	Route 1 Corridor Streetcar Conversion	Four Mile Run	Braddock Rd.		not coded
VDOT		Construct	Metro Station (Proposed)	@ Potomac Yards		No	2017
VDOT		Construct	Columbia Pike Streetcar	Skyline Center	Pentagon City	No	2016
VDOT		Construct	Transit Center (Bradlee Shopping Center)	King St. and Braddock Rd.		No	2014
VDOT		Construct	Transit Center (Seven Corners)	Seven Corners Shopping Center		No	2010
VDOT		Construct	Park-and-Ride Lot	Reston East Parking Structure	@ Reston East Park-and- Ride Lot	No	2011

(Transit)

						Under Const.	Complt.
	Project					or ROW	Date or
Agency	ID	Improv.	Facility	From	То	acquired?	Status
VDOT		Construct	Park-and-Ride Lot	Springfield CBD	vic. I-95 & Old Keene Mill Road	No	2014
VDOT		Relocate/ Construct	Park-and-Ride Lot (Leesburg)	Relocate to vic. of Leesburg Bypass and / or the Dulles	700 Spaces	Yes	2010
VDOT		Construct	Lease Commuter Parking Spaces at Lowes Island	Leesburg			2013
VDOT		Construct	Park-and-Ride Lot	Purcellville	100 Space Park & Ride Lot		2015
VDOT		Implement	Loudoun County Commuter Bus Service.	Town of Leesburg -Harrison St & Catoctin Circle	400 Space Park & Ride Lot	Yes	2010
VDOT		Construct	Park-and-Ride Lot	Dulles Town Center	300 Spaces	Proffered	2015
VDOT		Construct	Park-and-Ride Lot	US 50 at Stone Ridge	150 Spaces	Proffered	2015
VDOT		Construct	Park-and-Ride Lot	US 50 Dulles at East Gate	200 Spaces	Yes	2025
VDOT		Construct	Park-and-Ride Lot	VA 234 (vicinity of I-66)	at Cushing Road	No	2011
VDOT		Construct	Park & Ride Facility	Round Hill	75 Spaces	ROW acquired	2015
VDOT		Construct	Park & Ride Facility	Brambleton	100 space expansion	No	2015
VDOT		Construct	Park & Ride Facility	Arcola Center	300 Spaces	Proffer	2015
VDOT		Construct	Park-and-Ride Lot	at EPG			2015
VDOT		Construct	Park-and-Ride Lot	Telegraph Rd.	400-500 spaces		2013
VDRPT		Construct	Dulles Corridor Metrorail	East Falls Church Metrorail Station	Wiehle Ave.	No	2013
VDRPT		Construct	Dulles Corridor Metrorail	Wiehle Ave. Station	Route 772	No	2016

(Transit)

						Under Const.	Complt.
	Project					or ROW	Date or
Agency	ID	Improv.	Facility	From	То	acquired?	Status
VRE		Construct	VRE - Cherry Hill Commuter Rail Station	Cherry Hill	Prince William County	No	2012
VRE		Implement	VRE Service Improvements (Reduce Headways)	Fredericksburg and Manassas lines		No	2020
VRE		Construct	VRE- 3rd Track/ Cherry Hill Commuter Rail Station	Arkendale, Stafford Co.	Powell's Creek, Prince William Co.	No	2012
VDOT		Implement	Beltway HOT lanes transit service Beltway HOT lanes transit			No	2013
VDOT		Implement	service			No	2020
VDOT		Implement	Beltway HOT lanes transit service			No	2030
VDOT		Implement	I 95/I 395 HOV /BUS / HOT lanes: TAC transit service	Buses and additional VRE railcars		No	2012
VDOT		Implement	I-95/I-395 HOV /BUS / HOT- lanes: TAC transit service	Buses and additional VRE- railcars		Ne	2020
VDOT		Implement	I-95/I-395 HOV /BUS / HOT- lanes: TAC transit service	Buses and additional VRE- railcars		No	2030
VDOT		Implement	(Fairfax Connector Service Enhancements)			No	2011
		Implement	VA 7 Bus Priority Improvements (TIGER Grant)	Alexandria	Tyson's Corner		by 2016
		Implement	Van Dorn - Pentagon Rapid Bus (TIGER Grant)	Van Dorn St. Metro	Pentagon		2013
Alex.		Study	Van Dorn - Pentagon BRT (City Funded)	Van Dorn St. Metro	Pentagon		not coded
		Implement	I-95/I-395 Multimodal Improvements (TIGER Grant)				by 2016
Alex.		Implement	DASH Bus Expansion	City-Wide			2021
Alex.		Study	Duke Street BRT	King Street Metro	Fairfax County Line		not coded

	5 ·									Under Const.	Complt.
	Project					Facilit	у	Lane	s	or ROW	Date or
Agency	ID	Improv.	Facility	From	То	from	to	from	to	acquired?	Status
District of	Columbia			•							
DDOT	DS3	Construct	Southern Ave. SE	Branch Ave. SE	Naylor Rd. SE			0	2		2016
DDOT		Study	Pennsylvania Ave. NW - add bike lanes	3rd St. NW	14th St. NW			8	6		not coded
DDOT		Study	15th St. NW- add bike lane	Constitution Ave. NW	W. St. NW			6	5		not coded
DDOT		Study	L St. NW - add bike lane	11th St. NW	25th St. NW			4	3		not coded
DDOT		Study	M St. NW - add bike lane	15th St., NW	29th St. NW			4	3		not coded
DDOT		Study	9th St. NW - add bike lane	Constitution Ave. NW	K St. NW			5	4		not coded
DDOT	DP11	Reduce Capacity	Wisconsin Ave.	Garfield St.	34th St.			4/6	4		2011
DDOT	DP12	Reconstruct- 1-way to 2- way	17th St. NE/SE	Benning Rd. NE	Potomac Ave. SE			2 SB	1 SB/ 1 NB		2012
	21.12	Reduce	H St. NW peak period Bus-						4		
DDOT		Capacity	Only Lanes	17th St. NW	New York Ave. NW			5 pk	pk		2012
Maryland											
MDOT Free	eway MI2q	Construct	I-270	Interchange at Watkins Mill Road Extended		1	1	8	8+2	No	2016
MDSHA	MI2SHOV MI2S	Construct	I-270/US 15 Corridor	Shady Grove Metro	Biggs Ford Rd	1	1	varies		No	2030
MDSHA		Reconstruct	I-270	Interchange at MD 121		1	1	1	2	No	2016
MDSHA	MI4	Widen	I-70	Mt. Phillip Rd.	MD 144FA	1	1	4	6	No	2020
MDSHA	MI4a	Reconstruct	I-70	Interchange at Meadow Rd.	to add missing movements	1	1			No	2020
MDSHA	MI1f	Construct	I-95	Contee Road Relocated w/ CD Roads		1	1	8	8+4	No	2020

										Under Const.	Complt.
	Project					Facilit	у	Lane	s	or ROW	Date or
Agency	ID	Improv.	Facility	From	То	from	to	from	to	acquired?	Status
MDSHA	MI1k	Construct	I-95/I-495 (Capital Beltway)	Branch Avenue Metro Access (Phases I & II)		1	1	8	8	Yes	2020 (Phase II)
MDSHA	MI1p	Study	I-95/I-495 (Capital Beltway)	Interchange at Greenbelt Metro		1	1	8	8+2		not coded
MDSHA	MP12	1		I-270	MD 97	0	1	0	6	Yes	2011
			Intercounty Connector					U		res	
MDSHA	MP12	Construct	Intercounty Connector	MD 97	I-95 / US 1	0	1	0	6	Yes	2012
MDOT Prin	nary										
MDSHA	MP10a	Reconstruct	US 1 (Baltimore Avenue)	College Avenue	Sunnyside Avenue	2	2	4	4	No	2020
MDSHA	MP10b	Widen	US 1, Baltimore Avenue	Cherry Hill Road	I-95/I-495	2	2	4	6	No	2010
MDSHA	MP9b	Construct	MD 2/4 at Lusby Southern Conn. Rd.	MD 765	MD 2/4 at Lusby	0	2	0	3	No	2040
MDSHA	MP2c	Widen	MD 3 (Robert Crain Highway)	US 50	Anne Arundel County Line	2	2	4	6	No	2030
MDSHA		Construct	MD 4 (Pennsylvania Avenue)	Interchange at Westphalia Rd		2	5	4	6	No	2020
MDSA		Construct	MD 4 (Pennsylvania Avenue)	Interchange at Suitland Pkwy		2	5	4	6	No	2016
MDSHA	MP3a	Upgrade/ Widen	MD 4	MD 223	I-95/I-495	2	1	4	6	No	2035
MDSHA			MD 5 (Branch Avenue)	Interchange at Earnshaw/Burch Hill Roads		2	5	4	6	No	
MDSHA	MP4f	Upgrade/ Widen	MD 5 (Branch Avenue)	US 301 at T.B.	North of the Capital Beltway	2	5	4	6	No	2025
MDSHA		Construct	MD 5 (Branch Avenue)	Interchange at MD 373/Brandywine Road Rel.		2	5	4	6	No	2016
MDSHA		Construct	MD 5 (Branch Avenue)	Interchange at Surratts Road		2	5	4	6	No	2015
MDSHA	MP15	Construct	US 15	Interchange at Monocacy Blvd.		2	2	6	6	No	2016
MDSHA		Construct	US 29 (Columbia Pike)	Interchange at Musgrove/Fairland Rd.				6	6	No	2025
MDSHA	MP5e	Study	US 29, Columbia Pike	north of MD 650	Howard County Line	2	5	6	6	No	not coded

(Highway and HOV)

	Project					Facilit	у	Lane	s	Under Const.	Complt.
Agency	ID	Improv.	Facility	From	То	from	to	from	to	acquired?	Status
MDSHA		Construct	MD 75 Relocated	MD 80		0	4	0	4	No	2020
MDSHA	FP2	Widen	MD 85 (Buckeystown Pike)	English Muffin Way	north of Grove Road	2	2	2/4	4/6	No	2020
MDSHA	MP12c	Construct	MD 97 (Brookeville Bypass)	South of Brookeville	North of Brookeville	0	2	0	2	No	2020
MDSHA		Upgrade	MD 97 (Georgia Avenue)	interchange @ MD 28 (Norbeck Road)		2	2	6	6	No	2030
MDSHA		Upgrade	MD 97 (Georgia Avenue)	interchange @ Randolph Road		2	2	6	6	No	2015
MDSHA	MP14	Reconstruct	MD 202 (Largo Town Ctr. Metro Access Improvs.)	at Brightseat Rd		2	2	6	6	No	2020
MDSHA		Upgrade	MD 210 interchange improvs.	@ Livingston Rd. / Kerby Hill Rd.		2	5	6	6		2020
MDSHA	MP6d	Upgrade	MD 210 (Indian Head Highway) with interchange improvements at: Wilson Bridge Dr., Livingston Rd./Palmer Rd., Old Fort Rd. North, Ft. Washington Rd., and Livingston Rd/Swan Creek Rd. Intersections	MD 228	Capital Beltway	2	5	6	6	No	2030
MDSHA	MP8e	Study	US 301	North of Mount Oak Road	US 50	2	5	4/6	6+2	No	not coded
MDTA	MP18	Construct	US 301 Governor Nice Bridge	Charles County, MD	King George County, VA	2	2	2	4	No	2040
MDSHA	MP16		US 340 Interchange	@US 340 at Jefferson Tech Park	, , , , , , , , , , , , , , , , , , ,	1	1	4	4	No	2016
MDSHA	BRAC	Reconstruct	BRAC Intersection Improvements near the National Naval Medical Center, Bethesda								2012 2015/
MDSHA		Construct	MD 355	Montrose/Randolph Rds.	CSX RR	2	2	6	6	No	2015/
MDOT Seco	ondary										
MDSHA	MS33	Widen	MD 27	MD 355	A 305	2	2	4	6	No	2020

(Highway and HOV)

	Project					Facilit	у	Lane	s	Under Const.	Complt. Date or
Agency	ID	Improv.	Facility	From	То	from	to	from	to	acquired?	Status
MDSHA	MS2f	Widen	MD 28 (Norbeck Road) / MD 198 (Spencerville Road)	MD 97	I-95	2	2	2/4	4/6	No	2025
MDSHA	MS32	Widen	MD 117	I-270	Great Seneca Park	2	2	2	4	No	2025
MDSHA	MS34	Study	MD 121	I-270	W. Old Baltimore Rd.	3	3	4	6	No	not coded
MDSHA	MS6b	Widen	MD 124 (Woodfield Road)	Midcounty Highway	S. of Airpark Dr.	2	2	2	6	No	2020
MDSHA	MS6c	Widen	MD 124 (Woodfield Road)	S. of Airpark Dr.	N. of Fieldcrest Rd.	2	2	2	6	complete	2010
MDSHA	MS6d	Widen	MD 124 (Woodfield Road)	N. of Fieldcrest Rd.	Warfield Road	2	2	2	6	No	2020
MDSHA		Study	MD 180/MD 351	Greenfield Dr.	Corporate Dr.					No	not coded
MDSHA	MS35	Widen	MD 197 (Collington Rd.)	MD 450 Relocated	Kenhill Dr.	2	2	2	4/5	No	2025
MDSHA	MS10b	Study	MD 201 (Kenilworth Ave.)	Rittenhouse Road	Pontiac St.	2	2	4	6	No	not coded
MDSHA	MS18d	Widen	MD 450 (Annapolis Road)	Stonybrook Drive	West of MD 3	2	2	2	4	No	2016
Montgome	ry County										
Mont.Co.	MC11c	Construct	A-305 - MidCounty Highway Extended	MD 355	MD 27	0	3	0	4	No	2010
Mont.Co.	nrs	Construct	Burtonsville Access Rd.	MD 198	School Access Rd.	0	4	0	2	No	2013
Mont.Co.	nrs	Construct	Chapman Avenue	Randolph Road	Old Georgetown Road	0	3	0	2	No	
Mont.Co.	MC5d	Construct	Father Hurley Blvd.	Wisteria	MD 118 (Germantown Road)	0	2	0	4	Yes	2011
Mont.Co.	MC5c	Widen	Father Hurley/ Ridge Rd.	I-270	existing MD 27	2	2	4	6		2010
Mont.Co.	MC7a	Study	Goshen Rd. South	South of Girard Street	1000 feet north of Warfield Road	3	3	2	4	No	not coded
Mont.Co.	MC43	Construct	I-4 Bridge over I-270	Century Boulevard	Milestone Center Drive	0	3	0	4	No	2015
Mont.Co.	MC11a	Construct	M-83 - Midcounty Highway Extended	MD 27 (Ridge Road)	Middlebrook Road	0	2	0	4-6	No	2020
Mont.Co.	MC11d	Construct	M-83 - Midcounty Highway Extended	Middlebrook Road	Montgomery Village Avenue	0	2	0	4-6	No	2020

										Under Const.	Complt.
	Project					Facilit	у	Lane	s	or ROW	Date or
Agency	ID	Improv.	Facility	From	То	from	to	from	to	acquired?	Status
Mont.Co.	MC12f	Widen	MD 118 Ext (Grmntwn. Rd.)	MD 355	M-83/Watkins Mill Rd.	2	2	3	4	No	2020
Mont.Co.	MC14g	Widen	Middlebrook Road Ext.	MD 355	M-83	2	2	3	4	No	2020
Mont.Co.	MC15b	Construct	Montrose Parkway East	Parklawn Drive	MD 586 - Veirs Mill Road	0	2	0	4	No	2015
Mont.Co.	nrs	Construct	Nebel St Extended	Randolph Rd	Target Store Site	0	3	0	4	Yes	2011
Mont.Co.	MC42	Construct	Randolph Road	Parklawn Drive	Rock Creek Park	2	2	4	5	No	2014
Mont.Co.	MC34	Widen	Snouffer School Rd. Fac. Planning	Goshen Rd.	MD 124	3	3	2	4	No	2016
Mont.Co.	MC23a	Construct	Watkins Mill Rd. ext.	I 270 (future interchange)	MD 355	0	2	0	6	Yes	2011
Mont.Co.	MC13	Construct	Woodfield Rd.(MD 124 Ext.)	1200' North of MD 108	MD 27	0	2	0	2	Yes	2011
Mont.Co.		Construct	Executive Blvd. Ext East	Rockville Pike (MD 355)	Nebel St. Ext.			0	4		2020
Mont.Co.		Construct	Executive Blvd. Ext West	Old Georgetown Rd.	Marinelli Rd.			0	4		2020
Mont.Co.		Construct	Main St./Market St.	Old Georgetown Rd.	Rockville Pike (MD 355)			0	2		2020
Mont.Co.		Construct	Old Georgetown Rd.	Old Georgetown Rd.	Nicholson Lane/TildenLane			0	6		2020
Mont.Co.		Construct	Hoya St.	Executive Blvd.	Montrose Pkwy			0	4		2020
Mont.Co.		Construct	Platt Ridge Dr. Ext.	Jones Bridge Rd.	Montrose Dr.			0	2		2014
Prince Geo	orges County										
PG Co.	PGS3a	Widen	Addison Road	MD 214	Walker Mill Road	3	3	2	4	Yes	2016
PG Co.		Reconstruct	Addison Road	Sheriff Road	MD 704	4	4	2	2	Yes	2014
PG Co.	PGS5	Construct	Allentown Road Relocated	Indian Head Highway (MD 210)	Brinkley Road	0	3	0	4	No	2025
PG Co.	PGS73	Widen	Ardwick-Ardmore Road	MD 704	91st Ave.	4	4	2	4	Yes	2015
PG Co.	PGP4a	Construct	Baltimore Washington Pkwy/Greenbelt Rd (MD 193)	ramp to southbound Baltimore Washington Pkwy		0	5	0	4	No	2025

	Project					Facilit	у	Lane	s	Under Const.	Complt. Date or
Agency	ID	Improv.	Facility	From	То	from	to	from	to	acquired?	Status
PG Co.	PGS75	Widen	Berry Road	Livingston Road	Accokeek Road (MD 373)	4	4	2	4	No	2010
PG Co.	PGS9b	Widen	Bowie Race Track Road	Laurel-Bowie Road (MD 197)	Old Chapel Road	4	4	2	4	No	2015
PG Co.	PGS9a	Widen	Bowie Race Track Road	Annapolis Road (MD 450)	Old Chapel Road	4	4	2	4	No	2015
PG Co.	PGS10	Widen	Brandywine Road	north of Piscataway Road (MD 223)	Thrift Road	4	4	2	4	No	2020
PG Co.	PGS76	Widen	Briggs Chaney Road	Montgomery County line	Old Gunpowder Road	3	3	2	4	Yes	2010
PG Co.	PGS12	Widen	Brinkley Road	St. Barnabas Road (MD 414)	Allentown Road (MD 337)	3	3	4	6	No	2020
PG Co.	PGS13	Construct	Brooks Drive Extended	Marlboro Pike	Rollins Avenue	0	3	0	4	No	2020
PG Co.	PGS14	Widen	Cabin Branch Drive	Columbia Park Road	north of Sheriff Road	4	4	2	4	No	2015
PG Co.	PGS16a	Construct	Campus Way North	Lake Arbor Way	south of Lottsford Road	0	4	0	4	No	2004
PG Co.	PGS16b	Construct	Campus Way North Extended	south of Lottsford Road	Evarts Drive	0	4	0	4	No	2020
PG Co.	PGS17	Widen	Cherry Hill Road	Powder Mill Road	Baltimore Avenue (US 1)	3	3	2	4	No	2020
PG Co.	PGS18	Widen	Church Road	Oak Grove Road	Annapolis Road (MD 450)	4	4	2	4	No	2025
PG Co.	PGS20a	Widen	Columbia Park Road	Cabin Branch Road	Columbia Terrace	4	4	2	4	No	2020
PG Co.	PGS20b	Widen	Columbia Park Road	US 50	Cabin Branch Road	4	4	2	4	No	2020
PG Co.	PGS21a	Widen/ Construct	Contee Road	US 1	Old Gunpowder Road	4	4	2	4	Yes	2014
PG Co.	PGS22	Widen	Dangerfield Road	Cheltenham Avenue	Woodyard Road (MD 223)	4	4	2	4	No	2020
PG Co.	PGS24a	Widen	Dower House Road	Woodyard Road (MD 223)	Foxley Road	4	4	2	4	No	2025
					Pennsylvania Avenue (MD				Ļ		
PG Co.	PGS24b	Widen	Dower House Road	Foxley Road	4)	4	4	2	6	No	2017
PG Co.	PGS25	Widen	Fisher Road	Brinkley Road	Holton Lane	4	4	2	4	No	2025
PG Co.	PGS26	Construct	Forbes Boulevard Extended	south of Amtrak	Greenbelt Road (MD 193)	0	4	0	4	No	2020

	Project					Facilit		Lane		Under Const.	Complt.
Agency	ID	Improv.	Facility	From	То	from	to	from	to	acquired?	Status
Agency	ID.	iniprov.	T domey		Pennsylvania Avenue (MD	Hom	10	IIOIII	10	acquireur	Otatas
PG Co.	PGS27	Widen	Forestville Road	Allentown Road (MD 337)	4)	4	4	2	4	No	2025
PG Co.	PGS29	Widen	Fort Washington Road	Riverview road	Indian Head Highway (MD 210)	4	4	2	4	No	2025
PG Co.	PGS30a	Widen	Good Luck Road	east of Kenliworth Avenue (MD 201)	Cipriano Road	4	4	2	4	No	2025
PG Co.	PGS30b	Widen	Good Luck Road	Cipriano Road	Greenbelt Road (MD 193)	4	4	2	4	No	2025
PG Co.	PGS87	Widen	Governor Bridge Road	US301	Anne arundel County	4	4	2	4	No	2020
PG Co.	PGS34a	Widen	Hill Road	Central Avenue (MD 214)	ML King Jr Highway (MD 704)	4	4	2	4	No	2018
PG Co.	PGS34b	Construct	Hill Road	ML King Jr Highway (MD 704)	Sheriff Road	0	4	0	2	No	2015
PG Co.	PGS88	Construct	Iverson St. Extended	Wheeler Road	19th Avenue	0	4	0	4	No	2018
PG Co.	PGS35	Widen	Karen Boulevard	Walker Mill Road	Central Avenue (MD 214)	4	4	2	4	No	2020
PG Co.	PGS38a	Widen	Livingston Road	Indian Head Highway (MD 210) at Eastover	Kerby Hill Rd.	4	3/4	2	4	No	2015
PG Co.	PGS38b	Widen	Livingston Road	Piscataway Creek	Farmington Road	2	2	2	4	No	2020
PG Co.	PGS40a	Widen	Lottsford Road	Archer Lane	Enterprise Road (MD 193)	3	3	2	4	No	2012
PG Co.	PGS39b	Widen	Lottsford Vista Road	ML King Jr Highway (MD 704)	Ardwick-Ardmore Road/Relocated	4	4	2	4	No	2020
PG Co.	PGS44b	Widen	Metzerott Road	Adelphi Road	University Boulevard (MD 193)	4	4	2	4	No	2020
PG Co.	PGS44a	Widen	Metzerott Road	New Hampshire Avenue (MD 650)	Adelphi Road	4	4	2	4	No	2020
	PGS45a			Atlantis/Northview Dr.	Mount Oak Road	4	4	4	6		
PG Co.	PGS89	Widen	Mt. Oak	Church Road	Mitchellville Road	3	3	2	4	No	2010
PG Co.	PGS46	Widen	Murkirk Road	west of Baltimore Avenue (US 1)	Odell Road	4	4	2	4	No	2020
PG Co.	PGS47	Widen	Oak Grove and Leeland Roads	Watkins Park Road (MD 193)	Robert Crain Highway (US 301)	4	4	2	4	No	2020

										Under Const.	Complt.
	Project					Facilit	у	Lane	s	or ROW	Date or
Agency	ID	Improv.	Facility	From	То	from	to	from	to	acquired?	Status
PG Co.	PGS48	Widen	Old Alexandria Ferry Road	Woodyard Road (MD 223)	Branch Avenue (MD 5)	4	4	2	4	No	2015
PG Co.	PGS80	Construct	Old Baltimore Pike Extended	Muirkirk Road	Contee Road	0	4	0	2	Yes	2020
PG Co.	PGS50	Widen	Old Branch Avenue	north of Piscataway Road (MD 223)	Allentown Road (MD 337)	4	4	2	4	Yes	2020
PG Co.	PGS90	Construct	Old Fort Rd. Extended	Piscataway Road (MD 223)	Old Fort Rd	0	4	0	4	No	2020
PG Co.	PGS51a	Widen	Old Gunpowder Road	Powder Mill Road	Greencastle Road	3	3	2	4	No	2015
PG Co.	PGS52	Widen	Oxon Hill Road	Fort Foote Rd - North	MD 210	3	3	2	4	No	2011
PG Co.		Widen	Oxon Hill Road	National Harbor Entrance	Fort Foote Rd - North	4	4	2	4	Yes	2013
PG Co.	PGS81	Construct	Presidential Parkway	Suitland Parkway	Melwood Road	0	3	0	6	No	2025
PG Co.	PGS54	Widen	Rhode Island Avenue	University Boulevard (MD 193)	Baltimore Avenue (US 1)	4	4	2	4	No	2017
PG Co.	PGS55b	Widen	Ritchie Marlboro Road	White House Road	Old Marlboro Rd.	3	3	2	4		2020
PG Co.	PGS56a	Widen	Ritchie Road/Forestville Road	Alberta Drive	MD 4 Pennsylvania Avenue	2	2	2	4	Yes	2020
PG Co.	PGS57	Widen	Rollins Avenue	Central Avenue (MD 214)	Walker Mill Road	4	4	2	4	No	2020
PG Co.	PGS58	Widen	Rosaryville Road	Robert Crain Highway (US 301)	Woodyard Road (MD 223)	3	3	2	4	No	2020
PG Co.	PGS60b	Construct	Spine Road	Branch Avenue (MD 5)/US 301	Brandywine Road (MD 381)	3	3	0	4	No	2016
PG Co.	PGS61	Widen	Springfield Road	Lanham-Severn Road (MD 546)	Good Luck Road	4	4	2	4	No	2020
PG Co.	PGS82	Construct	St. Joseph's Drive	MD 202	Ardwick-Ardmore Road	0	4	0	4	No	2015
PG Co.	PGP2	Construct	Suitland Parkway	interchange at Rena/Forestville Roads		5	5	0	0	No	2025
PG Co.	PGS62a	Widen	Suitland Road	Allentown Road (MD 337)	Suitland Parkway	3	3	2	4	No	2018
PG Co.	PGS62b	Widen	Suitland Road	Suitland Parkway	Silver Hill Road (MD 458)	3	3	2	4	No	2018

	Project					Facilit	у	Lane	s	Under Const.	Complt.
Agency	ID	Improv.	Facility	From	То	from	to	from	to	acquired?	Status
PG Co.	PGS63	Widen	Sunnyside Avenue	Baltimore Avenue (US 1)	Kenliworth Avenue (MD 201)	4	4	2	4	No	2020
PG Co.	PGS64	Widen	Surratts Road	Beverly Avenue	Brandywine Road	4	4	2	4	No	2012
PG Co.	PGS65	Widen	Temple Hill Road	Piscataway Road (MD 223)	St. Barnabas Road (MD 414)	3	3	2	4	No	2020
PG Co.	PGP5a	Construct	US 50/Columbia Park Road Ramp	westbound ramp to Columbia Park Road		5	5	1	1	No	2025
PG Co.	PGP5b	Construct	US 50/Columbia Park Road Ramp	eastbound ramp Cheverly vicinity		5	5	1	1	Yes	2003
PG Co.	PGS67a	Widen	Van Dusen Road	Contee Road	Sandy Springs Road (MD 198)	3	3	2	4	No	2020
PG Co.	PGS67b	Construct	Van Dusen Road Interchange	@Contee Road		0	0	0	0	No	2025
PG Co.	PGS68	Widen	Virginia Manor Road	Muirkirk Road	Contee Road	4	4	2	4	No	2013
PG Co.	PGS69a	Widen	Walker Mill Road	Silver Hill Road	I-95	3	3	2	4	No	2020
PG Co.	PGS91	Widen	Westphalia Rd.	MD 4	Ritchie-Marlboro Rd.	4	3	2	4		2020
PG Co.	PGS70	Widen	Wheeler Road	St. Barnabas Road (MD 414)	District of Columbia limits	2	2	2	4	No	2020
PG Co.	PGS71	Widen	White House Road	Ritchie-Marlboro Road	Largo-Landover Road (MD 202)	3	3	2	6	Yes	2020
PG Co.	PGS72	Widen	Whitfield Chapel Road	Annapolis Road (MD 450)	Ardwick-Ardmore Road	4	4	2	4	No	2020
PG Co.	PGS40b	Construct	Woodmore Road	Enterprise Road (MD 193)	Church Road		3		4	No	2015
PG Co.	PGS42	Widen	Woodyard Road (MD 223)	Rosaryville Road	Dower House Road	2	2	2	4	No	2020
PG Co.	PGS42b	Construct	Woodyard Road Relocated (MD 223)	Piscataway Creek	Livingston Road	0	3	0	2	No	2010
PG Co.	PGS42c	Widen	Woodyard Road Relocated (MD 223)	Piscataway Creek / Floral Park Rd.	Livingston Road / MD 4	3	3	2	4	No	2017

(Highway and HOV)

										Under Const.	Complt.
	Project					Facilit	у	Lane	s	or ROW	Date or
Agency	ID	Improv.	Facility	From	То	from	to	from	to	acquired?	Status
City of Free	derick										
City of Frederi	FS2	Construct	Monocacy Blvd	Hughes Ford Rd.	Gas House Pike	0	3	0	4	Yes	2012
Charles Co	unty			_							
Chas.Co.	CHS1	Widen/ Realign	Cross County Connector (Billingsly Rd.)	Middletown Rd.	MD 210	3	3	2	4		2009
Anne Arun	del County										
ВМС	AA1d	Widen	I-97	US 50/301	MD 32/3	1	1	4	6		2025
ВМС	AA15a	Widen	I-295	I-195	MD 100	1	1	4	6		2015
ВМС	AA15b	Construct	I-295 (New Interchange)	Hanover Road							2015
ВМС	AA3e	Widen	MD 2	US 50	MD 10		2	4/5	6		2030
ВМС	AA3g	Widen	MD 2	MD 450	South River Bridge	2	2	4	6		2030
ВМС	AA4e	Widen	MD 3	MD 32	AA/Prince George Co. Line	2	2	4	6		2030
ВМС	AA5c	Widen	MD 32	BW Parkway	Howard County Line		1	4	8		2020
ВМС	AA14C	Widen	US50 / MD 301	AA / PG line	Bay Bridge	1	1	6	8		2020
ВМС	AA6e	Widen	MD 100	Howard Co. Line	I-97		5/1	4	6		2025
ВМС	AA7	Widen	MD 170	MD 175	MD 100		2	2	4		2020
ВМС	AA8a	Widen	MD 175	MD 170	BW Parkway		2	2	4		2009
ВМС	AA8b	Widen	MD 175	MD 170	BW Parkway		2	4	6		2015
ВМС	AA29	Widen	MD 177	MD 100	South Carolina Avenue	2	2	3/2	5		2020
ВМС	AA30	Widen	MD 198	MD 32	BW Parkway	2	2	2	4		2015
ВМС	AA30a	Widen	MD 198	PG line	BW Parkway	2	2	4	6		2025
ВМС		Widen	MD 607	Woods Rd.	MD 173			2	4		2025

	Project					Facilit	y	Lane	s	Under Const.	Complt. Date or
Agency	ID	Improv.	Facility	From	То	from	to	from	to	acquired?	Status
ВМС	AA34a	Widen	MD 713	MD 175	Arundel Mills Boulevard		2	2	4		2025
ВМС	AA34b	Widen	MD 713	Arundel Mills Boulevard	MD 176		2	4	6		2025
Carroll Col	unty										
ВМС	CA3A	Construct	MD 30 (Manchester Bypass)	North of MD 86	Brodbeck Rd		2	0	2		2030
ВМС	CA1B	Widen	MD 140	Sullivan Road	Market St.		1	4/6	8		2020
ВМС	nrs	Construct	MD 140 (3 new interchange)	@ MD 97S, Center St. & Englar Rd			1	-	-		2020
ВМС	CA2a	Widen	MD 26	MD 32	MD 27		2	4	6		2025
ВМС	in base	Widen	MD 32	MD 26	Howard County Line		2	2	4		2020
вмс	CA5	Widen	MD 97	MD 140	Pleasant Valley Rd		2	2	4		2020
Howard Co	ounty										
ВМС	HW1b	Widen	I-70	US 29	US 40	1	1	4	6		2020
ВМС	HW1a	Reconstruct	I-70 (partial to full interchange)	@ Marriotsville Road		1	1				2020
ВМС	HW19	Widen	I-95	Howard / PG line	Balt. / Howard line	1	1	8	10		2020
ВМС	nrs	Reconstruct	US 1 (interchange)	@ MD 175							2015
ВМС	HW10d	Widen	US 29	I-70	MD 100		5	6	8		2030
BMC	HW10b	Widen	US 29 NB	S. of MD 175	Middle Patuxent River		5	4	6		2010
BMC	HW3c	Widen	MD 32	Cedar Lane	Anne Arundel County Line		1	4/6	8		2015
BMC	HW3b	Widen	MD 32	MD 108	I-70		1	2	4		2015
ВМС	HW3d	Widen	MD 32	I-70	Carroll County Line		2	2	4		2030

	Project					Facilit	y	Lane	s	Under Const.	Complt. Date or
Agency	ID	Improv.	Facility	From	То	from	to	from	to	acquired?	Status
ВМС	HW3e	construct/ reconstruct	MD 32 (interchanges)	@ I-70/ @ MD 144 @ Linden Church Rd/Dayton Shop @Rosemary Lane							2015
ВМС		Construct	MD 32 (interchange)	@ Burntwoods Rd.							2009
BMC	HW6c	Widen	MD 108	Trotter Road	MD 32		2	2	4		2025
ВМС	HW6d	Widen	MD 108	Woodland Rd.	1200' w. of Centennial Ln.	2	2	2	4		2011
ВМС	HW6e	Widen	MD 108	MD 104	MD 175	2	2	2	4		2020
ВМС	HW7d	Widen	MD 175	US 1	Anne Arundel County Line		2	2	5		2020
ВМС	HW8b	Widen	MD 216	West of US 29	Sanner Road		3	2	4		2020
ВМС	nrs	Construct	Dorsey Run Rd., North	MD 103	MD 175			0	4		2011
ВМС	nrs	Construct	Dorsey Run Rd., South	MD 175	Gulford Rd.			0	4		2010
ВМС	HW16C	Widen	Gorman Road	Stephens Road	US 1		3	2	3		2025
ВМС	HW18a	Widen	Marriottsville Road	MD 99	US 40		3	2	6		2015
ВМС	nrs	Widen	Patuxent Range Road	US 1	Dorsey Run Road			2	4		2015
ВМС	HW11b	Widen	Rodgers Avenue	US 40	Courthouse Drive		3	2	4		2010
ВМС	HW13a	Construct	Sanner Road South	Johns Hopkins Road	MD 216		3	0	4		2015
ВМС	HW13b	Widen	Sanner Road North	Johns Hopkins Road	Pindell School Road		3	2	4		2015
ВМС	HW14c	Widen	Snowden River Parkway	MD 100	Broken Land Parkway		3	4	6		2020
Federal Lar	nds										
Fed. Lands	FED2	Widen	Old Mill Rd.(future Mulligan Rd.)	US 1	VA 611 (Telegraph Rd.)	4	4	0/2	4	Yes	2012

(Highway and HOV)

	Project					Facilit	у	Lane	s	Under Const.	Complt. Date or
Agency	ID	Improv.	Facility	From	То	from	to	from	to	acquired?	Status
VIRGINIA											
VDOT Free	way										
VDOT	VI1w	Widen	I-66 HOV during peak and SOV	US 15 (includes intch. reconst.)	US 29 (Gainesville)	1	1	4	8	No	2018
VDOT	VI1z		I-66 Interchange	@ US 29 (Gainesville)	oc 20 (Cambovino)	1	1	_	_	No	2014
VDOT	VI1ca	Widen	I-66 HOV during peak	US 29 (Gainesville)	VA 234 (Prince William Pkwy)	1	1	4	8	complete	2010
VDOT	VI1ab	Reconstruct	I-66 Interchange	@ I-495 (Capital Beltway)		1	1	-	-	Yes	2013
VDOT	VI1aj	Construct	I-66 Vienna Metro Station bus ramp	EB I-66 and Saintsbury Dr.	Saintsbury Dr. and WB I-66	1	1	0	2	No	2014
VDOT		Widen	I-66 EB Auxiliary Lanes	West of Gallows Road	Off Ramp I-495 SB	1	1	3+1	3+1 +2	No	2030
VDOT		Widen	I-66 WB Auxiliary Lanes	On Ramp from SB I-495	West of Gallows Road	1	1	3+1	3+1 +2	No	2030
VDOT	VI1ah	Widen	I-66 EB Auxiliary Lanes	Cedar Lane	West of Gallows Road	1	1	3+1	3+1 +1	No	2030
VDOT	VI1ai	Widen	I-66 WB Auxiliary Lanes	West of Gallows Road	Cedar Lane	1	1	3+1	3+1 +1	No	2030
VDOT	VI1ae	Reconstruct	I-66 WB Operational/ Spot Improvements- extend acceleration/deceleration lanes	Fairfax Dr.	Sycamore St.	1	1	2	3	No	2013
VDOT	VI1af	Reconstruct	I-66 WB Operational/ Spot Improvements- extend acceleration/deceleration lanes	Washington Blvd.	Dulles Airport Access Rd. connector	1	1	3	4	No	2020
VDOT	VI1ag	Reconstruct	I-66 WB Operational/ Spot Improvements	Lee Hwy. / Spout Run	Glebe Rd.	1	1	2	3	No	2020
VDOT	Vl2ka	Widen	I-95 (Wilson Bridge and approaches)	VA 241 (Telegraph Rd.)	US 1	1	1	6	12	Yes	2013
VDOT	VI2k	Widen	I-95 (Wilson Bridge and approaches)	US 1	MD 210	1	1	6	12	complete	2011
VDOT	VI2ac	Reconstruct	I-95 Interchange	@ VA 613 (Van Dorn Street)		1	1	-	-	No	2025

(Highway and HOV)

	Project					Facilit	у	Lane	s	Under Const.	Complt. Date or
Agency	ID	Improv.	Facility	From	То	from	to	from	to	acquired?	Status
VDOT	VI2p	Widen	I-95 (provide 4th lane)	Newington	VA 123	1	1	6	8	Yes	2011
VDOT	VI2ab	Reconstruct	I-95 Interchange	@ VA 642 (Lorton Road)		1	1	-	-	No	2010
VDOT	VI2RB	Widen	I-395 HOV Lanes ramp	exit to Eads St.		1	1	1	2	No	2014
VDOT	VI2r	Widen / Construct	I-395/I-95 HOV/ BUS/ HOT Lanes	Approx. 2 mi. N. of I-495	VA 3000 (Prince William Pkwy)	1	1	2	3	No	2015
VDOT	VI2r	Construct	I-395/I-95 HOV/ BUS/ HOT Lanes	VA 3000 (Prince William Parkway)	S. of VA 234 (Dumfries Rd.)	1	1	2	2	No	2015
VDOT	VI2r	Construct	I-395/I-95 HOV/ BUS/ HOT Lanes	S. of VA 234 (Dumfries Rd.)	VA 610 (Garrisonville Rd.) in Stafford Co.	1	1	0	2	No	2015
VDOT	VI2r	Widen	I 95: HOV / Bus / HOT Ramp:	NB-HOV/Bus/HOT lanes	Eads Street	4	4	4	2	No	2012
VDOT	VI2r	Widen	I 95: HOV / Bus / HOT Ramp:	Eads St.	SB-HOV/Bus/HOT-lanes	4	4	2	എ	Ne	2015
VDOT	VI2r	Remove	I 95: HOV / Bus / HOT Ramp:	SB Express to SB Gen. use- lanes	Between S Hayes St. & Washington Blvd.	4	1	4	θ	No	2012
VDOT	VI2r	Construct	I 95: HOV / Bus / HOT Ramp:	NB HOV/Bus/HOT Lanes	Shirlington Circle	-	1	θ	4	No	2012
VDOT	VI2r	Construct	I 95: HOV / Bus / HOT Ramp:	Shirlington Circle	SB HOV/Bus/HOT Lanes	_	4	0	4	No	2012
VDOT	VI2r	Construct	I 95 : HOV / Bus / HOT Bus- Only Ramp:	NB HOV/Bus/HOT Lanes	VA 420 (Seminary Road) (bus-only)	1	4	Đ	4	No	2012
VDOT	VI2r	Construct	I 95: HOV / Bus / HOT Ramp:	VA 420 (Seminary Road) (bus only)	SB HOV/Bus/HOT Lanes	-	4	0	4	No	2012
VDOT	VI2r11	Construct	I 95: HOV / Bus / HOT Lanes Ramp: Between VA 648 (Edsall) and Turkeycock Run	NB I-395 HOV/HOT lanes	NB I-395 GP	-	1	0	1	No	2015
VDOT	VI2r24	Construct	I 95: HOV / Bus / HOT Reversible Ramp:	NB HOV/Bus/HOT Lanes	VA 7100 (Fairfax Co. Pkwy) (Alban Rd.)	-	1	0	1	No	2015
VDOT	VI2r24	Construct	I 95: HOV / Bus / HOT Reversible Ramp:	VA 7100 (Fairfax Co. Pkwy) (Alban Rd.)	SB HOV/Bus/HOT Lanes	-	1	0	1	No	2015
VDOT	BRAC0004 / VI2ra	Construct	I-95 Reversible Ramp (Colocated w/ existing slip ramp from HOV to GP lanes)	NB HOV/BUS/HOT Lanes - Located N of Rte. 7100/I 95 I/C Phase II DAR	EPG Southern Loop Road AM Only	1	1	0	1	No	2016

										Under Const.	Complt.
	Project					Facilit	у	Lane	s	or ROW	Date or
Agency	ID	Improv.	Facility	From	То	from	to	from	to	acquired?	Status
VDOT	BRAC0004 / VI2rb	Construct	I-95 Reversible Ramp (Colocated w/ existing slip ramp from HOV to GP lanes)	EPG Southern Loop Road PM Only Phase I DAR	SB HOV/BUS/HOT Lanes - N of Rte. 7100/I 95 I/C	1	1	0	1	No	2012
VDOT	BRAC0004/ VI2rc	Construct	I-95 Ramp (Colocated w/ existing slip ramp from HOV to GP lanes)	EPG Southern Loop Road PM Only Phase I DAR	NB I 95 GP Lanes	1	1	0	1	No	2012
as represent o	BRAC0005 / VI2rd	Widen	I-95 Ramp	SB I 95 General Purpose Lanes	NB Fairfax Co. Parkway / EPG Southern Loop Road	1	1	1	2	complete	2010
Y2011-2016	BRAC	Construct	I-95 NB Off Ramp @ Newington	NB I-95	NB Fairfax County Parkway	1	1	0	1	No	2020
VDOT	VI2r	Construct	I-95: HOV / Bus / HOT Ramp:	NB HOT lanes to new bus- station, back to NB HOT- lanes (bus only)	Between VA 7100 (Fairfax- Co. Pkwy.) and VA 642- (Lorton Rd.)	1	1	Ф	4	No	2012
VDOT	VI2r	Construct	I 95: HOV / Bus / HOT Ramp:	SB HOT lanes to new bus- station, back to SB HOT- lanes (bus only)	Between VA 7100 (Fairfax- Co. Pkwy.) and VA 642- (Lorton Rd.)	_	4	0	4	No	2012
VDOT	VI2r	Construct	I 95: HOV / Bus / HOT Ramp:	NB HOV/Bus/HOT to Gen.use lanes	Between VA 7100 (Fairfax- Co. Pkwy.) and VA 642- (Lorton Rd.)	Φ	4	θ	4	No	2012
VDOT	VI2r31	Construct	I 95: HOV / Bus / HOT Ramp:	SB Gen Purpose Lanes to SB HOV/Bus/HOT lanes	Between US 1 & VA 123	-	1	0	1	No	2015
VDOT	VI2r37	Construct	I 95: HOV / Bus / HOT Ramp:	SB Gen Purpose Lanes to SB HOV/Bus/HOT lanes	Between Opitz Blvd. and Dale Blvd.	-	1	0	1	No	2015
VDOT	VI2r34	Construct	I 95: HOV / Bus / HOT Ramp:	NB HOV/Bus/HOT to Gen. use lanes	Between VA 123 (Gordon Rd.) & VA 3000 (Prince William Pkwy.)	-	1	0	1	No	2015
VDOT	VI2r	Construct	I 95: HOV / Bus / HOT Ramp:	NB HOV/Bus/HOT to Gen.use lanes	Between VA 610 (Cardinal-Rd.) & VA 234 (Dumfries-Rd.)	<u>-</u>	4	0	4	No	2012
VDOT	VI2r43	Construct	I 95: HOV / Bus / HOT Ramp:	SB HOV/Bus/HOT lanes to SB Gen Purpose Lanes	Between Dumfries Rd. and Joplin Rd.	-	1	0	1	No	2015

						_				Under Const.	Complt.
	Project					Facilit	y I	Lane	s	or ROW	Date or
Agency	ID	Improv.	Facility	From	То	from	to	from	to	acquired?	Status
VDOT	VI2r43a	Construct	I 95: HOV / Bus / HOT Ramp:	SB Gen Purpose Lanes to SB HOV/Bus/HOT lanes	Between Dumfries Rd. and Joplin Rd.	I	1	0	1	No	2018
VDOT	VI2r45a	Construct	I 95: HOV / Bus / HOT Ramp:	NB HOV/Bus/HOT lanes to NB Gen Purpose Lanes	Between Joplin Rd. and Russell Rd.	i	1	0	1	No	2018
VDOT	VI2r44	Construct	I 95: HOV / Bus / HOT Ramp:	SB HOV/BUS/HOT lanes to SB GP lanes	Between VA 619 (Joplin Rd.) and VA 610 (Garrisonville Rd.)	1	1	0	1	No	2015
VDOT	VI2r45	Construct	I 95: HOV / Bus / HOT Ramp:	NB GP lanes to NB HOV/BUS/HOT Lanes	Between VA 619 (Joplin Rd.) and VA 610 (Garrisonville Rd.)		1	0	1	No	2015
VDOT	VI2R6A	Construct	I-395 HOV Lanes Reversible Ramp	NB HOV off-ramp to Seminary Rd. & Seminary Rd. on-ramp to SB HOV		1	1	0	1	No	2015
VDOT	VI2ca	Construct	I-495 access ramps (Phase VIII of I-95/394/495 Interchange)	Backlick Rd. to 1. mi. E. of 195/1395/1495	& SB main & HOT to/from I- 495/I-95 EB & WB main & HOV lanes)	1	1	-	-	No	2013
VDOT	VI4laux	Widen	I-495 NB Auxiliary Lane	1. mi. East of I-95/395/495	North of Hemming Ave. underpass	1	1	4+2	5+1	Yes	2013
VDOT	VI4Iaux	Widen	I-495 SB Auxiliary Lane	North of Hemming Ave. Underpass	1. mi. East of I-95/395/495	1	1	4+2	5+1	Yes	2013
VDOT	VI4laux	Widen	I-495 NB Auxiliary Lane	North of Hemming Ave. Underpass	Off Ramp to Braddock Rd	1	1	4+2	5+2	Yes	2030
VDOT	VI4laux	Widen	I-495 SB Auxiliary Lane	On Ramp from Braddock Rd	North of Hemming Ave. Underpass	1	1	4+2	5+2	Yes	2030
VDOT	VI4laux	Widen	I-495 NB Auxiliary Lane	On Ramp from Braddock Rd	Off Ramp to Rte 236	1	1	4+2	5+2	Yes	2030
VDOT	VI4laux	Widen	I-495 SB Auxiliary Lane	On Ramp from Rte 236	Off Ramp to Braddock Rd	1	1	4+2	5+2	Yes	2013
VDOT	VI4laux	Widen	I-495 NB Auxiliary Lane	On Ramp from Rte 236	Off Ramp to Gallows Road	1	1	4+2	5+2	Yes	2030
VDOT	VI4laux	Widen	I-495 SB Auxiliary Lane	On Ramp from Gallows Road	Off Ramp to Rte 236	1	1	4+2	5+2	Yes	2030
VDOT	VI4laux	Widen	I-495 NB Auxiliary Lane	On Ramp from Gallows Road	Off Ramp to Route 50	1	1	4+2	6+2	Yes	2013

(Highway and HOV)

										Under Const.	Complt.
	Project					Facilit	у	Lane	s	or ROW	Date or
Agency	ID	Improv.	Facility	From	То	from	to	from	to	acquired?	Status
VDOT	VI4Iaux	Widen	I-495 SB Auxiliary Lane	On Ramp from Route 50	Off Ramp to Gallows Road	1	1	4+2	5+2	Yes	2013
VDOT	VI4Iaux	Widen	I-495 NB Auxiliary Lane	On Ramp from Route 50	Off Ramp to I-66	1	1	4+2	5+2	Yes	2013
VDOT	VI4laux	Widen	I-495 NB Auxiliary Lane	On Ramp from Route 50	Off Ramp to I-66	1	1	5+2	6+2	Yes	2030
VDOT	VI4laux	Widen	I-495 SB Auxiliary Lane	On Ramp from I-66	Off Ramp to Route 50	1	1	4+2	5+2	Yes	2013
VDOT	VI4laux	Widen	I-495 NB	On ramp from EB I 66	Off Ramp to Rte 7	1	1	4+2	5+2	Yes	2013
VDOT	VI4laux	Widen	I-495 SB Auxiliary Lane	On ramp from Rte 7	Off Ramp to WB I 66	1	1	4+2	5+2	Yes	2030
VDOT	VI4laux	Widen	I-495 NB Auxiliary Lane	On ramp from Rte 7	Off Ramp to Rte 123	1	1	4+2	5+2	Yes	2013
VDOT	VI4laux	Widen	I-495 SB Auxiliary Lane	On ramp from Rte 123	Off Ramp to Route 7	1	1	4+2	5+2	Yes	2013
VDOT	VI4laux	Widen	I-495 SB Auxiliary Lane	On Ramp from Rte 123	Off Ramp to Route 7	1	1	5+2	6+2	Yes	2030
VDOT	VI4laux	Widen	I-495 NB Auxiliary Lane	On Ramp from Rte 123	Off Ramp to Rte 267	1	1	4+2	5+3	Yes	2013
VDOT	VI4laux	Widen	I-495 SB Auxiliary Lane	On Ramp from Route 267	Off Ramp to Route 123	1	1	4+2	5+4	Yes	2013
VDOT	VI4Iaux	Widen	I-495 NB Auxiliary Lane	On Ramp from Route 267	Off Ramp to Route 193	1	1	4+2	5+2	Yes	2030
VDOT	VI4Iaux	Widen	I-495 SB Auxiliary Lane	On Ramp from Route 193	Off Ramp to Route 267	1	1	4+2	5+2	Yes	2030
VDOT	VI4k	Construct	I-495 HOT	American Legion Bridge	S. of George Washington Pkwy.	1	1	8	8+2	Yes	2030
VDOT	V/IAI	0	1 405 HOT I	S. of George Washington		4	_	•	0.0	NI-	0040
VDOT	VI4ka		I-495 HOT Lanes	Pkwy	S. of Old Dominion Dr.	1	1	8	8+2		2013
VDOT	VI4IHOT	Construct	I-495 HOT	S. of Old Dominion Dr.	Hemming Ave. Underpass North of Hemming Ave.	1	1	8	8+4	Yes	2013
VDOT	VI4Ib	Construct	I-495 NB Auxiliary Lane	1 mi. east of I-95/I-395/I-495	Underpass	1	1	8	5+1	Yes	2013
VDOT	VI4Ib	Construct	I-495 SB Auxiliary Lane	Hemming Ave. Underpass	1 mi. east of I-95/I-395/I-495	1	1	8	5+1	Yes	2013
VDOT	part of VI4IHOT	Construct	I-495 HOT Lanes Interchange	Provides SB to WB, EB to SB, & NB to WB HOV movements	@ VA 267 (Dulles Toll Road)	1	1	-	_	Yes	2013

B-32

	Project					Facilit	y	Lane	s	Under Const.	Complt.
Agency	ID	Improv.	Facility	From	То	from	to	from	to	acquired?	Status
VDOT	part of VI4IHOTa	Construct	I-495 HOT Lanes Interchange	Provide SB HOT to EB HOV & EB DTR to NB HOT movements	@ VA 267 (Dulles Toll Road)	1	1	-	-	Yes	2030
VDOT	part of VI4IHOTa	Relocate / Re	I-495 HOT Lanes Interchange	Move ramps from left side to right side: NB GP lanes to WB DTR; SB GP lanes to EB DTR	@ VA 267 (Dulles Toll Road)	1	1	1	1	Yes	2030
VDOT		Construct	I-495 Interchange Ramp	SB I-495	WB Dulles Airport Access Highway (DAAH)	0	1	0	1	Yes	2013
VDOT		Construct	I-495 Interchange Ramp	EB Dulles Airport Access Highway (DAAH)	NB I-495	0	1	0	1	Yes	2013
VDOT		Construct	I-495 Interchange Ramp	EB Dulles Airport Access Highway (DAAH)	SB I-495	0	1	0	1	Yes	2013
VDOT	part of VI4IHOT	Construct	I-495 HOT Lanes Interchange	NB to WB, SB to WB, EB to NB, and EB to SB	@ Jones Branch Connector	1	1	-	-	Yes	2013
VDOT	part of VI4IHOT	Construct	I-495 HOT Lanes Interchange	NB to WB, SB to WB, EB to NB, and EB to SB	@ West Park Connector	1	1	-	-	Yes	2013
VDOT	part of VI4IHOT	Construct	I-495 HOT Lanes Interchange	NB to EB, NB to WB, EB to SB, and WB to SB	@ VA 7	1	1	1	-	No	2013
VDOT	part of VI4IHOT	Construct	I-495 HOT Lanes Interchange	Provides SB to WB, WB to SB, EB to SB, NB to WB, WB to NB, & EB to NB movements	@ I-66	1	1	_	1	Yes	2013
VDOT	part of VI4IHOT	Construct	I-495 HOT Lanes Interchange	NB to EB	@ I-66	1	1	_	_	Yes	2013
VDOT	part of VI4IHOT		I-495 HOT Lanes Interchange	@ I-66	Left side off ramp from NB I 495 to WB I 66 relocated to combine with right side off ramp from NB I 495 to WB I 66		1	1	2	Yes	2013
VDOT	part of VI4IHOT	Construct	I-495 HOT Lanes Interchange	NB to EB, NB to WB, EB to SB, and WB to SB	@ US 29	1	1	_	-	Yes	2013

	Project					Facilit	y	Lane	s	Under Const.	Complt.
Agency	ID	Improv.	Facility	From	То	from	to	from	to	acquired?	Status
VDOT	part of VI4IHOT	Construct	I-495 HOT Lanes Interchange	EB to NB, WB to NB, SB to EB, and SB to WB	@ VA 650 (Gallows Road)	1	1	0	1	Yes	2013
VDOT	part of VI4IHOT	Construct	I-495 HOT Lanes Interchange	EB to NB, WB to NB, SB to EB, and SB to WB	@ VA 620 (Braddock Road)	1	1	-	_	Yes	2013
VDOT	part of VI4IHOTa	Construct	I-495 HOT Lanes Interchange	NB to EB, NB to WB, EB to SB, and WB to SB	@ VA 620 (Braddock Road)	1	1	-	_	Yes	2030
VDOT	MW1	Widen	Dulles Airport Access Road	Dulles Airport	VA 123	1	1	4	6	No	2017
VDOT Prim	nary										
VDOT	VP1ab	Widen	US 1	Joplin Rd.	Brady's Hill Road	2	2	4	6	Yes	2011
VDOT	VP1ad	Widen	US 1	Brady's Hill Road	Cardinal Drive	2	2	4	6	No	2025
VDOT	VP1ae	Widen	US 1	Blackburn Dr/Neabsco Mills Rd	Featherstone Road	2	2	4	6	No	2025
VDOT	VP1a	Widen	US 1	Telegraph Rd.	VA 235 South	2	2	4	6	No	2020
VDOT	VP1u	Widen	US 1	VA 235 South	VA 235 North	2	2	4	6	No	2025
VDOT	VP1p	Widen	US 1 (part of 1/123 interchange)	Occoquan Rd.	Annapolis Way	2	2	4	6	Yes	2017
VDOT	VP2ja	Widen	VA 7 Bypass	VA 7 West	US 15 South (South King St)	5	1	4	6	No	2040
VDOT	VP2j	Widen	VA 7 Bypass	US 15 South (South King St)	VA 7/US 15 East	5	1	4	6	No	2040
VDOT		Construct	VA 7 WB Truck Climbing Lane	VA 9	Business 7 West	5	1	4	5	No	2020
VDOT	VP2m	Widen	VA 7	Reston Avenue	Lewinsville Road	2	2	4	6	No	2025
VDOT	nrs	Construct	VA 7	Bridge over Dulles Toll Road				4	6	No	2030
VDOT	VP2ma		VA 7	Rolling Holly Drive	Reston Avenue			4	6	No	2014
VDOT	VP2L	Widen	VA 7	Dulles Toll Rd.	I-495	2	2	6	8	No	2014

	Project					Facilit	v	Lane	S	Under Const.	Complt.
Agency	ID	Improv.	Facility	From	То	from	to	from	to	acquired?	Status
VDOT	VP2b	Widen	VA 7	Seven Corners	Bailey's Crossroads	2	2	4	6	No	2025
VDOT		Construct	VA 7 interchange	@ Loudoun County Parkway			_	_	_	Complete	2010
VDOT			VA 7 interchange	@ VA 659 (Belmont Ridge Rd.)		- 1	-	-	-	No	2020
VDOT	VP4e	Widen	US 15 (James Madison Highway)	US 29	I-66	2	2	2	4	No	2040
VDOT	VP6h	Widen	VA 28	Fauquier County Line	VA 652 (Fitzwater Dr.)	3	3	2	4	No	2025
VDOT	VP6ka	Widen	VA 28	VA 652 (Fitzwater Dr.)	VA 215 (Vint Hill Rd.) Relocated	3	3	2	4	No	2016
VDOT	VP6kb	Widen	VA 28	VA 215 (Vint Hill Rd.) Relocated	VA 619 (Linton Hall Road)	3	3	2	6	No	2016
VDOT	VP6ma	Widen	VA 28 (Nokesville Rd.)	Godwin Drive	Manassas City limits - west	3	2	4	6		2017
VDOT	VP6e	Widen/ Upgrade	VA 28 PPTA (Phase II)	I-66	VA 7	2	1	6	8	No	2025
VDOT	VP6eb	Construct	VA 28 Interchange	@ VA 209 (Innovation Ave.)		-	-	_	_	Yes	2015
VDOT	VP6ec	Construct/ Upgrade	VA 28 Intersection	at Steeplechase Drive		1	1	6	6	Yes	2011
VDOT		Reconst.	VA 28 Interchange	@ New Braddock Rd.		-	-	-	-	Complete	2010
VDOT	VP7ae	Construct	US 29 Interchange	@ VA 55/VA 619		-	-	-	-	No	2014
VDOT	VP7r	Widen	US 29	Virginia Oaks Drive	I-66	2	5	4	6	No	2014
VDOT	VP7s	Widen	US 29 (add NB lane)	I-66	Entrance to Conway Robinson MSF	3	2	4	5	No	2014
VDOT	VP7aa	Widen	US 29	ECL City of Fairfax (vic. Nutley St.)	Espana Court	2	2	4	6	No	2025
VDOT	VP7ab	Complete	US 29	Espana Court	I-495	2	2	4	6	No	2013
VDOT	VSP57a	Construct	Route 29 (Parallel)	US 29 (Lee Highway) (near US 15)	Sommerset Crossing Drive	0	4	0	4	No	2040

										Under Const.	Complt.
	Project					Facilit	у	Lane	s	or ROW	Date or
Agency	ID	Improv.	Facility	From	То	from	to	from	to	acquired?	Status
VDOT	VP8q	Widen	US 50	VA 659 Relocated	VA 742 (Poland Rd.)	2	2	4/5	6	No	2025
VDOT	VP8c	Widen	US 50	VA 742 (Poland Rd.)	VA 609 (Pleasant Valley)	2	2	4/5	6	No	2014
VDOT	VP8r	Widen	US 50	VA 609 (Pleasant Valley)	VA 661 (Lee Rd.)	2	2	4/5	6	No	2014
VDOT	VP8h	Widen	US 50	ECL City of Fairfax	Arlington County Line	2	2	4	6	No	2025
VDOT	AR2e	Reconstruct	US 50 (Arlington Blvd.)	ARC/FFX Line	Washington Blvd.	2	2	6	6	No	2015
VDOT	AR2f	Reconstruct	US 50 (Arlington Blvd.)	Pershing Dr.	Ft. Myer Dr.	5	5	6	6	No	2015
VDOT	VP8o	Reconstruct	US 50 Interchange	@ Courthouse Road / 10th Street		1	1	6	8	Yes	2013
VDOT	VI 00		US 50 Interchange	VA 606 (Loudoun County Parkway)		_	_		_	No	2025
VDOT	VP10g	Widen	VA 123	Route 1	Horner Road	2	2	4	6	No	2017
VDOT	VP10h	Widen	VA 123 (Ox Road)	Hooes Rd.	Fairfax Co. Parkway	2	2	4	6	No	2025
VDOT	VP10f	Widen	VA 123 (Ox Road)	Fairfax Co. Parkway	Burke Center Parkway	2	2	4	6	No	2025
VDOT	VP10r	Widen	VA 123	Burke Center Parkway	Braddock Road	2	2	4	6	No	2025
VDOT		Widen and relocate	VA 215 (Vint Hill Rd.)	VA 28	1 mile west of VA 28	3	3	2	4	No	2016
VDOT	VP13a	Widen	VA 236	Pickett Road	I-395	2	2	4	6	No	2025
\/DOT		0	Tri-County Parkway (CTB		110.50	_	,		,		0005
VDOT Urba	VP120	Construct	alignment C & D)	VA 234 @ I 66	US 50	0	5	0	4	No	2035
VDOT Urba	VU28b	Construct	Dottlefield Derkwer	LIC 15 courts of Leashurs	Dulles Creenway	0	2		4	No	2020
VDOT			Battlefield Parkway Battlefield Parkway	US 15 south of Leesburg Fort Evans Road	Dulles Greenway Edwards Ferry Road	0	2	0	4		2020
	VU28f			1	İ	0		0	4	Yes	
VDOT	VU30f	Widen	East Elden Street	Van Buren St.	Fairfax County Parkway	2	2	4	6	No	2016
VDOT	VU52	Widen	Eisenhower Ave.	Stovall St.	Holland Lane	3	3	4	6	No	2013

	Project					Facilit	у	Lane	s	Under Const.	Complt.
Agency	ID	Improv.	Facility	From	То	from	to	from	to	acquired?	Status
VDOT	VU35b	Construct	Mill Road Extension	Telegraph Rd.	DMV complex	-	3	-	2	No	2010
VDOT	VU51a	Construct	Potomac Yard Spine Road	US Route 1	Crystal Dr.	0	4	0	4	No	2014
VDOT	VU10b	Widen	Spring Street	Herndon Parkway East	Fairfax County Parkway	3	3	4	6	No	2014
VDOT	VU33	Widen	Sycolin Road	VA 7/US 15 Bypass	SCL of Leesburg	3	3	2	4	No	2020
VDOT	VU32	Widen	US 15 (South King Street)	Evergreen Mill Road	SCL of Leesburg	3	2	2	4	No	2015
VDOT		Construct	US 15 Bypass Interchange	Edwards Ferry Rd.	, and the second	2	2	-	_	No	2035
VDOT	VU40	Widen	US 29 (Lee Highway)	US 50	Chain Bridge Road	2	2	4	6	No	2040
VDOT	VU6b	Widen	US 29 (Lee Highway)/US 50	VA 123 (Chain Bridge Road)	Eaton Place	2	2	4	6	No	2013
VDOT	VU29		VA 123 (Chain Bridge Road)	US 50	I-66	2	2	5	6	No	2013
			Chain Bridge Road/Eaton Place Intersection	intersection at NB Chain Bridge Rd. & Willow Crescent			2				2011
VDOT	14145		Improvements	Dr.		2				No	
VDOT	VU45	Widen	VA 234 (Dumfries Road)	South Corporate Limits	Hastings Drive	3	3	2	4	No	2011
VDOT	VU48b	Widen	Wellington Road	Godwin Drive	VA 28 (Nokesville Road)	3	3	2	4	Yes	2010
VDOT	VU14a	Widen	Liberia Ave.	Rt.e 28	Quarry Road	3	3	4	6		2017
	N COUNTY SEC	ONDARY									
VDOT	AR17a	Widen	Washington Blvd.	Wilson	Kirkwood	3	3	3	4	No	2015
FAIRFAX C	OUNTY SECON	DARY	I		VA 606 (Baron Cameron						
VDOT	FFX2a	Construct	VA 602 (Reston Pkwy.)	VA 5320 (Sunrise Valley Dr.)	Avenue)	2	2	4	6	No	2020
VDOT	nrs	Reconstruct/ Widen	Rte 603 Beach Mill Road - Bridge over Nichols Branch	Rte 603 Beach Mill Road	Rte 674 Springvale Road (west of intersection)	3	3				2014
VDOT	VSF4f	Widen	VA 611 (Furnace Road)	VA 123 (Ox Road)	VA 642 (Lorton Road)	3	3	2	4	No	2013

	Project					Facilit	у	Lane	s	Under Const.	Complt.
Agency	ID	Improv.	Facility	From	То	from	to	from	to	acquired?	Status
VDOT	VSF4c	Widen	VA 611 (Telegraph Road)	VA 613 (Beulah St.)	Leaf Road North	3	3	2	4	Yes	2012
VDOT	VSF4ca	Widen	VA 611 (Telegraph Road)	Leaf Road North	VA 635 (Hayfield Road)	3	3	2	4	No	2025
VDOT	VSF4i	Widen	VA 611 (Telegraph Road)	VA 635 (Hayfield Road)	VA 633 (S. Kings Hwy.)	3	3	2	4	No	2025
VDOT	VSF4h	Widen	VA 611 (Telegraph Road)	VA 633 (S. Kings Hwy.)	VA 644 (Franconia Road)	3	3	2	3	No	2025
VDOT	VSF15b	Construct	VA 613 (Van Dorn Street)	@ VA 644 (Franconia Road)	interchange	0	0	0	0	No	2025
VDOT	VSF8g	Widen	VA 620 (Braddock Rd)	VA 7100 (Fairfax Co. Pkwy.)	VA 123 (Ox Road)	3	3	4	6	No	2025
VDOT	VSF8j	Construct/ Widen	VA 620 (New Braddock Rd.)	VA 28	US 29 @ VA 662 (Stone Rd.)	0/4	3	0/2	4	No	2025
VDOT	BRAC	Widen	VA 638 (Rolling Rd.) NB off- ramp @ Fairfax County Pkwy.	NB Rolling Rd.	NB Fairfax County Pkwy	3	3	2	4	No	2020
	BINAC	Wideli		Ü			3		-	140	2020
VDOT		Widen	VA 638 (Rolling Rd.)	VA 7100 (Fairfax Co. Pkwy.)	VA 644 (Old Keene Mill Rd.)	3	3	2	4	No	2015
VDOT	VSF10c	Widen	VA 638 (Pohick Road)	US 1	I-95	3	3	2	4	No	2025
VDOT	VSF13d	Widen	VA 642 (Lorton Road)	VA 123 (Ox Road)	VA 600 (Silverbrook Road)	3	3	2	4	No	2013
VDOT	FFX11a	Widen	VA 645 (Stringfellow Rd.)	US 50	VA 7100 (Fairfax County Parkway)	3	3	2	4	No	2020
VDOT	VSF16g	Widen	VA 645 (Stringfellow Road)	VA 7735 (Fair Lakes Blvd.)	US 50	3	3	2	4	No	2013
VDOT	VSF37	Widen	VA 650 (Gallows Road)	Gatehouse Road	Providence Forest Dr.	2	2	4	6	Yes	2025
VDOT	VSF33d	Widen	VA 651 (Guinea Road)	VA 620 (Braddock Road)	VA 2430 (Braeburn Drive)	3	3	2	4	No	2025
VDOT	VSF33a	Widen	VA 651 (Guinea Road)	VA 6197 (Roberts Parkway)	VA 4807 (Pommeroy Drive)	3	3	2	4	No	2025
VDOT	FFX12a	Construct	VA 651 (New Guinea Rd.)	VA 123 (Ox Road)	Roberts Rd.	0	3	0	4	No	2025
VDOT	VSF17b	Construct	VA 655 (Shirley Gate Road)	VA 7100 (Fairfax County Parkway)	VA 620 (Braddock Road)	0	3	0	4	No	2025
VDOT	VSF18c	Widen	VA 657 (Centreville Road)	VA 8390 (Metrotech Dr.)	VA 668 (McLearen Road)	3	3	4	6	No	2040
VDOT	VSF18h	Widen	VA 657 (Centreville Road)	VA 608 (West Ox Rd)	VA 608 (Frying Pan Rd)	3	3	2	4	Complete	2010

(Highway and HOV)

	Project					Facilit	v	Lane	s	Under Const.	Complt.
Agency	ID	Improv.	Facility	From	То	from	to	from	to	acquired?	Status
VDOT	VSF24	Widen	VA 684 (Spring Hill Road)	VA 7 (Leesburg Pike)	VA 6034 (International Drive)	3	3	2	4	Complete	2010
VDOT	VSF25aa	Convert	VA 7100 (Fairfax Co Pkwy HOV)	VA 267 (Dulles Toll Road)	Sunrise Valley Dr.	5	5	6	4+2	No	2035
VDOT	VSF25ea	Widen	VA 7100 (Fairfax Co Pkwy HOV)	Sunrise Valley	Rugby Rd.	5	5	4	4+2	No	2035
VDOT	VSF25e	Widen	VA 7100 (Fairfax Co Pkwy HOV)	Rugby Rd.	US 50	5	5	4	4+2	No	2035
VDOT	VSF25y	Upgrade/ Widen	VA 7100 (Fairfax Co Pkwy HOV)	US 50	VA 7735 (Fair Lakes Pkwy)	2	5	4	4+2	No	2035
VDOT	VSF25z	Upgrade /Widen	VA 7100 (Fairfax Co Pkwy HOV)	VA 7735 (Fair Lakes Pkwy)	I-66	2	5	6	6+2	No	2035
VDOT	VSF25g	Widen	VA 7100 (Fairfax Co Pkwy)	I-66	VA 123 (Ox Road)	5	5	4	6	No	2020
VDOT	VSF25n	Construct	VA 7100 (Fairfax County Parkway) Phase 1	VA 4600 (Fullerton Road)	Donegal La. / Hooes Rd.	0	1	0	4/6	Complete	2010
VDOT	VSF25na	Construct	VA 7100 (Fairfax County Parkway) Phase 3	Donegal La. / Hooes Rd.	VA 7900 (Franconia- Springfield Parkway)	0	1	0	6	Yes	2012
VDOT	BRAC	Construct	VA 7100 (Fairfax County Parkway) Interchange (Phase 3)	@ Franconia Springfield Parkway	Various movements; includes relocated Rolling Rd.	-	-	-	-	Yes	2012
VDOT	BRAC / VSF25nc	Construct	VA 7100 (Fairfax County Parkway) Interchange (Phase 2)	@ Rolling Rd. / EPG Access Road	Ramp movements: EB F.C.Pkwy to NB & SB Rolling Rd. via one ramp; NB Rolling Rd. to EB F.C.Pkwy; NB Rolling Rd. to WB F.C.Pkwy; WB F.C.Pkwy to NB & SB Rolling Rd. via one ramp;	-	-	-	-	Complete	2010
VDOT	BRAC / VSF25nd	Construct	VA 7100 (Fairfax County Parkway) Interchange (Phase 2)	@ Rolling Rd. / EPG Southern Loop Road (SLR)	Ramp movements: EPG (SLR) to NB F.C.Pkwy.; EPG (SLR) to SB F.C.Pkwy.	1	1	0	1/2	Complete	2010

B-39

	Project					Facilit	у	Lane	s	Under Const.	Complt. Date or
Agency	ID	Improv.	Facility	From	То	from	to	from	to	acquired?	Status
VDOT	BRAC / VSF25nb	Construct	VA 7100 (Fairfax County Parkway) Interchange (Phase 4) VA 7100 (Fairfax County	@ Boudinat Drive (BD)	Ramp movements: EB F.C.Pkwy. To SB BD; WB F.C.Pkwy to SB BD; NB BD to WB F.C.Pkwy.	-	-	-	-	No	2011
VDOT		Construct	Parkway) Interchange (Phase 1)	@ Boudinat Drive (BD)	Ramp movements:NB BD to EB F. C. Parkway	-	-	0	2	Complete	2011
VDOT		Construct	VA 7100 Interchange	@ VA 7700 (Fair Lakes Pkwy) & Monument Dr.		2	5	4	6	No	2013
VDOT	VSF39	Widen	VA 7735 (Fair Lakes Pkwy) (3rd EB Lane)	VA 7100	Fair Lakes Circle	4	4	4	5	No	2013
VDOT	VSF26	Construct	VA 7900 HOV (Franconia- Springfield Parkway)	VA 7100 (Fairfax County Parkway)	VA 2677 (Frontier Drive)	5	5	-	2	No	2025
VDOT	VSF26a	Construct	VA 7900 HOV (Franconia- Springfield Parkway)	Interchange @ Neuman St.		1	1	_	_	No	2025
VDOT	VSF26b	Upgrade	VA 7900 HOV (Franconia- Springfield Parkway)	VA 638 (Rolling Rd.)	VA 617 (Backlick Rd.)	5	1	6+2	6+2	No	2025
VDOT	FED2		Old Mill Rd. (Future Mulligan Rd)	US 1	VA 611 (Telegraph Road)	4	4	2	4	No	2012
LOUDOUN	COUNTY SECOI	VDARY									
VDOT	VSL51		Atlantic Boulevard	VA 625 (Church Road)	VA 7	-	3	-	4	Yes	2012
VDOT	VSL1b	Widen/ Upgrade	VA 606 (Ldn Co. Pkwy) (nee Old Ox Rd.)	VA 634	VA 621	4	3	2	4	No	2020
VDOT	VSL10c	Construct	VA 607 (Loudoun County Pkwy)	VA 606 / VA 842	VA 772 / VA 607	0	3	0	4	Yes	2015
VDOT	VSL10bb	Widen/ Upgrade	VA 607 (Loudoun County Pkwy)	W&OD Trail	Redskin Park Drive	4	3	2	6	No	2025
VDOT	VSL10bf	Widen/ Upgrade	VA 607 (Loudoun County Pkwy) (dirt road)	Redskin Park Drive	Gloucester Parkway	4	3	2	4	No	2020
VDOT	VSL10bc	Widen	VA 607 (Loudoun County Pkwy)	Redskin Park Drive	Gloucester Parkway	3	3	4	6	No	2025
VDOT	VSL12d		VA 625 (Waxpool Rd.)	VA 2920 Faulkner Parkway	Unbridled Way	4	3	2	4	No	2012

	5 · /					_				Under Const.	Complt.
	Project					Facilit	у	Lane	s	or ROW	Date or
Agency	ID	Improv.	Facility	From	То	from	to	from	to	acquired?	Status
VDOT	VSL45	Widen/ Upgrade	VA 643 (Sycolin Road) Phase	Leesburg Town Limits	Crosstrails Blvd.	4	3	2	4	No	2035
-			VA 659 (Belmont Ridge Rd.) -							-	
VDOT	VSL4a	Study	PE ONLY	National Rec. & Park Ent.	Dulles Greenway	4	3	2	4	No	not coded
VDOT	VSL4ab	Construct	VA 659 (Belmont Ridge Road)	Dulles Greenway	VA 7	4	3	2	4	No	2025
VDOT	VSL4ab	Widen	VA 659 (Belmont Ridge Road)	Dulles Greenway	VA 7	4	3	4	6	No	2035
VDOT	VSL4ab	Construct	VA 659 (Belmont Ridge Road)	VA 7	Russel Branch Parkway	4	3	2	4	No	2020
VDOT	VSL4e	Widen/ Upgrade	VA 659 (Gum Spring Rd.)	VA 620 (Braddock Road)	US 50	4	3	2	4	Yes	2015
VDOT	VSL4f	Widen/ Upgrade	VA 659 (Gum Spring Rd.)	Prince William County Line	VA 620 (Braddock Road)	4	3	2	4	No	2035
VDOT	VSL50	Widen/ Upgrade	VA 773 (Fort Evans Road)	Leesburg Town Limits	Kingsport Rd.	4	3	2	4	No	2015
VDOT	nrs	Construct	VA 868 (Davis Dr.)	VA 606 (Old Ox Road)	VA 846 (Sterling Blvd)	0	4	0	4	No	2025
VDOT	VSL46	Construct	VA 1036 (Pacific Boulevard)	Sterling Blvd.	Gloucester Parkway	0	3	0	4	Yes	2015
VDOT		Construct	VA 2150 (Gloucester Pkwy)	VA 607 (Loudoun County Pkwy)	VA 1036 (Pacific Blvd.)	0	3	0	4	No	2025
VDOT	VSL49		Russell Branch Parkway	VA 659 (Belmont Ridge Road)	Loudoun County Parkway	0	3	0	1	Yes	2025
				Noau)	Loudoun County Farkway	U	J	U	4	165	2025
PRINCE W	ILLIAM COUNTY	SECONDA	RY								
VDOT	BRAC	Construct	Bypass Rd.	Russell Rd.	MDIA site entrance	0	3	0	2	No	2011
					Route 3000 (Prince William						
VDOT	VSP59	Construct	Peaks Mill (Purcell Road east)	Route 643 (Purcell Road)	Parkway)	0	4	0	2	No	2035
VDOT	VSP39	Widen	Russell Road	I-95	Ponderosa Y-Gate	3	3	2	4	Complete	2011
VDOT	VSP25b	Widen	VA 1781 (NewTelegraph Rd/Summit School Road)	VA 849 (Caton Hill Road)	VA 640 (Minnieville Rd.)	4	4	2	4	No	2040
VDOT	VSP25c	Widen	VA 1781 (Telegraph Rd.)	VA 3000 (Prince William Parkway)	VA 849 (Caton Hill Rd.)	4	4	2	4	No	2040
VDOT	VSP23d	Widen	VA 3000 (Prince William Pkwy.)	VA 776 (Liberia Ave.)	Hoadly Rd.	2	2	4	6	No	2025

										Under Const.	Complt.
	Project					Facilit	у	Lane	s	or ROW	Date or
Agency	ID	Improv.	Facility	From	То	from	to	from	to	acquired?	Status
VDOT	VSP23e	Widen	VA 3000 (Prince William Pkwy.)	Hoadley Rd.	Old Bridge Rd.	2	2	4	6	Yes	2012
VDOT	VSP23f	Widen	VA 3000 (Prince William Pkwy.)	Old Bridge Rd.	Minnieville Rd.	2	2	4	6	No	2020
VDOT	VSP3a	Widen/ Upgrade Widen/	VA 621 (Balls Ford Road)	VA 234 (Sudley Road)	Bethlehem Road	4	3	2	4	No	2040
VDOT	VSP3b	Upgrade	VA 621 (Balls Ford Road)	Bethlehem Road	VA 234 Bypass	4	3	2	4	No	2040
VDOT	VSP5e	Widen	VA 640 (Minnieville Road)	VA 643 (Spriggs Road)	VA 234	3	3	2	4	No	2016
VDOT	VSP8a	Widen	VA 643 (Purcell Rd.)	VA 234 (Dumfries Rd.)	VA 642 (Hoadly Rd.)	3	3	2	4	No	2025
VDOT	VSP17b	Widen	VA 674 (Wellington Rd.)	VA 621 (Devlin Road) VA 55 (John Marshall	VA 668 (Rixlew Lane)	3	3	2	4	No	2035
VDOT	VSP18	Widen	VA 676 (Catharpin Rd.)	Highway)	Heathcote Blvd.	3	3	2	4	No	2040
VDOT	VSP20c	Widen/ Upgrade	VA 1392 (Rippon Boulevard Extension)	West of Wigeon Way	Rippon VRE Station	4	3	2	4	No	2040
VDOT	VSP47d	Construct	VA 840 (Úniversity Blvd.) (nee East-West Connector)	Route 660 (Hornbaker Road)	Sudley Manor Dr.	0	3	0	4	No	2016
VDOT		Widen	Hornbaker Rd.	N. of its intersection with University Blvd.	Thomason Barn Rd.			2	4	No	2016
VDOT	VSP62	Construct	Rollins Ford Rd.	Songsparrow Dr.	VA 215 (Vint Hill Rd.)	0		0	4	No	2016
FAMPO											
	VI2rf	Construct	I 95 : HOV / Bus / HOT Lanes	Rte. 610 (Garrisonville Rd.) in Stafford County	VA 17 in Spotsylvania County (exit 126)	1	1	0	2	No	2015
		Construct	l 95 : HOV / Bus / HOT Lanes: Ramp	South of Telegraph Road (North of Aquia Creek)	SB GP Lanes to SB HOT Lanes	1	1	0	1	No	2015
		Construct	I 95 : HOV / Bus / HOT Lanes: Ramp		NB HOT Lanes to NB GP Lanes	1	1	0	1	No	2015
		Construct	I 95 : HOV / Bus / HOT Lanes: Ramp	North of Garrisonville Road (south of Aquia Creek)	NB GP Lanes to NB HOT Lanes	1	1	0	1	No	2015
		Construct	I 95 : HOV / Bus / HOT Lanes: Ramp	Between Garrisonsville Road and Courthouse Road	SB GP Lanes to SB HOT Lanes	1	1	0	1	No	2015

(Highway and HOV)

	Project					Facilit	y	Lane	s	Under Const.	Complt.
Agency	ID	Improv.	Facility	From	То	from	to	from	to	acquired?	Status
		Construct	l 95 : HOV / Bus / HOT Lanes: Ramp	Between Garrisonsville Road and Courthouse Road	NB HOT Lanes to NB GP Lanes	1	1	0	1	No	2015
		Construct	I 95 : HOV / Bus / HOT Lanes: Ramp	Between Garrisonsville Road and Courthouse Road	SB HOT Lanes to SB GP Lanes	1	1	0	1	No	2015
		Construct	I 95 : HOV / Bus / HOT Lanes: Ramp	and Courthouse Road	NB GP Lanes to NB HOT Lanes	1	1	0	1	No	2015
		Construct	I 95 : HOV / Bus / HOT Lanes: Ramp	Stafford Regional Airport)	SB HOT Lanes to SB GP Lanes	1	1	0	1	No	2015
		Construct	I 95 : HOV / Bus / HOT Lanes: Ramp	Stafford Regional Airport)	NB GP Lanes to NB HOT Lanes	1	1	0	1	No	2015
		Construct	I 95 : HOV / Bus / HOT Lanes: Ramp	and Rt 652	SB GP Lanes to SB HOT Lanes	1	1	0	1	No	2015
		Construct	I 95 : HOV / Bus / HOT Lanes: Ramp	and Rt 652	NB HOT Lanes to NB GP Lanes	1	1	0	1	No	2015
		Construct	I 95 : HOV / Bus / HOT Lanes: Ramp	and Rt 652	SB HOT Lanes to SB GP Lanes	1	1	0	1	No	2015
		Construct	I 95 : HOV / Bus / HOT Lanes: Ramp	and Rt 652	NB GP Lanes to NB HOT Lanes	1	1	0	1	No	2015
		Construct	I 95 : HOV / Bus / HOT Lanes: Ramp	Rappahannock River)	NB HOT Lanes to NB GP Lanes	1	1	0	1	No	2015
		Construct	Ramp	Just South of Rappahannock River	SB HOT Lanes to SB GP Lanes	1	1	0	1	No	2015
		Construct	I 95 : HOV / Bus / HOT Lanes: Ramp	Just north of Rt 3	NB GP Lanes to NB HOT Lanes	1	1	0	1	No	2015
		Construct	I 95 : HOV / Bus / HOT Lanes: Ramp	Between Rt 620 and Rt 208	NB GP Lanes to NB HOT Lanes	1	1	0	1	No	2015
		Construct	I 95 : HOV / Bus / HOT Lanes: Ramp I 95 : HOV / Bus / HOT Lanes:	Between Rt 620 and Rt 208	SB HOT Lanes to SB GP Lanes NB GP Lanes to NB HOT	1	1	0	1	No	2015
		Construct	Ramp	Between Rt 1 and Rt 17	Lanes	1	1	0	1	No	2015
		Construct	I 95 : HOV / Bus / HOT Lanes: Ramp	Between Rt 1 and Rt 17	SB HOT Lanes to SB GP Lanes	1	1	0	1	No	2015
	FAI1D	Reconstruct	I-95 interchange	Bypass)/Spotsvlvania Parkway	US 17(Warrenton Rd)/VA	1	1	0	0	No	2020
	FAP5F	Widen	US 1	Prince William County Line	218	2	2	4	6	No	2020

B-43

										Under Const.	Complt.
	Project					Facilit	cility Lanes		Lanes or ROW		Date or
Agency	ID	Improv.	Facility	From	То	from	from to from to		acquired?	Status	
	FAP5I	Widen	US 1(Bridge Replacement)	US 17 (Butler Rd.)	Fredericksburg N. City Limit	2	2	4	6	No	2020
	FAP5B	Widen	US 1	Princess Anne St.	VA 3 (Plank Rd.)	2	2	4	6	No	2025
	FAP5E	Widen	US 1	VA 620 (Harrison Road)	Spotsylvania Parkway	2	2	4	8	No	2020
	FAP5H	Widen	US 1	Spotsylvania Parkway	VA 608 (Massaponax Church Rd)	2	2	4	6		2015
	FAP5K	Widen	US 1 Business	South City Limit Fredericks.	Jefferson Davis Highway	2	2	2	4		2015
	FAP5G	Widen	US 1	Rt 610	Rt-630	2	2	4	6	No	2025
		Reconstruct	US 1 interchange	at US 17						No	2015
	FAP6A	Widen	US 17 Bypass (Mills Dr.)	I-95	VA 2 (Tidewater Trail)	_ 2	2	2	4	<u>No</u>	2015
	FAP6E	Widen	US 17 Business/VA 2	SCL Frederickburg	US 17 Bypass (Mills Dr.)	2	2	2	4		2035
	FAP6C	Widen	US 17 (Warrenton Rd.)	McLane Drive	Stafford Lakes Parkway	2	2	4	6	No	2015
	FAP6D	Widen	US 17 (Warrenton Rd.)	VA 654 (Bera Church Rd)	VA 612 (Hartwood Road)	2	2	4	6		2030
	FAP7	Widen	VA 218 (Butler Rd)	US 1	VA 218 (White Oak Rd.)	4	4	2	4	<u>No</u>	2025
	FAS23A	Construct	VA 208 Bypass (Spotsylvania)*	.5 mi. w. of VA 1437 on VA 608	.7 mi. w. of VA 606	0	3	0	2	ROW	2015
	FAS40	Widen	VA 208 (Courthouse Road)	US 1 (Jefferson Davis Hwy)	VA 628 (Station Road)	3	3	4	6		2035
FREDERIC	KSBURG										
	FAP5J	Widen	US 1 Business	Blue-Gray Parkway	South City Limit			2	4		2015
	FAU1	Widen	Fall Hill Ave.	Mary Wash. Blvd. ext.	Carl D. Silver Pkwy			2	4		2015
STAFFORE	COUNTY SECO	NDARY									
	FAS43	Upgrade/ Intersection	VA 606 (Ferry Rd)	VA 3 (Kings Highway)	VA 608 (Brook Rd)	4	3				2030
	FAS37	Upgrade	VA 608 (Brooke Rd.)	VA 605 (New Hope Ch. Rd.)	Dead End	4	3			No	2035

							F - 1114 -			Under Const.	Complt.
	Project	_				Facilit	у	Lane	s	or ROW	Date or
Agency	ID	Improv.	Facility	From	То	from	to	from	to	acquired?	Status
	FAS3c	Widen	VA 610 (Garrisonville Rd.)	VA 610 (existing 4 lane section)	VA 643	4	4	2	4		2015
	FAS3F	Upgrade/ Intersection	VA 610 (Garrisonville Rd.)	VA 643 (Joshua Road)	Fauquier County Line	4	3				2035
	FAS39	Widen	VA 610 (Garrisonville Rd.)	.13 miles west of VA 643 (Joshua Rd)	.42 miles east of VA 643 (Joshua Rd)	4	4	2	4		2015
	FAS3e	Widen	VA 610 (Garrisonville Rd.)	VA 648 (Shelton Shop Rd.)	VA 641(Onville Rd)	4	3	5	6	No	2030
	FAS3d	Widen	VA 610 (Garrisonville Rd.)	VA 641(Onville Rd)	VA 684 (Mine Rd)	4	3	4	6	No	2015
	FAS33	upgrade	VA 616 (Poplar Rd.)	VA 652 (Truslow Rd.)	Fauquier County Line	4	3			No	2035
	FAS34A	upgrade	VA 627 (Mountainview Rd.)	VA 648 (Stefaniga Rd.)	Centreport Pkwy.	4	3			No	2035
	FAS34B	upgrade	VA 627	VA 616	Choptank Rd.	4	3			No	2035
	FAS5b	Widen	VA 630 (Courthouse Rd)	VA 732 (Cedar Lane)	VA 648 (Shelton Shop Rd)	4	4	2	4	No	2025
	FAS41	upgrade	VA 637	I-95	Woodstock Ln.	4	3			No	2035
	FAS35	widen	VA 641 (Onville Rd.)	VA 610 (Garrisonville Rd.)	Quantico Base			2	4		2030
	FAS42	upgrade	VA 644	VA 627	VA 610	4	3			No	2035
	FAS13	Reconstruct	VA 648 (Shelton Shop Rd.)	VA 610 (Garrisonville Rd)	VA 627 (Mountainview Rd)	4	4	2	4	No	2025
SPOTSYLV	ANIA COUNTY S	SECONDAR	Y								
	FAS22	Widen	VA 3 (Spotsylvania)	Chewing Lane	VA 627 (Gordon Rd.)	2	2	4	6	No	2015
	FAS27	Widen	VA 608 (Massaponax Church Rd.)	VA 628 (Smith Station Rd)	I-95	3	3	2	4	No	2025
	FAS31	Widen	VA 610 (Old Plank Rd.)	VA 627 (Gordon Rd.)	VA 612 (Catharpin Rd.)	4	4	2	4	No	2030
	FAS18c	Widen	VA 620 (Harrison Rd)	VA 3 (Plank Road)	VA 627 (Gordon Rd.)	4	4	2	4		2015
	FAS9b	Widen	VA 627 (Gordon Rd.)	VA 628 (Smith Station Rd)	VA 620 (Harrison Rd.)	4	4	2	4	No	2015
	FAS9C	Widen	VA 627 (Gordon Rd.)	VA 628 (Smith Station Rd)	VA 613 (Brock Road)	4	4	2	4		2035

	Project					Facilit	y	Lane	s	Under Const.	Complt. Date or
Agency	ID	Improv.	Facility	From	То	from	to	from	to	acquired?	Status
	FAS28	Widen	VA 628 (Smith Station Rd)	VA 608 (Massaponax Church Rd.)	VA 627 (Gordon Rd.)	4	4	2	4	No	2025
	FAS19	Widen	VA 636 (Mine Rd./ Hood Dr.)	VA 208 (Courthouse Rd.)	VA 638 (Lansdowne Rd.)	4	4	2	4	No	2025
	FAS36	Widen	VA 638 (Lansdowne Rd)	SCL Frederickburg	VA 636 (Mine Rd)	3	3	2	4		2035
	FAS20b	Widen	VA 639 (Leavells Rd.)	VA 208 (Courthouse Rd.)	VA 628 (Smith Station Rd.)	4	4	2	4	Yes	2025
	FAS20c	Widen	VA 639 (Bragg Rd.)	VA 618 (River Rd.)	VA 3	4	4	2	4	No	2015
	FAS38	Widen	VA 674 (Chancellor Rd.)	VA 610 (Old Plank Rd)	VA 627 (Gordon Rd.)	4	4	2	4		2035

APPENDIX C

Interagency and Public Involvement Process

National Capital Region Transportation Planning Board

777 North Capitol Street, N.E., Suite 300, Washington, D.C. 20002-4290 (202) 962-3310 Fax: (202)962-3202

NOTE: Illustration of monthly Consultation letter

March 14, 2011

TO: Transportation Consultation Agencies

(United States Environmental Protection Agency, Federal Highway

Administration, Federal Transit Administration, Metropolitan Washington Air Quality Committee, Air Quality Public Advisory Committee, and Transportation

Planning Board Citizens Advisory Committee)

FROM: Ronald F. Kirby

Director, Department of Transportation Planning

SUBJECT: Consultation with respect to TPB plans and programs

Enclosure:

1) Agenda for March 16, 2011 TPB meeting

This memo transmits the agenda for the March TPB meeting, which is relevant to TPB consultation with respect to air quality conformity. Materials associated with each agenda item are available on the TPB web site www.mwcog.org under Dates and Events. As always, you are welcome to attend the TPB meetings (and/or any meetings of the TPB committees and their subcommittees). A schedule of monthly meetings is listed in the Calendar of Events in *TPB NEWS*.

The March TPB agenda items relevant for transportation conformity and consultation are identified below.

Item 7 is an action item in which the Board will be briefed on the comments received and recommended responses, and asked to approve project submissions for inclusion in the air quality conformity assessment of the 2011 Constrained Long Range Plan (CLRP). At the February 16 meeting, the Board was briefed on the major project changes submitted for inclusion in the air quality conformity assessment. The projects were released for a 30-day public comment period that ended March 12.

Item 8 is an action item in which the Board will be briefed on the comments received and recommended responses, and asked to approve the scope of work for the air quality conformity assessment of the 2011 CLRP. At the February 16 meeting, the Board was briefed on the draft scope of work which was released for a 30-day public comment period that ended March 12.

Item 9 is an action item in which the Board will be briefed on amendments to the FY 2011 Unified Planning Work Program (UPWP), and asked to approve FY 2011 UPWP carryover funding to FY 2012. In addition to carryover project changes, a new project amendment has been proposed to the FY 2011 UPWP technical assistance work programs to provide research support to the state DOT WMATA Governance Work Group. These amendments were recommended for approval by the TPB Technical Committee at its March 4 meeting.

Item 10 is an action item in which the Board will be briefed on, and asked to approve, the final version of the FY 2012 UPWP. The document was recommended for approval by the TPB Technical Committee on March 4, 2011. The draft FY 2012 UPWP was released for public comment on February 10.

Item 12 is an action item in which the Board will be briefed on the comments received and recommended responses, and asked to approve the project submissions for an air quality conformity assessment of an amendment to the 2010 CLRP to modify the I-95/395 HOV/HOT lanes project. The Board will also be asked to approve the scope of work for the air quality conformity assessment for the amendment. At the February 16 meeting, notice was provided that Virginia Department of Transportation (VDOT) had requested an amendment to the 2010 CLRP to remove the I-95/395 HOV/HOT lanes project and its components in its entirety, add a HOV/HOT lanes project on I-95 between I-495 and Garrisonville Road/Route 610 in Stafford County, and add a reversible one-lane ramp from the HOV lanes of I-395 to and from Seminary Road. VDOT has requested that widening of I-66 HOV and general purpose lanes between US 29 and Route 15 also be included in this amendment to the 2010 CLRP. Information on the project submissions for this amendment, and a draft air quality conformity analysis scope of work, were released for a 30-day public comment period on February 10.

National Capital Region Transportation Planning Board

777 North Capitol Street, N.E., Suite 300, Washington, D.C. 20002-4290 (202) 962-3310 Fax: (202) 962-3202

MEETING NOTICE

Date: March 16, 2011

Time: 12 noon

Place: COG Board Room

A-G-E-N-D-A (BEGINS PROMPTLY AT NOON)

12 noon	1.	Public Comment on TPB Procedures and Activities Chair Bowser
		Interested members of the public will be given the opportunity to make brief comments on transportation issues under consideration by the TPB. Each speaker will be allowed up to three minutes to present his or her views. Board members will have an opportunity to ask questions of the speakers, and to engage in limited discussion. Speakers are asked to bring written copies of their remarks (65 copies) for distribution at the meeting.
12:20 pm	2.	Approval of Minutes of February 16 Meeting
12:25 pm	3.	Report of Technical Committee
12:30 pm	4.	Report of Citizen Advisory Committee
12:40 pm	5.	Report of Steering Committee
12:45 pm	6.	Chair's Remarks Chair Bowser

Alternative formats of this agenda and all other meeting materials are available upon request. Phone: 202-962-3300 or 202-962-3213 (TDD). Email: accommodations@mwcog.org. Please allow seven working days for preparation of the material. Electronic versions are available at www.mwcog.org.

ACTION ITEMS

7. **Review of Comments Received and Approval of Project** 12:50 pm **Submissions for the Air Quality Conformity Assessment for the** 2011 Financially Constrained Long Range Transportation Plan (CLRP)Mr. Kirby At the February 16 meeting, the Board was briefed on the major project changes submitted for inclusion in the air quality conformity assessment for the 2011 CLRP which were released for a 30-day public comment period that ended March 12. The Board will be briefed on the comments received and recommended responses, and asked to approve project submissions for inclusion in the air quality conformity assessment for the 2011 CLRP. **Action**: Adopt Resolution R10-2011 to approve project submissions for inclusion in the air quality conformity assessment for the 2011 CLRP. 1:00 pm 8. Approval of Scope of Work for the Air Quality Conformity Assessment for the 2011 CLRP At the February 16 meeting, the Board was briefed on the draft scope of work for the air quality conformity assessment for the 2011 CLRP, which was released for a 30-day public comment period that ended March 12. The Board will be briefed on the comments received and recommended responses, and asked to approve the scope of work for the air quality conformity assessment for the 2011 CLRP. **Action:** Approve the enclosed scope of work for the air quality conformity assessment for the 2011 CLRP. Approval of Amendments to the FY 2011 Unified Planning Work 1:05 pm 9. Program (UPWP), and Approval of FY 2011 UPWP Carryover Funding to FY 2012 Mr. Kirby Certain projects and budgets in the current FY 2011 UPWP have been identified to be carried over to FY 2012. In addition, a new project amendment has been proposed to the FY 2011 UPWP technical assistance work programs to provide research support to the state DOT WMATA Governance Work Group (GWG). The Board will be briefed on the new project amendment, and on the enclosed amendments to the FY 2011 UPWP and associated FY 2011 carryover funding to FY 2012. These amendments were recommended for approval by the TPB Technical Committee at its March 4 meeting. **Action:** Adopt Resolutions R11-2011 and R12-2011 to approve the amendments to the FY 2011 UPWP and the FY 2011 carryover funding

to FY 2012.

The Board will be briefed on the enclosed final version of the FY 2012 UPWP. The document was recommended for approval by the TPB Technical Committee on March 4. The draft FY 2012 UPWP was released for public comment on February 10.

Action: Adopt Resolution R13-2011 to approve the final FY 2012 UPWP.

The Board will be briefed on the enclosed final version of the FY 2012 CCWP. The document was recommended for approval by the TPB Technical Committee on March 4. The draft FY 2012 CCWP was released for public comment on February 10.

Action: Adopt Resolution R14-2011 to approve the final FY 2012 CCWP.

1:25 pm

12. Review of Comments Received and Approval of Project
Submissions for the Air Quality Conformity Assessment for an
Amendment to the 2010 CLRP to Modify the I-95/395 HOV/HOT
Lanes Project, Add a Ramp from the HOV Lanes of I-395 to
Seminary Road, and Add the Extension of I-66 HOV and General
Purpose Lanes from Route 29 to Route 15 in Prince William
County, as Requested by the Virginia Department of
Transportation (VDOT)

Mr. Moore

At the February 16 meeting, notice was provided that VDOT had requested an amendment to the 2010 CLRP to remove the I-95/395 HOV/HOT lanes project and its components in its entirety, add a HOV/HOT lanes project on I-95 between I-495 and Garrisonville Road/Route 610 in Stafford County, and add a reversible one-lane ramp from the HOV lanes of I-395 to and from Seminary Road. In the enclosed letter of March 4, VDOT has requested that the widening of I-66 HOV and general purpose lanes between US 29 and Route 15 also be included in this amendment to the 2010 CLRP. These amendments to the plan will require an air quality conformity assessment. Information on the project submissions for this amendment and a draft air quality conformity analysis scope of work were released for a 30-day public comment period on February 10. The Board will be briefed on the comments received and recommended responses, and asked to approve the project submissions for inclusion in the air quality conformity assessment, as described in the enclosed materials. The Board will also be asked to approve the enclosed scope of work for the air quality conformity assessment for the amendment.

Action: Adopt Resolution R15-2011 to approve the project submissions for the air quality conformity assessment for the amendment to the 2010 CLRP, and associated conformity assessment scope of work, to modify

the I-95/395 HOV/HOT Lanes project, add a ramp from the HOV Lanes of I-395 to Seminary Road, and add the extension of I-66 HOV and general purpose lanes between US 29 and Route 15 as described in the enclosed materials.

INFORMATION ITEMS

1:30 pm	13.	Briefing on Draft Regional Highlighted Freight Projects
		Mr. Weissberg Chair, Regional Freight Planning Subcommittee Ms. Foster, DTP
		The Regional Freight Planning Subcommittee of the TPB Technical Committee has developed a draft list of highlighted freight transportation projects which include one long-term and one short-term project for each freight railroad and one each for the District of Columbia, Maryland and Virginia. The Board will be briefed on the list of regional highlighted freight projects.
1:35 pm	14.	Briefing on the Regional "Street Smart" Pedestrian and Bicycle Safety Education Campaign
		The Board will be briefed on the Spring 2011 campaign, and the status of funding and planning for the Fall 2011 and Spring 2012 campaigns.
1:45 pm	15.	Update on the FY 2011 US Department of Transportation (DOT) Budget and the Reauthorization of the Surface Transportation Program
		In March, Congress is scheduled to adopt the Federal FY 2011 (October 1, 2010 to September 30, 2011) US DOT budget which will determine the funding level for the TPB's FY 2012 UPWP. Congress has extended SAFETEA-LU to September 30, 2011 and is addressing its reauthorization. The Board will be updated on the FY 2011 US DOT budget and on the status of the reauthorization of the surface transportation program.
1:55 pm	16.	Other Business
2:00 pm	17.	Adjourn

2 hours

Lunch will be available for Board members and alternates at 11:30 am

Metropolitan Washington Council of Governments

One Region Moving Forward

Events Calendar

Events Calendar

February 10 2011

Title: Public Meeting on Proposed Changes to the CLRP

 Start Time:
 06:00 PM

 End Time:
 07:00 PM

 Category:
 Meeting

 Location:
 Training Center

 Contact:
 Andrew Austin

 Phone:
 (202) 962-3353

 Email:
 Andrew Austin

Description: The National Capital Region Transportation Planning Board will hold a public

meeting on Thursday, February 10, 6:00-7:00 p.m. to discuss proposed changes in the region's Constrained Long-Range Transportation Plan (CLRP). The meeting will be held on the main floor of the Metropolitan Washington Council of Governments (MWCOG), 777 N. Capitol St, NE, Washington, DC 20002.

Among other proposed modifications in the CLRP, the Virginia Department of Transportation (VDOT) has requested major changes in the HOT lanes project on I-395. The CLRP, which is updated annually, has a horizon of 2040 and includes all regionally significant transportation projects that are anticipated to be funded.

The project submissions for this year's CLRP, including project removals and delays, will be released for public comment on February 10. The public comment period will end on March 12. The TPB is scheduled to approve the project submissions on March 16. After this approval, the draft 2011 CLRP will be analyzed to ensure the plan meets federal air quality requirements. The TPB is scheduled to approve the final 2011 CLRP in November.

The public meeting on February 10 will feature a presentation on the draft plan and opportunity for questions and answers.

Document(s) for Download: Agenda

Summary of Significant Additions and Changes Proposed for the 2011 Update to the

CLRP

? Download Instructions

Reasonable accommodations are provided for persons with disabilities. Please allow up to 7 business days to process requests.

Phone: 202.962.3300 or 202-962.3213 (TDD). Contact <u>Andrew Austin</u> for assistance. Click here for more information.

MWCOG.org - Homepage | Search | Transportation | Environment Health & Human Services | Housing & Planning | Homeland Security & Public Safety

Cooperative Purchasing | Publications | Events Calendar
Committee Business | News Room | About COG | Doing Business With COG
Human Resources | Contact Us | Site Map | Privacy Policy | Accommodations Policy

Select Language

Powered by Translate

Afro-American

February 12, 2011

PUBLIC COMMENT PERIOD
FOR THE WASHINGTON | Region's |
PROPOSED SUBMISSIONS FOR THE 2011
UPDATE TO THE CONSTRAINED
LONG-RANGE PLAN (CLRP),
AND AIR QUALITY CONFORMITY ANALYSIS

The National Capital Region Transportation Planning Board (TPB) will initiate a 30-day public comment period for the proposed submissions for the 2011 update to the Constrained Long-Range Plan (CLRP), including an air quality conformity analysis, on February 10. This public comment period will extend through Saturday March 12, 2011. The TPB is scheduled to approve these submissions at its March 16, 2011 meeting. Members of the public are invited to review these draft documents on the COG website, www.mwcog.org/transportation. These materials may also be reviewed at the Metropolitan Washington Council of Governments (COG), 777 N. Capitol St. NE, Washington, DC 20002.

The CLRP shows the road, bridge, highoccupancy vehicle (HOV), transit, bicycle and pedestrian projects funded through the year 2040. The air quality conformity analysis assesses the plan amendments and program with respect to the air quality requirements under the 1990 Clean Air Act Amendments.

Members of the public are invited to submit comments on the draft documents on-line at www. mwcog.org/tpbpubliccomment/. Written comments can also be mailed to TPB Chair Muriel Bowser, Metropolitan Washington Council of Governments (COG), 777 N. Capitol St. NE, Suite 300, Washington, DC 20002.

For additional information or for special assistance, please call (202)962-3311 or (202)962-3213 (TDD).

PUBLIC COMMENT PERIOD FOR THE WASHINGTON REGION'S PROPOSED SUBMISSIONS FOR THE 2011 UPDATE TO THE CONSTRAI LONG-RANGE PLAN (CLRP), AND AIR OUALITY CONFORMITY ANALYSIS

The National Capital Region Transportation Planning Board (TPB) will initiate a 30-day public comment period for the proposed submissions for the 2011 update to the Constrained Long-Range Plan (CLRP), including an air quality conformity analysis, on February 10. This public comment period will extend through Saturday March 12, 2011. The TPB is scheduled to approve these submissions at its March 16, 2011 meeting. Members of the public are invited to review these draft documents on the COG website. www.mwcog.org/transportation/. These materials may also be reviewed at the Metropolitan Washington Council of Governments (COG), 777' N. Capitol St. NE, Washington, DC 20002.

The CLRP shows the road, bridge, high-occupancy vehicle (HOV), transit, bicycle and pedestrian projects funded through the year 2040. The air quality conformity analysis assesses the plan amendments and program with respect to the air quality requirements under the 1990 Clean Air Act Amendments.

Members of the public are invited to submit comments on the draft documents on-line at www.mwcog.org/ toboubliccomment/. Written comments can also be mailed to TPB Chair Muriel Bowser, Metropolitan Washington Council of Governments (COG), 777 N. Capitol St. NE. Suite 300. Washington, DC 20002.

For additional information or for special assistance, please call (202) 962-3311 or (202) 962-3213 (TDD).

Afro-American

PUBLIC COMMENT PERIOD FOR THE WASHINGTON REGION'S PROPOSED 2011 UPDATE TO THE CONSTRAINED LONG-RANGE PLAN (CLRP), AND AIR QUALITY CONFORMITY ANALYSIS

The National Capital Region Transportation Planning Board (TPB) will initiate a 30-day public comment period for the proposed 2011 update to the Constrained Long-Range Plan (CLRP), including an air quality conformity analysis, on October 13, 2011 at the TPB Citizen Advisory Committee (CAC) meeting. The CAC meets from 6 pm to 8 pm in the Metropolitan Washington Council of Governments (COG) first floor conference center, 777 N. Capitol St. NE, Washington, DC 20002. These documents are scheduled to be approved at the November 16, 2011 TPB meeting. This public comment period will extend through 6 pm Saturday November 12, 2011. Members of the public are invited to review these draft documents on the COG website, www.mwcog.org/transportation/. These materials may also be reviewed at COG.

The CLRP shows the road, bridge, high-occupancy vehicle (HOV), transit, bicycle and pedestrian projects funded through the year 2040. The air quality conformity analysis assesses the plan amendments and program with respect to the air quality requirements under the 1990 Clean Air Act Amendments.

Members of the public are invited to submit comments on the draft documents on-line at www.mwcog.org/tpbpubliccomment/. Written comments can also be mailed to TPB Chairman Muriel Bowser, Metropolitan Washington Council of Governments (COG), 777 N. Capitol St. NE, Suite 300, Washington, DC 20002.

For additional information or for special assistance, please call (202)962-3311 or (202)962-3213 (TDD).

PERIODO DE COMENTARIO PUBLICO PARA LA REGIÓN DE WASHINGTON PROPUESTA DE ACTUALIZACIÓN DE 2011 A LA RESTRINGIDO PLAN A LARGO PLAZO (CLRP), Y ANÁLISIS DE CALIDAD DEL AIRE DE LA CONFORMIDAD

La Region Capital Nacional Junta de Planificación de Transporte (TPB) se iniciará un período de 30 días de comentarios públicos para el proyecto de 2011 de actualización a la restringida Plan a Largo Plazo (CLRP), incluyendo un análisis de conformidad de la calidad del aire, el 13 de octubre de 2011 en el TPB ciudadano (CAC) de reuniones. El CAC se reúne de 6 pm a 8 pm en el Consejo Metropolitano de Washington de Gobiernos (COG), primer centro de conferencias en la planta, 777 N. Capitol St. NE, Washington, DC 20002. Estos documentos estánran programados para ser aprobadas en el 16 de Noviembre 2011 la reunión TPB. Este período de comentarios públicos se extenderá hasta las 6 pm Sábado, 12 de Noviembre 2011. Los miembros del publico son invitados para revisar estos documentos en el website de COG, www.mwcog.org/transportation/. Estos materiales tambien pueden ser revisados en COG.

El CLRP muestra el camino, el puente, los vehículos de alta ocupación (HOV), de tránsito, proyectos para ciclistas y peatones financiado a través del año 2040. El análisis de la calidad del aire conforme evalúa las modificaciones del plan y programa con respecto a los requisitos de calidad del aire en la década de 1990 la Ley de Aire Limpio Enmiendas.

Los miembros del público están invitados a presentar sus observaciones sobre los proyectos de documentos en línea en, www.mwcog.org/tpbpubliccomment/. Los comentarios escritos también pueden ser enviados a Metropolitan Washington.

Council of Governments (COG) 777 N. Capitol St. NE, Suite 300 Washington, DC 20002.

Para información adicional o para recibir asistencia especial, por favor llame (202) 962-3311 o (202) 962-3213 (TDD).

PUBLIC COMMENT PERIOD FOR THE WASHINGTON **REGION'S PROPOSED 2011** UPDATE TO THE CONSTRAINED LONG-RANGE PLAN (CLRP), AND AIR QUALITY CONFORMITY ANALYSIS

The National Capital Region Transportation Planning Board (TPB) will initiate a 30-day public comment period for the proposed 2011 update to the Constrained Long-Range Plan (CLRP), including an air quality conformity analysis, on October 13, 2011 at the TPB Citizen Advisory Committee (CAC) meeting. The CAC meets from 6 pm to 8 pm in the Metropolitan Washington Council of Governments (COG) first floor conference center, 777 N. Capitol St. NE, Washington, DC 20002. These documents are scheduled to be approved at the November 16, 2011 TPB meeting. This public comment period will extend through 6 pm Saturday, November 12, 2011. Members of the public are invited to review these draft documents on the COG website, www.mwcog.org/transportation/ These materials may also be reviewed at COG.

The CLRP shows the road, bridge, highoccupancy vehicle (HOV), transit, bicycle and pedestrian projects funded through the year The air quality conformity analysis assesses the plan amendments and program with respect to the air quality requirements under the 1990 Clean Air Act Amendments.

Members of the public are invited to submit comments on the draft documents on-line at www.mwcog.org/tpbpubliccomment/. Written comments can also be mailed to TPB Chairman Muriel Bowser, Metropolitan Washington Council of Governments (COG), 777 N. Capitol St. NE, Suite 300, Washington, DC 20002.

For additional information or for special assistance, please call (202) 962-3311 or (202) 962-3213 (TDD).

APPENDIX D

Documentation of Emission Factor Development

Memorandum

Date: September 27, 2011

To: Jane Posey, TPB

From: Sunil Kumar, MWAQC

Subject: Documentation for Some MOBILE6 Inputs for 2016, 2020, 2030, and 2040 Ozone

Season Day, Winter Season Day, and Annual Inventories for 2011 CLRP & 2012-

2017 TIP

The purpose of this memorandum is to document the MOBILE6 inputs related to meteorology, fuel programs, Inspection & Maintenance (I&M) Programs, Anti Tempering Programs (ATP), additional state-specific emissions control programs, and NOx Rebuild Effects, which were used for developing the onroad emission inventories for calendar years 2016, 2020, 2030, and 2040 for the ozone season day, winter season day, and annual analyses for the 2011 CLRP & 2012-2017 TIP analysis. These inputs are being presented below.

Meteorology

Temperature and humidity used in the ozone SIP (May 2007), PM_{2.5} SIP (March 2008), and CO maintenance plan (September 1995) were used for the ozone season day, winter season day, and annual 2010 CLRP analyses respectively and are being presented below.

Ozone Season Day

Hour	Temperature (°F)	Relative Humidity (%)
1	70.7	84.0
2	74.3	76.5
3	78.6	66.7
4	82.3	59.3
5	85.5	52.9
6	88.1	48.8
7	90.0	45.0
8	91.2	42.1
9	91.9	42.2
10	92.5	43.1
11	92.1	42.3
12	91.0	43.6
13	89.2	47.6
14	86.7	52.3
15	82.8	60.4
16	80.3	67.2
17	78.6	72.2
18	77.7	74.4
19	76.7	78.1
20	75.4	80.9
21	74.9	79.5
22	74.7	79.4
23	74.2	79.3
24	73.6	81.1

Barometric Pressure (inches of mercury (Hg) – 29.8 Winter Season Day

Maximum Temperature (°F) = 33.0Minimum Temperature (°F) = 53.0

Absolute Humidity (grains/lb) = 75

Annual

Hour		Temperature (°F)		Re	lative Humidity (%))
	Winter/Season1 (Jan-Apr)	Summer/Season2 (May-Sep)	Fall/Season3 (Oct-Dec)	Winter/Season1 (Jan-Apr)	Summer/Season2 (May-Sep)	Fall/Season3 (Oct-Dec)
1	36.9	65.7	42.4	72.4	85.1	78.9
2	37.4	67.6	42.6	71.7	81.0	78.7
3	38.9	69.9	43.9	68.2	76.0	77.1
4	41.2	72.3	46.3	63.4	70.4	71.6
5	43.4	74.5	48.8	58.1	65.1	65.8
6	45.5	76.3	50.7	54.2	60.6	60.8
7	47.2	77.9	52.4	50.7	57.6	56.6
8	48.6	78.9	53.6	48.1	55.2	53.9
9	49.7	79.5	54.2	46.5	53.6	52.7
10	50.2	79.5	54.3	45.5	53.6	52.6
11	50.2	79.1	53.7	45.5	54.5	53.9
12	49.3	78.4	52.0	47.1	55.9	57.2
13	47.5	76.9	50.1	49.9	59.2	61.7
14	45.8	74.7	48.8	53.4	64.2	65.1
15	44.3	72.5	47.7	56.9	69.8	67.5
16	43.1	71.2	46.9	59.4	73.5	70.4
17	42.3	69.9	46.3	60.8	76.7	71.6
18	41.4	68.9	45.6	63.0	79.2	73.4
19	40.6	68.0	45.0	65.0	81.1	74.9
20	39.8	67.3	44.6	66.5	82.5	75.8
21	39.0	66.6	44.1	68.0	83.5	76.8
22	38.2	66.2	43.6	69.3	84.3	78.1
23	37.6	65.8	43.2	71.0	84.7	78.1
24	37.2	65.3	42.7	72.0	85.5	79.1

Barometric Pressure (inches of mercury (Hg) – 29.9 (All three seasons)

Fuel Programs

Separate sets of input files were created to model emission factors corresponding to travel in the COG region for each analysis years 1) on network and local roadways, 2) during auto access to transit, and 3) by diesel transit and school buses. While network, local, and auto-access facilities were modeled on a county level, buses were modeled on a regional level. For this reason, two separate sets of fuel programs were developed and are being provided below. Ether & Ethanol oxygen content and market share data are based on the Energy Policy Act (2005) and therefore common for network, local, and auto-access facilities and buses.

Network, Local, Auto-Access

		DC - F	RFG ^a	М	MD - RFG Counties MD - NonRFG VA - RFG Counties VA - N			VA - NonRFG			
							Counties			Counties	
	Gas S b	RVP	HWY Diesel S	Gas S	RVP	HWY Diesel S	RVP	Gas S	RVP	RVP	
Season	(ppm)		(ppm)	(ppm)		(ppm)		(ppm)		(ppm)	
Winter	30.0	10.2	11.0	30.0	11.6	14.8	12.1	30.0	12.9	11.0	12.9
Summer/ Ozone Season	30.0	6.8	11.0	30.0	6.9	8.8	8.2	30.0	6.8	11.0	8.4
Fall	30.0	10.1	11.0	30.0	10.9	9.7	11.5	30.0	12.9	11.0	12.9

^a RFG = Reformulated Gasoline

Notes:

- 1. Season average RVP values were developed from monthly RVP values provided by states.
- 2. Gas & Highway Diesel Sulfur values are Mob6 defaults except for Maryland, which provided its own monthly Highway Diesel Sulfur values (email from M. Khan, MDE dt. 03.10.09).

Bus

Season	Gas S (ppm)	RVP	HWY Diesel S (ppm)
Winter	30.0	12.1	12.5
Summer/ Ozone Season	30.0	6.9	10.1
Fall	30.0	11.8	10.5

Network, Local, Auto-Access, & Bus

Season	Ether Oxy. Content	Ether Market Share	Ethanol Oxy. Content	Ethanol Market Share			
	(% by wt)	(%)	(% by wt.)	(%)			
Winter	0.0	0.0	3.5	100.0			
Summer/ Ozone Season	0.0	0.0	3.5	100.0			
Fall	0.0	0.0	3.5	100.0			
Note: Ether & Ethanol O	Note: Ether & Ethanol Oxygen Content and Market Share data are based on Energy Policy Act (2005).						

I/M Programs

Details of the format for the I/M programs listed here can found in the Mobile6 model user guide.

District of Columbia

- * Inspection and Maintenance (I/M) Source File DCpost2004.IM
- * FEBRUARY 8, 2006
- * District of Columbia's I/M input parameters for MOBILE6 for year 2004 and beyond:
- * The actual start date of the IM240 was 1999
- * The actual start date of the OBD testing was 2004
- * The dates used below for IM240 and OBD testing are needed to obtain the appropriate I/M credit in MOBILE6.

> Exhaust I/M - LDV pre-83 MY IDLE test program
#1
I/M PROGRAM : 1 1983 2050 2 T/O IDLE
I/M MODEL YEARS : 1 1972 1983
I/M VEHICLES : 1 22222 11111111 1
I/M STRINGENCY : 1 20.0
I/M COMPLIANCE : 1 96.0
I/M WAIVER RATES : 1 3.0 3.0
I/M EXEMPTION AGE : 1 25.0

b S = Sulfur

> Exhaust I/M - LDV MY 84-95 IM240 test program #2 (DC IM240 Start:1999)
I/M PROGRAM : 2 1983 2050 2 T/O IM240
I/M MODEL YEARS : 2 1984 1995
I/M VEHICLES : 2 22222 11111111 1
I/M STRINGENCY : 2 20.0
I/M COMPLIANCE : 2 96.0
I/M WAIVER RATES : 2 3.0 3.0
I/M CUTPOINTS : 2 IM_ATP\DC.C02
I/M EXEMPTION AGE : 2 25.0

> Evap I/M - LDV pre-95 MY Gas Cap pressure test program #3
I/M PROGRAM : 3 1999 2050 2 T/O GC
I/M MODEL YEARS : 3 1972 1995
I/M VEHICLES : 3 22222 11111111 1
I/M COMPLIANCE : 3 96.0
I/M WAIVER RATES : 3 3.0 3.0
I/M EXEMPTION AGE : 3 25.0

> Exhaust I/M - LDV post-96 MY OBD test program #4(DC OBD Start:Jan 2004)
I/M PROGRAM : 4 1983 2050 2 T/O OBD I/M
I/M MODEL YEARS : 4 1996 2050
I/M VEHICLES : 4 22222 111111111 1
I/M STRINGENCY : 4 20.0
I/M COMPLIANCE : 4 96.0
I/M WAIVER RATES : 4 3.0 3.0
I/M EXEMPTION AGE: 4 25.0

> Evap I/M - LDV post-96 OBD Evap test program #5(DC OBD Start:Jan 2004)
I/M PROGRAM : 5 1999 2050 2 T/O EVAP OBD & GC
I/M MODEL YEARS : 5 1996 2050
I/M VEHICLES : 5 22222 11111111 1
I/M STRINGENCY : 5 20.0
I/M COMPLIANCE : 5 96.0
I/M WAIVER RATES : 5 3.0 3.0
I/M EXEMPTION AGE : 5 25.0

> Exhaust I/M - HDGV IDLE program #6
I/M PROGRAM : 6 1983 2050 2 T/O IDLE
I/M MODEL YEARS : 6 1972 2050
I/M VEHICLES : 6 11111 22222111 1
I/M STRINGENCY : 6 20.0
I/M COMPLIANCE : 6 96.0
I/M WAIVER RATES : 6 3.0 3.0
I/M EXEMPTION AGE : 6 25.0

Maryland

- >IM Program as described in post-2009 RFP. Idle, OBD, and Mandatory Gas Cap for Non-OBD Vehicles. >Waiver rates based on rates observed for January June 2006 initial tests through 18 months after testing. >Gas Cap waver rate is performance standard. >Stringency based on July December 2007

*Idle older LDGV, LDGT
I/M PROGRAM : 1 1984 2050 2 T/O Idle
I/M MODEL YEARS : 1 1977 1995
I/M VEHICLES : 1 22222 11111111 1
I/M STRINGENCY : 1 17.9
I/M COMPLIANCE : 1 96.0
I/M WAIVER RATES : 1 13.7 13.7
I/M GRACE PERIOD : 1 2

*Idle HDGT
I/M PROGRAM : 2 1984 2050 2 T/O Idle
I/M MODEL YEARS : 2 1977 2050
I/M VEHICLES : 2 11111 22222111 1
I/M STRINGENCY : 2 17.9
I/M COMPLIANCE : 2 96.0
I/M WAIVER RATES : 2 13.7 13.7
I/M GRACE PERIOD : 2 2

*OBD
I/M PROGRAM : 3 1984 2050 2 T/O OBD I/M
I/M MODEL YEARS : 3 1996 2050
I/M VEHICLES : 3 22222 11111111 1
I/M STRINGENCY : 3 17.9
I/M COMPLIANCE : 3 96.0
I/M WAIVER RATES : 3 6.3 6.3
I/M GRACE PERIOD : 3 2

*OBD Evap (Actual Start Year: July 2002)
I/M PROGRAM : 4 2002 2050 2 T/O EVAP OBD
I/M MODEL YEARS : 4 1996 2050
I/M VEHICLES : 4 22222 11111111 1
I/M COMPLIANCE : 4 96.0
I/M WAIVER RATES : 4 6.3 6.3
I/M GRACE PERIOD : 42

*Gas Cap older LDGV, LDGT
I/M PROGRAM : 5 2009 2050 2 T/O GC
I/M MODEL YEARS : 5 1977 1995
I/M VEHICLES : 5 22222 11111111 1
I/M COMPLIANCE : 5 96.0
I/M WAIVER RATES : 5 3.0 3.0
I/M GRACE PERIOD : 5 2

*Gas Cap HDGT
I/M PROGRAM : 6 2009 2050 2 T/O GC
I/M MODEL YEARS : 6 1977 2050
I/M VEHICLES : 6 11111 22222111 1
I/M COMPLIANCE : 6 96.0
I/M WAIVER RATES : 6 3.0 3.0
I/M GRACE PERIOD : 62

Virginia

Alexandria, Arlington County, Fairfax County, and Prince William

- * Virginia's 2009 I/M programs for Alexandria, Arlington County, Fairfax County, and Prince William County. * I/M Effectiveness reported in Program #3 applies to all exhaust programs modeled as TRC. * First 4 years exempt.

> Exhaust I/M - IDLE test program #1
I/M PROGRAM : 1 1983 2050 2 TRC 2500/IDLE
I/M MODEL YEARS : 1 1968 1980
I/M VEHICLES : 1 22222 21111111 1
I/M STRINGENCY : 1 35
I/M COMPLIANCE : 1 98.0
I/M WAIVER RATES : 1 2.5 2.5
I/M EXEMPTION AGE : 1 24

> Exhaust I/M - ASM final program #2
I/M PROGRAM : 2 1983 2050 2 TRC ASM 2525/5015 FINAL
I/M MODEL YEARS : 2 1981 1995
I/M VEHICLES : 2 22222 11111111 1
I/M STRINGENCY : 2 35
I/M COMPLIANCE : 2 98.0
I/M WAIVER RATES : 2 2.5 2.5
I/M EXEMPTION AGE : 2 24

> Exhaust I/M - OBD test program #3
I/M PROGRAM : 3 1983 2050 2 TRC OBD I/M
I/M MODEL YEARS : 3 1996 2050
I/M VEHICLES : 3 22222 11111111 1
I/M STRINGENCY : 3 35
I/M COMPLIANCE : 3 98.0
I/M WAIVER RATES : 3 2.5 2.5
I/M EXEMPTION AGE : 3 24
I/M EFFECTIVENESS: 0.94 0.94 0.94
I/M GRACE PERIOD : 3 4

> Evap I/M - Evap OBD test program #4
I/M PROGRAM : 4 1998 2050 2 TRC EVAP OBD & GC
I/M MODEL YEARS : 4 1996 2050
I/M VEHICLES : 4 22222 11111111 1
I/M COMPLIANCE : 4 98.0
I/M WAIVER RATES : 4 2.5 2.5
I/M EXEMPTION AGE : 4 24
I/M GRACE PERIOD : 44

> Evap I/M - Gas Cap test program #5
I/M PROGRAM : 5 1998 2050 2 TRC GC
I/M MODEL YEARS : 5 1973 1995
I/M VEHICLES : 5 22222 11111111 1
I/M COMPLIANCE : 5 98.0
I/M WAIVER RATES : 5 2.5 2.5
I/M EXEMPTION AGE : 5 24

> Exhaust I/M - IDLE test program #6
I/M PROGRAM : 6 1983 2050 2 TRC 2500/IDLE
I/M MODEL YEARS : 6 1981 2050
I/M VEHICLES : 6 11111 21111111 1
I/M STRINGENCY : 6 35
I/M COMPLIANCE : 6 98.0
I/M WAIVER RATES : 6 2.5 2.5
I/M EXEMPTION AGE : 6 24
I/M GRACE PERIOD : 64

> Evap I/M - Gas Cap test program #7
I/M PROGRAM : 7 1998 2050 2 TRC GC
I/M MODEL YEARS : 7 1973 2050
I/M VEHICLES : 7 11111 21111111 1
I/M COMPLIANCE : 7 98.0
I/M WAIVER RATES : 7 2.5 2.5
I/M EXEMPTION AGE : 7 24
I/M GRACE PERIOD : 7 4

Loudoun and Stafford

- * Virginia's 2009 I/M programs for Loudoun and Stafford Counties.
 * I/M Effectiveness reported in Program #3 applies to all exhaust programs modeled as TRC.
 * First 4 years exempt.

> Exhaust I/M - IDLE test program #1
I/M PROGRAM : 1 1998 2050 2 TRC 2500/IDLE
I/M MODEL YEARS : 1 1968 1980
I/M VEHICLES : 1 22222 21111111 1
I/M STRINGENCY : 1 35
I/M COMPLIANCE : 1 98.0
I/M WAIVER RATES : 1 2.5 2.5
I/M EXEMPTION AGE: 1 24

> Exhaust I/M - ASM final program #2
I/M PROGRAM : 2 1998 2050 2 TRC ASM 2525/5015 FINAL
I/M MODEL YEARS : 2 1981 1995
I/M VEHICLES : 2 22222 11111111 1
I/M STRINGENCY : 2 35
I/M COMPLIANCE : 2 98.0
I/M WAIVER RATES : 2 2.5 2.5
I/M EXEMPTION AGE : 2 24

> Exhaust I/M - OBD test program #3
I/M PROGRAM : 3 1998 2050 2 TRC OBD I/M
I/M MODEL YEARS : 3 1996 2050
I/M VEHICLES : 3 22222 11111111 1
I/M STRINGENCY : 3 35
I/M COMPLIANCE : 3 98.0
I/M WAIVER RATES : 3 2.5 2.5
I/M EXEMPTION AGE : 3 24
I/M EFFECTIVENESS: 0.94 0.94 0.94
I/M GRACE PERIOD : 3 4

> Evap I/M - Evap OBD test program #4
I/M PROGRAM : 4 1998 2050 2 TRC EVAP OBD & GC
I/M MODEL YEARS : 4 1996 2050
I/M VEHICLES : 4 22222 11111111 1
I/M COMPLIANCE : 4 98.0
I/M WAIVER RATES : 4 2.5 2.5
I/M EXEMPTION AGE: 424
I/M GRACE PERIOD : 4 4

> Evap I/M - Gas Cap test program #5
I/M PROGRAM : 5 1998 2050 2 TRC GC
I/M MODEL YEARS : 5 1973 1995
I/M VEHICLES : 5 22222 11111111 1
I/M COMPLIANCE : 5 98.0
I/M WAIVER RATES : 5 2.5 2.5
I/M EXEMPTION AGE: 5 24

> Exhaust I/M - IDLE test program #6
I/M PROGRAM : 6 1998 2050 2 TRC 2500/IDLE
I/M MODEL YEARS : 6 1981 2050
I/M VEHICLES : 6 11111 21111111 1
I/M STRINGENCY : 6 35
I/M COMPLIANCE : 6 98.0
I/M WAIVER RATES : 6 2.5 2.5
I/M EXEMPTION AGE : 6 24
I/M GRACE PERIOD : 64

> Evap I/M - Gas Cap test program #7
I/M PROGRAM : 7 1998 2050 2 TRC GC
I/M MODEL YEARS : 7 1973 2050
I/M VEHICLES : 7 11111 21111111 1
I/M COMPLIANCE : 7 98.0
I/M WAIVER RATES : 7 2.5 2.5
I/M EXEMPTION AGE : 7 24
I/M GRACE PERIOD : 74

Cut-Points

District of Columbia

Details of the format for the cut-points listed here can found in the Mobile6 model user guide.

Calendar Year: 2016

- District of Columbia IM cutpoints applies to calendar year 2016
 Air Quality Division, District Department of the Environment

I/M CU	JTPO	INTS							
* Mod	el Yea	ırs							
* 16	15	14	13	12	11	10	09	08	07
* 06	05	04	03	02	01	00	99	98	97
* 96	95	94	93	92					

* Block 1 (LDG	V, Light LDGT1(EPA LD1))	
0.800 0.800	0.800 0.800 0.800 0.800 0.800 0.800 0.800	0.800
0.800 0.800	0.800 0.800 0.800 0.800 0.800 0.800 0.800	0.800
0.800 1.200	1.200 1.200 1.200	
15.000 15.000	15.000 15.000 15.000 15.000 15.000 15.000 15.00	0 15.000
15.000 15.000	15.000 15.000 15.000 15.000 15.000 15.000 15.00	00 15.000
15.000 20.000	20.000 20.000 20.000	
2.000 2.000	2.000 2.000 2.000 2.000 2.000 2.000 2.000	2.000
2.000 2.000	2.000 2.000 2.000 2.000 2.000 2.000 2.000	2.000
2.000 2.500	2.500 2.500 2.500	

* Block 2 (Heavy LDGT1, Light LDGT2 (EPA LD2&3))
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 2.400 2.400 2.400 2.400
20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000
20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000
20.000 60.000 60.000 60.000 60.000
2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500
2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500
2.500 3.000 3.000 3.000 3.000

* Block 3 (Heavy LDGT2(EPA LD4))
2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400
2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400
2.400 2.400 2.400 2.400 2.400
60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000
60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000
60.000 60.000 60.000 60.000 60.000
4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000
4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000
4.000 4.500 4.500 4.500 4.500

* Block 4 (HDGV)
2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400
2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 3.000
3.000 3.000 3.000 3.000 3.000
60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000
60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000
60.000 60.000 60.000 60.000 60.000
4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000
4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 6.000
6.000 6.000 6.000 6.000 6.000

Calendar Year: 2020

- * District of Columbia IM cutpoints applies to calendar year 2020 * Air Quality Division, District Department of the Environment > ______

I/M CU	JTPO	INTS									
* Mode	el Yea	ars									
* 20	19	18	17	16	15	14	13	12	11		
* 10	09	08	07	06	05	04	03	02	01		
* 00	99	98	97	96							

* Block 1 (LDGV, Light LDGT1(EPA LD1))
0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800
0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800
0.800 0.800 0.800 0.800 0.800
15.000 15.000 15.000 15.000 15.000 15.000 15.000 15.000 15.000 15.000
15.000 15.000 15.000 15.000 15.000 15.000 15.000 15.000 15.000 15.000
15.000 15.000 15.000 15.000 15.000
2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000
2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000
2.000 2.000 2.000 2.000 2.000

* Block 2 (Heavy LDGT1, Light LDGT2 (EPA LD2&3))
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000
20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000
20.000 20.000 20.000 20.000 20.000
2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500
2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500
2.500 2.500 2.500 2.500 2.500

* DI 1.2 (H. I.D.CT2/EDA I.D.(I)
* Block 3 (Heavy LDGT2(EPA LD4))
2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400
2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400
2.400 2.400 2.400 2.400 2.400
60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000
60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000
60.000 60.000 60.000 60.000 60.000
4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000
4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000
4.000 4.000 4.000 4.000 4.000

* Block 4 (HDGV)
2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400
2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400
2.400 2.400 2.400 3.000 3.000
60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000
60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000
60.000 60.000 60.000 60.000 60.000
4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000
4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000
4.000 4.000 4.000 6.000 6.000

Calendar Year: 2030

- * District of Columbia IM cutpoints applies to calendar year 2030 * Air Quality Division, District Department of the Environment > _____

I/M CU	JTPO	INTS									
* Mod	el Yea	ars									
* 30	29	28	27	26	25	24	23	22	21		
* 20	19	18	17	16	15	14	13	12	11		
* 10	09	08	07	06							

* Block 1 (LDGV, Light LDGT1(EPA LD1))
0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800
0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800
0.800 0.800 0.800 0.800 0.800
15.000 15.000 15.000 15.000 15.000 15.000 15.000 15.000 15.000 15.000
15.000 15.000 15.000 15.000 15.000 15.000 15.000 15.000 15.000 15.000
15.000 15.000 15.000 15.000 15.000
2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000
2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000
2.000 2.000 2.000 2.000 2.000

* Block 2 (Heavy LDGT1, Light LDGT2 (EPA LD2&3))
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000
20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000
20.000 20.000 20.000 20.000 20.000
2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500
2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500
2.500 2.500 2.500 2.500 2.500

4 PL 1 2 (II 1 P CT2 (FP 1 P P))
* Block 3 (Heavy LDGT2(EPA LD4))
2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400
2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400
2.400 2.400 2.400 2.400 2.400
60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000
60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000
60.000 60.000 60.000 60.000 60.000
4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000
4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000
4.000 4.000 4.000 4.000 4.000

* Block 4 (HDGV)
2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400
2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400
2.400 2.400 2.400 2.400 2.400
60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000
60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000
60.000 60.000 60.000 60.000 60.000
4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000
4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000
4.000 4.000 4.000 4.000 4.000

Calendar Year: 2040

- * District of Columbia IM cutpoints applies to calendar year 2040 * Air Quality Division, District Department of the Environment > _____

I/M CU	JTPO	INTS									
* Mod	el Yea	ırs									
* 40	39	38	37	36	35	34	33	32	31		
* 30	29	28	27	26	25	24	23	22	21		
* 20	19	18	17	16							

* Block 1 (LDGV, Light LDGT1(EPA LD1))
0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800
0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800
0.800 0.800 0.800 0.800 0.800
15.000 15.000 15.000 15.000 15.000 15.000 15.000 15.000 15.000 15.000
15.000 15.000 15.000 15.000 15.000 15.000 15.000 15.000 15.000 15.000
15.000 15.000 15.000 15.000 15.000
2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000
2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000 2.000
2.000 2.000 2.000 2.000 2.000

* Block 2 (Heavy LDGT1, Light LDGT2 (EPA LD2&3))
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.000 1.000 1.000 1.000 1.000
20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000
20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000
20.000 20.000 20.000 20.000 20.000
2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500
2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500 2.500
2.500 2.500 2.500 2.500 2.500

* Block 3 (Heavy LDGT2(EPA LD4))
2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400
2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400
2.400 2.400 2.400 2.400 2.400
60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000
60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000
60.000 60.000 60.000 60.000 60.000
4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000
4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000
4.000 4.000 4.000 4.000 4.000

* Block 4 (HDGV)
2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400
2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400 2.400
2.400 2.400 2.400 2.400 2.400
60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000
60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000
60.000 60.000 60.000 60.000 60.000
4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000
4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000 4.000
4.000 4.000 4.000 4.000 4.000

Anti-tampering Program Parameters for DC

Program Parameters	Recent Update
Program Start Year	1983
First Model Year	1968
Last Model Year	2050
Program Type	Test Only
Inspection Frequency	Biennial
Compliance Rate (%)	96
LDGV	Yes
LDGT1	Yes
LDGT2	Yes
LDGT3	Yes
LDGT4	Yes
HDGV2B	Yes
HDGV3	Yes
HDGV4	Yes
HDGV5	Yes
HDGV6	Yes
HDGV7	No
HDGV8A	No
HDGV8B	No
GAS BUS	No
Inspections Performed	
Air pump system disablement	No
Catalyst removal	Yes
Fuel inlet restrictor disablement	Yes
Tailpipe lead deposit test	No
EGR disablement	No
Evaporative system disablement	No
PCV system disablement	No
Missing gas cap	Yes

Anti-tampering Program Parameters for Maryland

Program Parameters	Recent Update**		
Program Start Year	1989		
First Model Year	1977		
Last Model Year	2050		
Program Type	Test Only		
Inspection Frequency	Biennial		
Compliance Rate (%)	96		
Vehicle Types			
LDGV	Yes		
LDGT1	Yes		
LDGT2	Yes		
LDGT3	Yes		
LDGT4	Yes		
HDGV2B	Yes		
HDGV3	Yes		
HDGV4	Yes		
HDGV5	Yes		
HDGV6	Yes		
HDGV7	No		
HDGV8A	No		
HDGV8B	No		
GAS BUS	No		
Inspections Performed			
Air pump system disablement	No		
Catalyst removal Ye			
Fuel inlet restrictor disablement Y			
Tailpipe lead deposit test No			
EGR disablement No			
Evaporative system disablement No			
PCV system disablement	sablement No		
Missing gas cap Yes			

^{*} Maryland's ATP applies to all counties except St. Mary's County.

Anti-tampering Program Parameters for Virginia*

Program Parameters	Recent Update		
Program Start Year	1989**		
First Model Year	1968		
Last Model Year	2050		
Program Type	Test and Repair		
	Computerized***		
Inspection Frequency	Biennial		
Compliance Rate (%)	98		
Vehicle Types			
LDGV	Yes		
LDGT1	Yes		
LDGT2	Yes		
LDGT3	Yes		
LDGT4	Yes		
HDGV2B	Yes		
HDGV3	No		
HDGV4	No		
HDGV5	No		
HDGV6	No		
HDGV7	No		
HDGV8A	No		
HDGV8B	No		
GAS BUS	No		
Inspections Performed			
Air pump system disablement	Yes		
Catalyst removal	Yes		
Fuel inlet restrictor disablement	No		
Tailpipe lead deposit test	No		
EGR disablement	Yes		
Evaporative system disablement	Yes		
PCV system disablement	Yes		
Missing gas cap	Yes		

^{*}Virginia's ATP applies to all jurisdictions except Clark and Spotsylvania counties.

^{**}ATP start year is 1998 for Loudoun and Stafford Counties.

^{***}Modeled as Test Only (T/O). Per Mobile6 User's Guide (Section 2.8.9.3), EPA no longer support test and repair Benefit discount.

Additional State-Specific Control Programs

Maryland adopted CAL-LEV II program and it is applicable for any evaluation year beginning 2011. Therefore, this program was modeled for all four conformity analysis years. Following auxiliary files provided by the Maryland Department of the Environment (MDE) staff were used to model the above program for Maryland jurisdictions. Details of the format for these auxiliary files can be found in the Mobile6 model user guide.

LevIIExh.S11 (T2 EXH PHASE-IN)

T2 EXH PHASE-IN
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000,0.000,0.000,0.100,0.100,0.250,0.250,0.598,0.653,0.653,0.653,0.683
0.000,0.000,0.000,0.300,0.300,0.550,0.550,0.200,0.144,0.144,0.144,0.113
0.000,0.000,0.000,0.200,0.200,0.100,0.100,0.101,0.101,0.101,0.101,0.102
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.061,0.061,0.061,0.061
0.386,0.787,1.000,0.400,0.400,0.100,0.100,0.040,0.041,0.041,0.041,0.041
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.614,0.213,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000,0.000,0.000,0.100,0.100,0.250,0.250,0.598,0.653,0.653,0.653,0.683
0.000,0.000,0.000,0.300,0.300,0.550,0.550,0.200,0.144,0.144,0.144,0.113
0.000,0.000,0.000,0.200,0.200,0.100,0.100,0.101,0.101,0.101,0.101,0.102
0.386,0.787,1.000,0.400,0.400,0.100,0.100,0.061,0.061,0.061,0.061,0.061
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.040,0.041,0.041,0.041,0.041
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.614,0.213,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000,0.000,0.000,0.100,0.100,0.250,0.250,0.598,0.653,0.653,0.653,0.683
0.000,0.000,0.000,0.300,0.300,0.550,0.550,0.200,0.144,0.144,0.144,0.113
0.000,0.000,0.000,0.200,0.200,0.100,0.100,0.101,0.101,0.101,0.101,0.102
0.386,0.787,1.000,0.400,0.400,0.100,0.100,0.061,0.061,0.061,0.061,0.061
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.040,0.041,0.041,0.041,0.041

0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.001,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.001,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.550,0.550,0.250,0.550,0.250,0.144,0.144,0.144,0.144,0.144 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.001,0.011,0.101,0.101,0.101,0.101,0.101 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.001,0.010,0.014,0.041,0.041,0.041,0.041 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,	
$\begin{array}{c} 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.614, 0.213, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.300, 0.550, 0.550, 0.590, 0.598, 0.653, 0.653, 0.653\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.011, 0.101, 0.101, 0.101, 0.101, 0.102\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001\\ 0.386, 0.787, 1.000, 0.400, 0.400, 0.100, 0.100, 0.100, 0.400, 0.41, 0.041, 0.041, 0.041\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.0$	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$\begin{array}{c} 0.614, 0.213, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.300, 0.300, 0.550, 0.550, 0.200, 0.144, 0.144, 0.144, 0.144, 0.113\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.001, 0.011, 0.101, 0.101, 0.101, 0.101, 0.101\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.001, 0.061, 0.061, 0.061, 0.061\\ 0.386, 0.787, 1.000, 0.400, 0.400, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.$	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$\begin{array}{c} 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.550, 0.550, 0.250, 0.588, 0.653, 0.653, 0.653, 0.653\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.550, 0.550, 0.250, 0.144, 0.144, 0.144, 0.113\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.010, 0.101, 0.101, 0.101, 0.101, 0.101, 0.102\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.001, 0.061, 0.061, 0.061, 0.061, 0.061\\ 0.386, 0.787, 1.000, 0.400, 0.400, 0.400, 0.100, 0.100, 0.100, 0.014, 0.041, 0.041, 0.041, 0.041\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.$	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$\begin{array}{c} 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.550, 0.550, 0.200, 0.144, 0.144, 0.144, 0.113\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.001, 0.011, 0.101, 0.101, 0.101, 0.101, 0.102\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.001, 0.061, 0.061, 0.061, 0.061, 0.061\\ 0.386, 0.787, 1.000, 0.400, 0.400, 0.100, 0.100, 0.100, 0.014, 0.041, 0.041, 0.041, 0.041\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.$	0.614,0.213,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$\begin{array}{c} 0.000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0\\ 0.000_0,000_0,000_0,000_0,100_0,100_0,250_0,250_0,250_0,598_0.653_0.653_0.653_0.653\\ 0.000_0,000_0,000_0,000_0,200_0,200_0,100_0,100_0,010_1,010_1,010_1,010_1,010_1,010_2\\ 0.000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,061_0,061_0,061_0,061_0,061\\ 0.386_0,787_1.000_0,400_0,400_0,100_0,100_0,100_0,040_0,041_0,041_0,041_0,041\\ 0.000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0\\ 0.000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0\\ 0.000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0\\ 0.000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0\\ 0.000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0\\ 0.000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0\\ 0.000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0\\ 0.000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0\\ 0.000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0\\ 0.000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0\\ 0.000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0\\ 0.000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0\\ 0.000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0\\ 0.000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0\\ 0.000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0\\ 0.000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0\\ 0.000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0\\ 0.000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0\\ 0.000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0\\ 0.000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0\\ 0.000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0\\ 0.000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0\\ 0.000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0,000_0\\ 0.000_0,000_0,000_0,000$	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$\begin{array}{c} 0.000, 0.000, 0.000, 0.100, 0.100, 0.250, 0.250, 0.598, 0.653, 0.653, 0.653, 0.663\\ 0.000, 0.000, 0.000, 0.300, 0.300, 0.550, 0.550, 0.200, 0.144, 0.144, 0.144, 0.113\\ 0.000, 0.000, 0.000, 0.000, 0.200, 0.200, 0.100, 0.100, 0.101, 0.101, 0.101, 0.101, 0.101\\ 0.386, 0.787, 1.000, 0.400, 0.400, 0.400, 0.100, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.550, 0.550, 0.598, 0.653, 0.653, 0.653, 0.653, 0.653\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.$	0.000, 0.0000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
$\begin{array}{c} 0.000, 0.000, 0.000, 0.300, 0.300, 0.300, 0.550, 0.550, 0.200, 0.144, 0.144, 0.144, 0.113 \\ 0.000, 0.000, 0.000, 0.200, 0.200, 0.200, 0.100, 0.100, 0.101, 0.101, 0.101, 0.101, 0.101 \\ 0.386, 0.787, 1.000, 0.400, 0.400, 0.100, 0.000, $	0.000, 0.0000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
$\begin{array}{c} 0.000, 0.000, 0.000, 0.200, 0.200, 0.200, 0.100, 0.100, 0.101, 0.101, 0.101, 0.101, 0.101, 0.102 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.001, 0.061, 0.061, 0.061, 0.061, 0.061 \\ 0.386, 0.787, 1.000, 0.400, 0.400, 0.400, 0.100, 0.100, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0$	0.000,0.000,0.000,0.100,0.100,0.250,0.250,0.598,0.653,0.653,0.653,0.683
$\begin{array}{c} 0.000_0,0000_0,000_0,000_0,000_0,000_0,000_0,001_0,001_0,001_0,001_0,001_0,001_0,001_0,001_0,001_0,001_0,001_0,001_0,000_0,00$	0.000,0.000,0.000,0.300,0.300,0.550,0.550,0.200,0.144,0.144,0.144,0.113
$\begin{array}{c} 0.386,0.787,1.000,0.400,0.400,0.100,0.100,0.040,0.041,0.041,0.041,0.041\\ 0.000,0.0000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.001,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.101,0.101,0.101,0.101,0.101\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,$	0.000,0.000,0.000,0.200,0.200,0.100,0.100,0.101,0.101,0.101,0.101,0.102
$\begin{array}{c} 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.001,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.001,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.144,0.144,0.144,0.113\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.001,0.011,0.101,0.101,0.101,0.101\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.$	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.061,0.061,0.061,0.061
$\begin{array}{c} 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.001,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.100,0.101,0.101,0.101,0.101,0.101,0.102\\ 0.386,0.787,1.000,0.400,0.400,0.400,0.100,0.100,0.101,0.101,0.101,0.101,0.101,0.101\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.0$	0.386,0.787,1.000,0.400,0.400,0.100,0.100,0.040,0.041,0.041,0.041,0.041
$\begin{array}{c} 0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0\\ 0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0\\ 0.614_0.213_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0\\ 0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0\\ 0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0\\ 0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0\\ 0.000_0.000_0.000_0.000_0.100_0.100_0.250_0.250_0.598_0.653_0.653_0.653_0.653\\ 0.000_0.000_0.000_0.000_0.300_0.300_0.550_0.550_0.200_0.144_0.144_0.144_0.113\\ 0.000_0.000_0.000_0.000_0.200_0.200_0.100_0.100_0.101_0.101_0.101_0.101_0.101_0.102\\ 0.386_0.787_1.000_0.400_0.400_0.400_0.100_0.000_0.001_0.001_0.001_0.001_0.001_0.001_0.001\\ 0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000\\ 0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000\\ 0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000\\ 0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000\\ 0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000\\ 0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000\\ 0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000\\ 0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000\\ 0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000\\ 0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000\\ 0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000\\ 0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000\\ 0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000\\ 0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000\\ 0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000\\ 0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.000_0.00$	0.000, 0.0000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
$\begin{array}{c} 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.614,0.213,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.100,0.100,0.250,0.250,0.598,0.653,0.653,0.653,0.653\\ 0.000,0.000,0.000,0.300,0.300,0.550,0.550,0.200,0.144,0.144,0.144,0.113\\ 0.000,0.000,0.000,0.200,0.200,0.100,0.100,0.101,0.101,0.101,0.101,0.101,0.102\\ 0.386,0.787,1.000,0.400,0.400,0.400,0.100,0.100,0.61,0.061,0.061,0.061,0.061\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.001,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.0$	0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
$\begin{array}{c} 0.614,0.213,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.100,0.100,0.250,0.250,0.250,0.598,0.653,0.653,0.663,0.683\\ 0.000,0.000,0.000,0.300,0.300,0.300,0.550,0.550,0.200,0.144,0.144,0.144,0.113\\ 0.000,0.000,0.000,0.200,0.200,0.100,0.100,0.101,0.101,0.101,0.101,0.102\\ 0.386,0.787,1.000,0.400,0.400,0.400,0.100,0.100,0.061,0.061,0.061,0.061,0.061\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.$	0.000, 0.0000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
$\begin{array}{c} 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.100, 0.100, 0.250, 0.250, 0.259, 0.653, 0.653, 0.663, 0.683\\ 0.000, 0.000, 0.000, 0.000, 0.300, 0.300, 0.550, 0.550, 0.200, 0.144, 0.144, 0.144, 0.113\\ 0.000, 0.000, 0.000, 0.200, 0.200, 0.100, 0.100, 0.101, 0.101, 0.101, 0.101, 0.102\\ 0.386, 0.787, 1.000, 0.400, 0.400, 0.100, 0.100, 0.061, 0.061, 0.061, 0.061, 0.061\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.001, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.$	0.000, 0.0000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
$\begin{array}{c} 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.100,0.100,0.1250,0.250,0.598,0.653,0.653,0.653,0.683\\ 0.000,0.000,0.000,0.300,0.300,0.550,0.550,0.500,0.200,0.144,0.144,0.144,0.113\\ 0.000,0.000,0.000,0.200,0.200,0.100,0.100,0.101,0.101,0.101,0.101,0.102\\ 0.386,0.787,1.000,0.400,0.400,0.400,0.100,0.100,0.61,0.061,0.061,0.061,0.061\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.001,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.0$	0.614,0.213,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$\begin{array}{c} 0.000,0.000,0.000,0.100,0.100,0.250,0.250,0.598,0.653,0.653,0.653,0.683\\ 0.000,0.000,0.000,0.300,0.300,0.550,0.550,0.200,0.144,0.144,0.144,0.113\\ 0.000,0.000,0.000,0.200,0.200,0.100,0.100,0.101,0.101,0.101,0.101,0.102\\ 0.386,0.787,1.000,0.400,0.400,0.100,0.100,0.061,0.061,0.061,0.061,0.061\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.001,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.0$	0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
$\begin{array}{c} 0.000,0.000,0.000,0.300,0.300,0.550,0.550,0.200,0.144,0.144,0.144,0.113\\ 0.000,0.000,0.000,0.200,0.200,0.100,0.100,0.101,0.101,0.101,0.101,0.102\\ 0.386,0.787,1.000,0.400,0.400,0.100,0.100,0.061,0.061,0.061,0.061,0.061\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.614,0.213,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.0$	0.000, 0.0000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
$\begin{array}{c} 0.000,0.000,0.000,0.200,0.200,0.100,0.100,0.101,0.101,0.101,0.101,0.101\\ 0.386,0.787,1.000,0.400,0.400,0.400,0.100,0.100,0.061,0.061,0.061,0.061\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.040,0.041,0.041,0.041,0.041\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.0614,0.213,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000\\ 0.000,0.000$	0.000,0.000,0.000,0.100,0.100,0.250,0.250,0.598,0.653,0.653,0.653,0.683
$0.386,0.787,1.000,0.400,0.400,0.100,0.100,0.061,0.061,0.061,0.061,0.061\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.041,0.041,0.041,0.041\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.614,0.213,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.001,0.011,0.101,0.101,0.101,0.101\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.00$	0.000,0.000,0.000,0.300,0.300,0.550,0.550,0.200,0.144,0.144,0.144,0.113
$\begin{array}{c} 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.041, 0.041, 0.041, 0.041, 0.041\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.614, 0.213, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.$	0.000,0.000,0.000,0.200,0.200,0.100,0.100,0.101,0.101,0.101,0.101,0.102
$0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.614,0.213,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.100,0.100,0.250,0.250,0.598,0.653,0.653,0.653,0.653\\0.000,0.000,0.000,0.000,0.300,0.300,0.550,0.550,0.200,0.144,0.144,0.144,0.113\\0.000,0.000,0.000,0.000,0.200,0.200,0.100,0.100,0.101,0.101,0.101,0.101,0.101\\0.101,0.101,0.101\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.00$	0.386,0.787,1.000,0.400,0.400,0.100,0.100,0.061,0.061,0.061,0.061,0.061
$0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.614, 0.213, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.100, 0.100, 0.250, 0.250, 0.598, 0.653, 0.653, 0.653, 0.683 \\ 0.000, 0.000, 0.000, 0.000, 0.300, 0.300, 0.550, 0.550, 0.200, 0.144, 0.144, 0.144, 0.113 \\ 0.000, 0.000, 0.000, 0.000, 0.200, 0.200, 0.100, 0.100, 0.101, 0.101, 0.101, 0.101, 0.102 \\ 0.386, 0.787, 1.000, 0.400, 0.400, 0.100, 0.100, 0.061, 0.061, 0.061, 0.061 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000$	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.040,0.041,0.041,0.041,0.041
$0.614,0.213,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.100,0.100,0.250,0.250,0.598,0.653,0.653,0.653,0.683\\0.000,0.000,0.000,0.000,0.300,0.300,0.550,0.550,0.200,0.144,0.144,0.144,0.113\\0.000,0.000,0.000,0.000,0.200,0.200,0.100,0.100,0.101,0.101,0.101,0.101,0.102\\0.386,0.787,1.000,0.400,0.400,0.100,0.100,0.101,0.061,0.061,0.061,0.061\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.00$	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.100,0.100,0.250,0.250,0.598,0.653,0.653,0.653,0.683\\0.000,0.000,0.000,0.300,0.300,0.550,0.550,0.200,0.144,0.144,0.144,0.113\\0.000,0.000,0.000,0.200,0.200,0.100,0.100,0.101,0.101,0.101,0.101,0.102\\0.386,0.787,1.000,0.400,0.400,0.100,0.100,0.101,0.101,0.061,0.061,0.061\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.00$	0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
$0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.100,0.100,0.250,0.250,0.598,0.653,0.653,0.653,0.683\\0.000,0.000,0.000,0.300,0.300,0.550,0.550,0.200,0.144,0.144,0.144,0.113\\0.000,0.000,0.000,0.200,0.200,0.100,0.100,0.101,0.101,0.101,0.101,0.102\\0.386,0.787,1.000,0.400,0.400,0.100,0.100,0.061,0.061,0.061,0.061\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.040,0.041,0.041,0.041,0.041\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.00$	0.614,0.213,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.100,0.100,0.250,0.250,0.598,0.653,0.653,0.653,0.683\\0.000,0.000,0.000,0.300,0.300,0.550,0.550,0.200,0.144,0.144,0.144,0.113\\0.000,0.000,0.000,0.200,0.200,0.100,0.100,0.101,0.101,0.101,0.101,0.102\\0.386,0.787,1.000,0.400,0.400,0.100,0.100,0.061,0.061,0.061,0.061\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.040,0.041,0.041,0.041,0.041\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.00$	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.100, 0.100, 0.250, 0.250, 0.598, 0.653, 0.653, 0.653, 0.683 \\ 0.000, 0.000, 0.000, 0.300, 0.300, 0.550, 0.550, 0.200, 0.144, 0.144, 0.144, 0.113 \\ 0.000, 0.000, 0.000, 0.200, 0.200, 0.100, 0.100, 0.101, 0.101, 0.101, 0.101, 0.102 \\ 0.386, 0.787, 1.000, 0.400, 0.400, 0.100, 0.100, 0.61, 0.061, 0.061, 0.061 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.040, 0.041, 0.041, 0.041, 0.041 \\ 0.000, 0.$	0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
0.000, 0.000, 0.000, 0.100, 0.100, 0.250, 0.250, 0.598, 0.653, 0.653, 0.653, 0.683 $0.000, 0.000, 0.000, 0.300, 0.300, 0.550, 0.550, 0.200, 0.144, 0.144, 0.144, 0.113$ $0.000, 0.000, 0.000, 0.200, 0.200, 0.100, 0.100, 0.101, 0.101, 0.101, 0.101, 0.102$ $0.386, 0.787, 1.000, 0.400, 0.400, 0.100, 0.100, 0.061, 0.061, 0.061, 0.061$ $0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.040, 0.041, 0.041, 0.041, 0.041$ $0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000$	0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
$0.000, 0.000, 0.000, 0.300, 0.300, 0.550, 0.550, 0.200, 0.144, 0.144, 0.144, 0.113 \\ 0.000, 0.000, 0.000, 0.200, 0.200, 0.100, 0.100, 0.101, 0.101, 0.101, 0.101, 0.102 \\ 0.386, 0.787, 1.000, 0.400, 0.400, 0.100, 0.100, 0.061, 0.061, 0.061, 0.061, 0.061 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.040, 0.041, 0.041, 0.041, 0.041 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, $	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000,0.000,0.000,0.200,0.200,0.100,0.100,0.101,0.101,0.101,0.101,0.102 0.386,0.787,1.000,0.400,0.400,0.100,0.100,0.061,0.061,0.061,0.061,0.061 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.040,0.041,0.041,0.041,0.041 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000	0.000,0.000,0.000,0.100,0.100,0.250,0.250,0.598,0.653,0.653,0.653,0.683
0.386,0.787,1.000,0.400,0.400,0.100,0.100,0.061,0.061,0.061,0.061,0.061 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.040,0.041,0.041,0.041,0.041 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000	0.000,0.000,0.000,0.300,0.300,0.550,0.550,0.200,0.144,0.144,0.144,0.113
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.040,0.041,0.041,0.041,0.041 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000	0.000,0.000,0.000,0.200,0.200,0.100,0.100,0.101,0.101,0.101,0.101,0.102
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000	0.386,0.787,1.000,0.400,0.400,0.100,0.100,0.061,0.061,0.061,0.061,0.061
	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.040,0.041,0.041,0.041,0.041
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000

0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000	
0.614,0.213,0.000,0.00	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$\begin{array}{c} 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.200, 0.200, 0.200, 0.200\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.350, 0.350, 0.350, 0.350\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.$	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$\begin{array}{c} 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.200, 0.200, 0.200, 0.200, 0.200\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.450, 0.450, 0.450, 0.450, 0.450\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.$	0.614,0.213,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$\begin{array}{c} 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.200, 0.200, 0.200, 0.200, 0.200, 0.200\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.350, 0.350, 0.350, 0.350, 0.350\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.$	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$\begin{array}{c} 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.200, 0.200, 0.200, 0.200, 0.200, 0.200, 0.200\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.450, 0.450, 0.450, 0.450, 0.450\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.$	0.000, 0.0000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
$\begin{array}{c} 0.000, 0.000, 0.000, 0.000, 0.000, 0.200, 0.200, 0.200, 0.200, 0.200, 0.200, 0.200\\ 0.000, 0.000, 0.000, 0.000, 0.400, 0.000, 0.000, 0.000, 0.450, 0.450, 0.450, 0.450\\ 0.000, 0.000, 0.337, 1.000, 0.600, 0.800, 0.800, 0.350, 0.350, 0.350, 0.350, 0.350\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 1.000, 1.000, 0.663, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.$	0.000, 0.0000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
$\begin{array}{c} 0.000, 0.000, 0.000, 0.000, 0.000, 0.400, 0.000, 0.000, 0.450, 0.450, 0.450, 0.450, 0.450\\ 0.000, 0.000, 0.000, 0.337, 1.000, 0.600, 0.800, 0.800, 0.350, 0.350, 0.350, 0.350, 0.350\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 1.000, 1.000, 0.663, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.$	0.000, 0.0000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
$\begin{array}{c} 0.000, 0.000, 0.337, 1.000, 0.600, 0.800, 0.800, 0.350, 0.350, 0.350, 0.350, 0.350\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 1.000, 1.000, 0.663, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.300, 0.300, 0.300, 0.300, 0.350, 0.350, 0.350, 0.350, 0.350\\ 0.000, 0.000, 0.000, 0.300, 0.300, 0.300, 0.300, 0.300, 0.300, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.$	0.000,0.000,0.000,0.000,0.000,0.200,0.200,0.200,0.200,0.200,0.200,0.200
$\begin{array}{c} 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 1.000_{0}, 1.0000_{0}, 0.663_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.0$	0.000,0.000,0.000,0.000,0.400,0.000,0.000,0.450,0.450,0.450,0.450,0.450
$\begin{array}{c} 1.000, 1.000, 0.663, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.$	0.000,0.000,0.337,1.000,0.600,0.800,0.800,0.350,0.350,0.350,0.350,0.350
$\begin{array}{c} 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.350,0.350,0.350,0.350\\ 0.000,0.000,0.000,0.337,0.400,0.400,0.200,0.200,0.200,0.200,0.200,0.200,0.200,0.200\\ 0.000,0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.350,0.350,0.350,0.350,0.350\\ 0.000,0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.350,0.350,0.350,0.350,0.350\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.337,0.400,0.400,0.200,0.200,0.200,0.200,0.200,0.200,0.200,0.200\\ 0.000,0.000,0.000,0.337,0.400,0.400,0.200,0.200,0.200,0.200,0.200,0.200,0.200,0.200\\ 0.000,0.000,0.000,0.337,0.400,0.000,0.000,0.000,0.0$	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$\begin{array}{c} 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.200,0.200,0.200,0.200,0.200,0.200,0.200\\ 0.000,0.000,0.000,0.337,0.400,0.400,0.200,0.200,0.450,0.450,0.450,0.450,0.450\\ 0.000,0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.350,0.350,0.350,0.350,0.350\\ 0.000,0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.300,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.0$	1.000,1.000,0.663,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$\begin{array}{c} 0.000_{0}.00000_{0}.000$	0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
$\begin{array}{c} 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.200,0.200,0.200,0.200,0.200,0.200\\ 0.000,0.000,0.000,0.000,0.000,0.200,0.200,0.200,0.200,0.200,0.200,0.200\\ 0.000,0.000,0.000,0.337,0.400,0.400,0.200,0.200,0.450,0.450,0.450,0.450,0.450\\ 0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.300,0.350,0.350,0.350,0.350,0.350\\ 0.000,0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.337,0.400,0.400,0.200,0.200,0.200,0.200,0.200,0.200,0.200\\ 0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.300,0.350,0.350,0.350,0.350,0.350\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.$	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$\begin{array}{c} 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.200, 0.200, 0.200, 0.200, 0.200, 0.200, 0.200\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.200, 0.200, 0.200, 0.200, 0.200, 0.200, 0.200\\ 0.000, 0.000, 0.000, 0.300, 0.300, 0.300, 0.300, 0.350, 0.350, 0.350, 0.350, 0.350\\ 0.000, 0.000, 0.000, 0.300, 0.300, 0.300, 0.300, 0.300, 0.300, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.300, 0.300, 0.300, 0.300, 0.300, 0.350, 0.350, 0.350, 0.350, 0.350\\ 0.000, 0.000, 0.000, 0.300, 0.300, 0.300, 0.300, 0.300, 0.300, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.$	0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
$\begin{array}{c} 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.200, 0.200, 0.200, 0.200, 0.200, 0.200, 0.200\\ 0.000, 0.000, 0.000, 0.37, 0.400, 0.400, 0.200, 0.300, 0.350, 0.350, 0.350, 0.350, 0.350\\ 0.000, 0.000, 0.000, 0.300, 0.300, 0.300, 0.300, 0.300, 0.300, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.300, 0.300, 0.300, 0.300, 0.300, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.300, 0.300, 0.300, 0.300, 0.350, 0.350, 0.350, 0.350, 0.350\\ 0.000, 0.000, 0.000, 0.300, 0.300, 0.300, 0.300, 0.300, 0.300, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.0$	0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
$\begin{array}{c} 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.200,0.200,0.200,0.200,0.200,0.200,0.200\\ 0.000,0.000,0.337,0.400,0.400,0.200,0.200,0.450,0.450,0.450,0.450,0.450\\ 0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.350,0.350,0.350,0.350,0.350\\ 0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.300,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,1.000,0.663,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.300,0.300,0.300,0.350,0.350,0.350,0.350,0.350\\ 0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.300,0.350,0.350,0.350,0.350,0.350\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.$	0.000, 0.0000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
$\begin{array}{c} 0.000,0.000,0.000,0.000,0.000,0.200,0.200,0.200,0.200,0.200,0.200,0.200\\ 0.000,0.000,0.337,0.400,0.400,0.200,0.200,0.450,0.450,0.450,0.450,0.450\\ 0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.350,0.350,0.350,0.350,0.350\\ 0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.300,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.350,0.350,0.350,0.350,0.350\\ 0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.300,0.300,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.300,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.0$	0.000, 0.0000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
$\begin{array}{c} 0.000,0.000,0.337,0.400,0.400,0.200,0.200,0.450,0.450,0.450,0.450,0.450\\ 0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.350,0.350,0.350,0.350,0.350\\ 0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.300,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,1.000,0.663,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.350,0.350,0.350,0.350,0.350\\ 0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.300,0.300,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.300,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.$	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.350,0.350,0.350,0.350,0.350\\0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.300,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,1.000,0.663,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.337,0.400,0.400,0.200,0.200,0.200,0.200,0.200,0.200,0.200,0.200\\0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.350,0.350,0.350,0.350,0.350\\0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.300,0.350,0.350,0.350,0.350\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.00$	0.000,0.000,0.000,0.000,0.000,0.200,0.200,0.200,0.200,0.200,0.200,0.200
$0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.300,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,1.000,0.663,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.200,0.200,0.200,0.200,0.200,0.200\\0.000,0.000,0.000,0.337,0.400,0.400,0.200,0.200,0.450,0.450,0.450,0.450,0.450\\0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.300,0.350,0.350,0.350,0.350,0.350\\0.000,0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.300,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.00$	0.000,0.000,0.337,0.400,0.400,0.200,0.200,0.450,0.450,0.450,0.450,0.450
$\begin{array}{c} 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 1.000, 1.000, 0.663, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.$	0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.350,0.350,0.350,0.350,0.350
$\frac{1.000,1.000,0.663,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000}{0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000}\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.200,0.200,0.200,0.200,0.200,0.200\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.200,0.200,0.200,0.200,0.200,0.200\\ 0.000,0.000,0.000,0.337,0.400,0.400,0.200,0.200,0.450,0.450,0.450,0.450,0.450\\ 0.000,0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.350,0.350,0.350,0.350,0.350\\ 0.000,0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.$	0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.000,0.000,0.000,0.000,0.000
$0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000$	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.200,0.200,0.200,0.200,0.200,0.200\\0.000,0.000,0.337,0.400,0.400,0.200,0.200,0.450,0.450,0.450,0.450,0.450\\0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.350,0.350,0.350,0.350,0.350\\0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.300,0.000,0.000,0.000,0.000,0.000\\0.000,1.000,0.663,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.00$	1.000,1.000,0.663,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.337,0.400,0.400,0.200,0.200,0.200,0.450,0.450,0.450,0.450,0.450 0.000,0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.350,0.350,0.350,0.350,0.350 0.000,0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.300,0.000,0.000,0.000,0.000,0.000 1.000,1.000,0.663,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000	0.000, 0.0000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
$\begin{array}{c} 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.200, 0.200, 0.200, 0.200, 0.200, 0.200, 0.200\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.200, 0.200, 0.200, 0.200, 0.200, 0.200, 0.200, 0.200\\ 0.000, 0.000, 0.000, 0.337, 0.400, 0.400, 0.200, 0.200, 0.450, 0.450, 0.450, 0.450, 0.450\\ 0.000, 0.000, 0.000, 0.300, 0.300, 0.300, 0.300, 0.350, 0.350, 0.350, 0.350, 0.350\\ 0.000, 0.000, 0.000, 0.300, 0.300, 0.300, 0.300, 0.000, 0.000, 0.000, 0.000, 0.000\\ 1.000, 1.000, 0.663, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000\\ 0.000, 0.000\\ 0.000, 0.000\\ 0.000, 0.000\\ 0.000, 0.000\\ 0.$	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.200,0.200,0.200,0.200,0.200,0.200,0.200,0.200\\0.000,0.000,0.337,0.400,0.400,0.200,0.200,0.450,0.450,0.450,0.450,0.450\\0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.350,0.350,0.350,0.350,0.350\\0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.000,0.000,0.000,0.000,0.000\\1.000,1.000,0.663,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.00$	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.200,0.200,0.200,0.200,0.200,0.200,0.200 0.000,0.000,0.337,0.400,0.400,0.200,0.200,0.450,0.450,0.450,0.450,0.450 0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.350,0.350,0.350,0.350,0.350 0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.000,0.000,0.000,0.000,0.000 1.000,1.000,0.663,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000	0.000, 0.0000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
$0.000, 0.000, 0.000, 0.000, 0.000, 0.200, 0.200, 0.200, 0.200, 0.200, 0.200, 0.200, 0.200 \\ 0.000, 0.000, 0.337, 0.400, 0.400, 0.200, 0.200, 0.450, 0.450, 0.450, 0.450, 0.450 \\ 0.000, 0.000, 0.000, 0.300, 0.300, 0.300, 0.300, 0.350, 0.350, 0.350, 0.350, 0.350 \\ 0.000, 0.000, 0.000, 0.300, 0.300, 0.300, 0.300, 0.300, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 1.000, 1.000, 0.663, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000$	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000,0.000,0.337,0.400,0.400,0.200,0.200,0.450,0.450,0.450,0.450,0.450 0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.350,0.350,0.350,0.350,0.350 0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.000,0.000,0.000,0.000,0.000 1.000,1.000,0.663,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.350,0.350,0.350,0.350,0.350 0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.000,0.000,0.000,0.000,0.000 1.000,1.000,0.663,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000	0.000,0.000,0.000,0.000,0.000,0.200,0.200,0.200,0.200,0.200,0.200,0.200
0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.000,0.000,0.000,0.000,0.000 1.000,1.000,0.663,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000	0.000,0.000,0.337,0.400,0.400,0.200,0.200,0.450,0.450,0.450,0.450,0.450
1.000,1.000,0.663,0.000,	0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.350,0.350,0.350,0.350,0.350
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000	0.000,0.000,0.000,0.300,0.300,0.300,0.300,0.000,0.000,0.000,0.000,0.000
	1.000,1.000,0.663,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000

0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000	
$\begin{array}{c} 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.740, 0.740, 0.740, 0.740, 0.000, 1.000, 1.000, 1.000, 1.000\\ 0.370, 0.740, 1.000, 1.000, 0.260, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.$	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$\begin{array}{c} 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.740, 0.740, 0.740, 0.000, 1.000, 1.000, 1.000, 1.000\\ 0.370, 0.740, 1.000, 1.000, 0.260, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.$	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$\begin{array}{c} 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.370, 0.740, 1.000, 1.000, 0.260, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.$	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$\begin{array}{c} 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.370, 0.740, 1.000, 1.000, 0.260, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.630, 0.260, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.$	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$\begin{array}{c} 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.740, 0.740, 1.740, 1.000, 1.000, 1.000, 1.000, 1.000\\ 0.370, 0.740, 1.000, 1.000, 0.260, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.$	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$\begin{array}{c} 0.000, 0.000, 0.000, 0.000, 0.740, 0.740, 0.740, 0.740, 1.000, 1.000, 1.000, 1.000, 1.000\\ 0.370, 0.740, 1.000, 1.000, 0.260, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.530, 0.260, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.260, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.$	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$\begin{array}{c} 0.370, 0.740, 1.000, 1.000, 0.260, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.030, 0.260, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.260, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.$	0.000, 0.0000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
$\begin{array}{c} 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.630, 0.260, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.260, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.$	0.000,0.000,0.000,0.000,0.740,0.740,0.740,1.000,1.000,1.000,1.000,1.000
$\begin{array}{c} 0.630, 0.260, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.260, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.$	0.370,0.740,1.000,1.000,0.260,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$\begin{array}{c} 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.000_{0}\\ 0.000_{0}, 0.000_{0}, 0.000_{0}, 0.00$	0.000, 0.0000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
$\begin{array}{c} 0.000_{,0}000_{$	0.630,0.260,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$\begin{array}{c} 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.370,0.740,1.000,1.000,0.260,0.260,0.260,0.260,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.$	0.000,0.000,0.000,0.000,0.000,0.260,0.000,0.000,0.000,0.000,0.000,0.000
$\begin{array}{c} 0.000_{0}.000_{0}.000_{0}.000_{0}.000_{0}.000_{0}.000_{0}.000_{0}.000_{0}.000_{0}.000_{0}.000_{0}.000_{0}.000_{0}.0000_{0}$	0.000,0.000,0.000,0.000,0.000,0.000,0.260,0.000,0.000,0.000,0.000,0.000
$\begin{array}{c} 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.740,0.740,0.740,0.740,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,1.000,1.000,1.000,1.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.370,0.740,1.000,1.000,0.260,0.260,0.260,0.260,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.630,0.260,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.$	0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
$\begin{array}{c} 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 1.000, 1.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.370, 0.740, 1.000, 1.000, 0.260, 0.260, 0.260, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.$	0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
$\begin{array}{c} 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.370, 0.740, 1.000, 1.000, 0.260, 0.260, 0.260, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000\\ 0.000, 0.000, 0.$	0.000, 0.0000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
$\begin{array}{c} 0.000,0.000,0.000,0.000,0.000,0.740,0.740,0.740,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,1.000,1.000,1.000,1.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.370,0.740,1.000,1.000,0.260,0.260,0.260,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.630,0.260,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.$	0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
$\begin{array}{c} 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,1.000,1.000,1.000,1.000,1.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.370,0.740,1.000,1.000,0.260,0.260,0.260,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.630,0.260,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.0$	0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
$\begin{array}{c} 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.370,0.740,1.000,1.000,0.260,0.260,0.260,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.630,0.260,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.0$	0.000,0.000,0.000,0.000,0.740,0.740,0.740,0.000,0.000,0.000,0.000,0.000
$0.370,0.740,1.000,1.000,0.260,0.260,0.260,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.630,0.260,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.00$	0.000,0.000,0.000,0.000,0.000,0.000,0.000,1.000,1.000,1.000,1.000
$0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.630,0.260,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.00$	0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
$0.630,0.260,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,1.000,1.000,1.000,1.000\\0.370,0.740,1.000,1.000,0.260,0.260,0.260,0.260,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.00$	0.370,0.740,1.000,1.000,0.260,0.260,0.260,0.000,0.000,0.000,0.000,0.000
$0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,1.000,1.000,1.000,1.000,1.000\\0.370,0.740,1.000,1.000,0.260,0.260,0.260,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.00$	0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
$0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 1.000, 1.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.630, 0.260, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000 \\ 0.000, 0.000, 0.000, 0.000, 0.000$	0.630,0.260,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,1.000,1.000,1.000,1.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.00$	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.740,0.740,0.740,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,1.000,1.000,1.000,1.000\\0.370,0.740,1.000,1.000,0.260,0.260,0.260,0.260,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.630,0.260,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.00$	0.000, 0.0000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
$0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.740,0.740,0.740,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,1.000,1.000,1.000,1.000\\0.370,0.740,1.000,1.000,0.260,0.260,0.260,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.630,0.260,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000\\0.00$	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.740,0.740,0.740,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,1.000,1.000,1.000,1.000\\0.370,0.740,1.000,1.000,0.260,0.260,0.260,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.630,0.260,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.00$	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$0.000,0.000,0.000,0.000,0.740,0.740,0.740,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,1.000,1.000,1.000,1.000\\ 0.370,0.740,1.000,1.000,0.260,0.260,0.260,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.630,0.260,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000,0.000\\ 0.000,0.000,0.000\\ 0.000,0.000,0.000\\ 0.000,0.000,0.000\\ 0.000,0.000\\ 0.000,0.000\\ 0.000,0.000\\ 0.000,0.000\\ 0.000,0.000\\ 0.000,0.000\\ 0.000,0.000\\ 0.000,0.000\\ 0$	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
$0.000,0.000,0.000,0.000,0.000,0.000,0.000,1.000,1.000,1.000,1.000,1.000\\0.370,0.740,1.000,1.000,0.260,0.260,0.260,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.630,0.260,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000,0.000\\0.000,0.000,0.000,0.000\\0.000,0.000,0.000\\0.000,0.000,0.000\\0.000,0.000,0.000\\0.000,0.000,0.000\\0.000,0.000,0.000\\0.000,0.000\\0.000,0.000\\0.000,0.000\\0.000,0.000\\0.000,0.000\\0.000,0.000\\0.000,0.000\\0.000,0.000\\0.000\\0.000,0.000\\0.00$	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.370,0.740,1.000,1.000,0.260,0.260,0.260,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.630,0.260,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000	0.000,0.000,0.000,0.000,0.740,0.740,0.740,0.000,0.000,0.000,0.000,0.000
0.000,	0.000,0.000,0.000,0.000,0.000,0.000,0.000,1.000,1.000,1.000,1.000
0.000,	0.370,0.740,1.000,1.000,0.260,0.260,0.260,0.000,0.000,0.000,0.000,0.000
0.630,0.260,0.000,	0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000	0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
	0.630,0.260,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
	0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000

0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 1.000, 1.000, 1.000
0.000, 0.000, 0.220, 1.000, 1.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
1.000,1.000,0.780,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
0.000, 0.0000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
0.000, 0.0000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
0.000, 0.0000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 1.000, 1.000, 1.000
0.000, 0.0000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
0.000, 0.000, 0.220, 1.000, 1.000, 1.000, 1.000, 0.000, 0.000, 0.000, 0.000, 0.000
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
1.000,1.000,0.780,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 1.000, 1.000, 1.000, 1.000, 1.000
0.000, 0.000, 0.220, 1.000, 1.000, 1.000, 1.000, 0.000, 0.000, 0.000, 0.000, 0.000
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
1.000,1.000,0.780,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000
0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000

LevIIEvp.S11 (T2 EVAP PHASE-IN)

T2 EVAP PHASE-IN
0.25,0.50,0.75,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.0
0.25,0.50,0.75,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.0
0.25,0.50,0.75,1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.0
0.00,0.00,0.00,0.00,0.50,1.00,1.00,1.00,
0.00,0.00,0.00,0.00,0.50,1.00,1.00,1.00,

LevIIStd.d (T2 CERT)

T2 CERT

		T2 CERT		
0.000	0.000	0.000	0.000	0.000
0.007	0.007	0.007	0.007	0.007
0.040	0.040	0.040	0.040	0.040
0.051	0.051	0.051	0.051	0.051
0.040	0.040	0.040	0.040	0.040
0.075	0.075	0.075	0.075	0.075
0.100	0.100	0.100	0.125	0.125
0.075	0.075	0.100	0.140	0.140
0.125	0.125	0.125	0.160	0.195
0.040	0.040	0.050	0.100	0.117
0.075	0.075	0.100	0.160	0.195
0.000	0.000	0.000	0.000	0.000
0.000	0.000	0.000	0.000	0.000
1.700	1.700	1.700	1.700	1.700
1.700	1.700	1.700	1.700	1.700
1.700	1.700	1.700	1.700	1.700
1.700	1.700	1.700	1.700	1.700
3.400	3.400	3.400	3.400	3.400
3.400	3.400	3.400	3.400	3.400
3.400	3.400	3.400	3.400	3.400
3.400	3.400	3.400	3.400	3.400
1.700	1.700	2.200	4.400	5.000
3.400	3.400	4.400	4.400	5.000
0.000	0.000	0.000	0.000	0.000

0.000	0.000	0.000	0.000	0.000
0.014	0.014	0.014	0.014	0.014
0.021	0.021	0.021	0.021	0.021
0.029	0.029	0.029	0.029	0.029
0.050	0.050	0.050	0.050	0.050
0.050	0.050	0.050	0.050	0.050
0.140	0.140	0.140	0.140	0.140
0.200	0.200	0.200	0.200	0.200
0.400	0.400	0.400	0.400	0.400
0.200	0.200	0.400	0.400	0.600
0.200	0.200	0.400	0.400	0.600
0.000	0.000	0.000	0.000	0.000/

LevII94.S11 (94+ LDG IMP)

94+ LDG IMPLEMENTATION

- * The data is divided into 5 blocks, one each for LDGV, LDGT1, LDGT2,
- * LDGT3, and LDGT4. In each data block there is one data line for each
- * calendar year from 1994 to 2025. Each line contains the phase-in
- * values for that year for 11 different vehicle standards categories.
- * The first column is Tier0 the second is intermediate Tier1, the third
- * is Tier1, and the fourth column is Tier2. The remaining columns are
- * intermediate TLEV, TLEV, intermediate LEV, LEV, intermediate ULEV, ULEV,
- * and ZEV. These are the standards categories defined by the California
- * LEV program.

* LDGV
* TO T1 T1 T2 TLEV TLEV LEV LEV ULEV ULEV ZEV
* (int) (int) (int)
0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.2 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.2 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.3 0.0 0.0 0.4 0.0 0.3 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.6 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.99 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.986 0.0 0.0 0.0 0.0 0.0 0.0 0.014
0.0 0.0 0.0 0.986 0.0 0.0 0.0 0.0 0.0 0.0 0.014
0.0 0.0 0.0 0.986 0.0 0.0 0.0 0.0 0.0 0.0 0.014

0.0 0.0 0.	0 0.981 0.0 0.0 (0.0 0.0 0.0 0.0	0.019
0.0 0.0 0.	0 0.981 0.0 0.0 (0.0 0.0 0.0 0.0	0.019
0.0 0.0 0.	0 0.981 0.0 0.0 (0.0 0.0 0.0 0.0	0.019
0.0 0.0 0.	0 0.976 0.0 0.0 (0.0 0.0 0.0 0.0	0.024
0.0 0.0 0.	0 0.976 0.0 0.0 (0.0 0.0 0.0 0.0	0.024
0.0 0.0 0.	0 0.976 0.0 0.0 0	0.0 0.0 0.0 0.0	0.024
0.0 0.0 0.	0 0.976 0.0 0.0 (0.0 0.0 0.0 0.0	0.024
0.0 0.0 0.	0 0.976 0.0 0.0 (0.0 0.0 0.0 0.0	0.024
0.0 0.0 0.	0 0.976 0.0 0.0 0	0.0 0.0 0.0 0.0	0.024
0.0 0.0 0.	0 0.976 0.0 0.0 (0.0 0.0 0.0 0.0	0.024
0.0 0.0 0.	0 0.976 0.0 0.0 (0.0 0.0 0.0 0.0	0.024

* LDGT1
0.2 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.6 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.2 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.3 0.0 0.0 0.4 0.0 0.3 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.4 0.0 0.6 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.99 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.986 0.0 0.0 0.0 0.0 0.0 0.0 0.014
0.0 0.0 0.0 0.986 0.0 0.0 0.0 0.0 0.0 0.0 0.014
0.0 0.0 0.0 0.986 0.0 0.0 0.0 0.0 0.0 0.0 0.014
0.0 0.0 0.0 0.981 0.0 0.0 0.0 0.0 0.0 0.0 0.019
0.0 0.0 0.0 0.981 0.0 0.0 0.0 0.0 0.0 0.0 0.019
0.0 0.0 0.0 0.981 0.0 0.0 0.0 0.0 0.0 0.0 0.019
0.0 0.0 0.0 0.976 0.0 0.0 0.0 0.0 0.0 0.0 0.024
0.0 0.0 0.0 0.976 0.0 0.0 0.0 0.0 0.0 0.0 0.024
0.0 0.0 0.0 0.976 0.0 0.0 0.0 0.0 0.0 0.0 0.024
0.0 0.0 0.0 0.976 0.0 0.0 0.0 0.0 0.0 0.0 0.024
0.0 0.0 0.0 0.976 0.0 0.0 0.0 0.0 0.0 0.0 0.024
0.0 0.0 0.0 0.976 0.0 0.0 0.0 0.0 0.0 0.0 0.024
0.0 0.0 0.0 0.976 0.0 0.0 0.0 0.0 0.0 0.0 0.024
0.0 0.0 0.0 0.976 0.0 0.0 0.0 0.0 0.0 0.0 0.024

* LD	GT2									
0.6	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.2	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.6	0.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.2	0.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.3	0.0	0.0	0.4	0.0	0.3	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.4	0.0	0.6	0.0	0.0	0.0
0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0	0.0	0.0	0.0

0.0 0.0 0.0 0.0	0.0 0.0 0.0	1.0 0.0 0.0	0.0
0.0 0.0 0.0 0.0	0.0 0.0 0.0	1.0 0.0 0.0	0.0
0.0 0.0 0.0 1.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0
0.0 0.0 0.0 1.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0
0.0 0.0 0.0 1.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0
0.0 0.0 0.0 1.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0
0.0 0.0 0.0 1.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0
0.0 0.0 0.0 1.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0
0.0 0.0 0.0 1.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0
0.0 0.0 0.0 1.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0
0.0 0.0 0.0 1.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0
0.0 0.0 0.0 1.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0
0.0 0.0 0.0 1.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0
0.0 0.0 0.0 1.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0
0.0 0.0 0.0 1.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0
0.0 0.0 0.0 1.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0
0.0 0.0 0.0 1.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0
0.0 0.0 0.0 1.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0
0.0 0.0 0.0 1.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0
0.0 0.0 0.0 1.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0
0.0 0.0 0.0 1.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0
0.0 0.0 0.0 1.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0
0.0 0.0 0.0 1.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0
0.0 0.0 0.0 1.0	0.0 0.0 0.0	0.0 0.0 0.0	0.0

* LD	СТ2									
1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.0	0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	***
						0.0				0.0
0.5	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0	0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

* LDGT4									
1.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
1.0 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.5 0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0.0 0.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

NOx Rebuild Effects

Following NOx rebuild effects percentages were used for all 2011 CLRP analysis years:

Jurisdiction	NOx Rebuild Effects (%)
District of Columbia	0.11
Maryland	0.90
Virginia	0.25
Regional (Average of above three jurisdictions)	0.50
Note: Regional average NOx rebuild effect data	was used for modeling buses, which are

modeled on a regional level.

Memo

To: Air Quality Conformity Files

From: Eulalie G. Lucas

Date: 11/10/2011

Re: Inputs to MOBILE6 Emissions Factor Development: Ozone season,

Wintertime CO and PM_{2.5} Annual.

Introduction

This memo documents updates to the preparation of mobile emission rates associated with the air quality analysis of the Air Quality Conformity Determination of the 2011 CLRP. Inputs for this analysis are for typical ozone, winter day and for annual conditions.

Procedures used in the development of MOBILE6.2 inputs decks have not changed and detailed information is available in a January 27, 2003 memo to the Council of Governments (COG) staff from Maureen Mullen of EH Pechan staff. This memo is contained in previous air quality conformity determination reports, e.g., the October 19, 2005 report for the 2005 CLRP and the FY 2006-2011 TIP

Process and Inputs

Development of MOBILE6.2 input decks is an inter-departmental work task. COG's Department of Environmental Programs (DEP) staff requests non- travel related inputs from the states and the District of Columbia air agency staff. DTP staff incorporates these inputs into MOBILE input decks and the decks are returned to DEP staff for review and approval. Once input files are approved the MOBILE model is executed and emission rates are generated. Rates are then applied along with travel data using COG's post-processor, for all milestone years.

The following tables describe and list either Mobile default values or a reference to a local data source. Table 1 shows command line information specific to the current analysis as well as input requirement with a description of these inputs. Table 2 shows trip length distributions and Table 3 shows LEV implementation schedules for COG's non-attainment areas as described in the one-hour and eight-hour ozone day State Implementation Plans. Table 4 is summary of scenarios by analysis type along with a brief description. Table 5 contains values for the distribution of engine starts for three modes stabilized, cold and hot for each hour of the day, separately for weekdays and weekends. Included in this appendix is a memo from Daivamani Sivasailam documenting 2008 vehicle registration and diesel sales fractions, these two inputs vary by jurisdiction and contribute significantly to emission rates development.

Results

Tables 6, 7 and 8 show Vehicle Miles of Travel (VMT) fractions for the three traffic streams modeled: network, local roads and auto access to transit. MOBILE6.2 default heavy duty truck VMT percents are replaced to represent local conditions for network and local roads. The network traffic stream includes all vehicle types and all facility types. Local roads traffic stream accounts for VMT on facility types that are not represented on our network and has a significantly lower heavy duty truck percent. Auto-access to transit traffic stream represents VMT associated with trips made to access transit and does not include heavy duty trucks. Table 9 shows the percent VMT mix associated with school and transit bus operation. Year 2016 is illustrated here but all milestone years are available upon request.

Updates

Part one of this appendix is a memo from Sunil Kumar dated September 27, 2011. His memo lists updates specified by the District of Columbia, Maryland and Virginia air management agencies.

Table 1

MOBILE62 Run Information Common to All COG Counties For Ozone day, Annual Runs and Winter CO

		iai Ruiis aliu Wiliter CO		
Command	Input	Description		
MOBILE6 INPUT FILE	No input required.	Specific to Jurisdiction		
REPORT FILE	No input required.	Specifies name for descriptive output file(s).		
EMISSIONS TABLE	User-supplied	Specifies a file name for the database output file.		
SPREADSHEET	User-supplied	Instructs MOBILE6 to output the average calendar		
	• •	year emission factors in a form suitable for direct		
		input into a spreadsheet program.		
POLLUTANTS*	Specific to seasonal	Controls which HC, CO, and NOx pollutants will be		
	runs	calculated and output to the database report and		
		descriptive output.		
PARTICULATE EF*	PMGZML.CSV	Used for seasonal runs particulate matter (PM _{2.5})		
174110027112 21	PMGDR1.CSV	and NOx as a precursor for $PM_{2.5}$.		
	PMGDR2.CSV			
	PMDZML.CSV			
	PMDDR1.CSV			
	PMDDR2.CSV			
EXPRESS HC AS VOC	No input required.	Directs MOBILE6 to output exhaust HC as volatile		
+ + 7.0 7.0	rto ilipat required.	organic compounds.		
EXPAND	No input required.	Six evaporative emission types in descriptive		
EVAPORATIVE [†]	No input required.	output.		
EXPAND EXHAUST*	No input required.	Start, running and total exhaust EFs displayed in		
EXPAIND EXHAUST	No iriput required.	descriptive output.		
NO DEFLIELING [†]	No input voquived			
NO REFUELING*	No input required.	"zero " for refueling (Stage 2) emissions.		
WE DA TRI LEN DI	Varies	Table 2 Varies by time range		
94+ LDG IMP	User-supplied	1994 and later fleet penetration fractions for light-		
		duty gasoline vehicles under the Tier 1, NLEV (or		
		California LEV 1), and Tier 2 standards. Table 3		
REBUILD EFFECTS	Values supplied by state	Rebuild program effectiveness rate used to		
	air agency staff.	reduce heavy-duty diesel vehicle NOx off-cycle		
		emissions for years 2009 and beyond		
		Vary by state: DC 11%,MD 90%, VA 25%		
REG DIST	Vary by jurisdiction	2008 Vehicle Registration specific to jurisdiction		
		for 16 composite vehicles types. Updated every		
		three years. See D. Sivasailam memo attached.		
ANTI-TAMP PROG	Vary by state	See S. Kumar memo of 9/27/2011		
I/M DESC FILE#	User-supplied	See S. Kumar memo of 9/27/2011		
FUEL PROGRAM	Vary by state	See S. Kumar memo of 9/27/2011		
OXYGENATED FUELS	Regional Values	See S. Kumar memo of 9/27/2011		
TEMPERATURE	Ozone season	See S. Kumar memo of 9/27/2011		
I EWI LIVITORE	Seasonal	See S. Kumar memo of 9/27/2011		
DIEGEL ED LOTIONIO	Winter	See S. Kumar memo of 9/27/2011		
DIESEL FRACTIONS	Vary by jurisdiction	See D. Sivasailam memo attached		
FUEL RVP	Vary by jurisdiction	See S. Kumar memo of 9/27/2011		
	Ozone season			
	Seasonal	See S. Kumar memo of 9/27/2011		
HUMIDITY	Ozone season	See S. Kumar memo of 9/27/2011		
	Winter CO	See S. Kumar memo of 9/27/2011		
	Seasonal	See S. Kumar memo of 9/27/2011		
SCENARIO RECORD	Automatically	Allows user to label individual scenario results.		
	generated.	Marks start of new scenario. Table 4		
<u></u>	generateu.	IVIAINS SIAIT OF HEW SCENATIO. TADIC 4		

CALENDAR YEAR	Varies.	Calendar year of scenario evaluated.
EVALUATION MONTH	Varies.	Specifies January 1 (1) or July 1 (7) for calendar
		year of interest.
ALTITUDE	1	High or low altitude of area evaluated.
BAROMETRIC PRES*	User-supplied	See S. Kumar memo of 9/27/2011
AVERAGE SPEED	Varies	Table 4 Varies by scenario
SOAK DISTRIBUTION	Regional	Table 5 Varies by operating mode
VMT FRACTIONS	Varies by jurisdiction.	See Tables 6,7,8,9
VMT BY FACILITY	FV4.FV for freeway	Values represent MOBILE6 defaults for each
	ramp; FV3.FV for local	scenario.
	roads	
DIESEL SULFUR*	Varies. by jurisdiction.	See S. Kumar memo of 9/27/2011
PARTICLE SIZE [*]	Regional	2.5

- + Does not apply to $PM_{2.5}$ analysis (Annual runs). * Applies only when modeling $PM_{2.5}$. # Used when an ATP or I/M control programs are in effect.

Table 2
Trip Length Distributions

Length of Trip	MWCOG Regional Percentage of VMT (%)	MOBILE6 Default Percentage of VMT (%)
< 10 Minutes	10.86	6.74
11 - 20 Minutes	24.98	18.51
21 - 30 Minutes	19.71	16.78
31 - 40 Minutes	13.44	13.11
41 - 50 Minutes	9.29	8.33
> 50 Minutes	21.72	36.53

Table 3
LEV Implementation Schedule for MWCOG Region

Percentage of New Vehicle Sales									
Model Year	Tier 1	Transitional LEV	LEV	Tier 2					
1999	30	40 30		0					
2000	0	40	60	0					
2001	0	0	100	0					
2002	0	0	100	0					
2003	0	0	100	0					
2004+	0	0 0		100					

Table 4 Summary of Scenarios Modeled in MOBILE6.2 Network, Local roads and Auto Access to Transit, School and Transit bus Analysis: Ozone and winter day and annual runs

Scenario Number	Operatin g Mode	Facility Type	Average Speed	VMT Fractions	Month\Seaso n Sequence
	<u>I</u>	Ozone\Wir	nter Analysis		•
1-65	Stabilized	Arterial\Collectors	1-65 mph	Network or Auto Access	
66-130	Stabilized	Freeways excluding Ramps	1-65 mph	Network or Auto Access	
131	Stabilized	Freeway Ramps	34.6 mph	Network or Auto Access	
132	Cold	Local Roadways	12.9 mph	Network or Auto Access	
133	Hot	Local Roadways	12.9 mph	Network or Auto Access	
134	Stabilized	Local Roadways	12.9 mph	Network or Auto Access	
135-179*	Stabilized	Local Roadways as Arterial	1-45 mph	Local	
		Seasona	l Analysis		
1-195	Stabilized	Arterial\Collectors	1-65 mph	Network or Auto Access	1-3
196-390	Stabilized	Freeways excluding Ramps	1-65 mph	Network or Auto Access	1-4
391-393	Stabilized	Freeway Ramps	34.6 mph	Network or Auto Access	1-3
394-402	Cold	Local Roadways	12.9 mph	Network or Auto Access	1-3 (for each season, data
	Hot	Local Roadways	12.9 mph	Network or Auto Access	sequence is as follow: cold,
	Stabilized	Local Roadways	12.9 mph	Local or Auto Access	hot, then stabilized)
403-537*	Stabilized	Local Roadways as Arterial	1-45 mph	Local	
		Transit and	l School Bu	S	
1-65	Stabilized	Arterial/Collectors	1-65 mph	100%	Ozone, winter, annual
66	Stabilized	Freeway Ramps	34.6 mph	100%	Ozone, winter, annual
67	Stabilized	Local Road	12.9 mph	100%	Ozone, winter, annual

Notes:

- 1. Season: 1 January thru April; 2 May thru September; 3 October thru December
- 2. * Applies to network and local road types only.

Table 5 Soak Distributions

Stabilized Operating Mode

SOAK DIS	STRIBUTIO	ON							
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*1.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*1.00

Cold Start Operating Mode

SOAK DIS	STRIBUTIO	NC							
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*1.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*1.00	24*0.00	24*0.00

Hot Start Operating Mode

Г									
SOAK DIS	STRIBUTIO	ON							
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*1.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*1.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00
24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00	24*0.00

Table 6
2016 Summer VMT Mix Fractions for Network Analysis

					2016 Sur	nmer VMT Mix	Fractions				
Vehicle Type	DC		IV	laryland Counti	es			,	Virginia Countie	s	
	DC	Calvert	Charles	Frederick	Montgomery	Prince George'	Alexandria	Arlington	Fairfax	Loudon	Prince William
LDGV	0.2954	0.3011	0.3022	0.3024	0.2925	0.2991	0.2916	0.2939	0.2929	0.2929	0.2929
LDGT1	0.0935	0.0952	0.0911	0.0916	0.0935	0.0914	0.0881	0.0927	0.0945	0.0948	0.0948
LDGT2	0.3456	0.3373	0.3387	0.3422	0.3467	0.3413	0.3496	0.3456	0.3447	0.3442	0.3442
LDGT3	0.1157	0.1147	0.1165	0.1135	0.1183	0.1169	0.1200	0.1179	0.1180	0.1177	0.1177
LDGT4	0.0565	0.0589	0.0588	0.0576	0.0566	0.0584	0.0577	0.0567	0.0568	0.0574	0.0574
HDGV2B	0.0219	0.0211	0.0201	0.0205	0.0203	0.0190	0.0205	0.0204	0.0204	0.0203	0.0203
HDGV3	0.0011	0.0008	0.0007	0.0008	0.0007	0.0007	0.0009	0.0009	0.0009	0.0010	0.0010
HDGV4	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003	0.0003	0.0003	0.0003	0.0003
HDGV5	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
HDGV6	0.0003	0.0004	0.0004	0.0004	0.0004	0.0004	0.0005	0.0005	0.0005	0.0005	0.0005
HDGV7	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000
HDGV8A	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
HDGV8B	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
LDDV	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002	0.0003	0.0003	0.0002	0.0002
LDDT12	0.0002	0.0001	0.0001	0.0001	0.0002	0.0002	0.0002	0.0002	0.0002	0.0001	0.0001
HDDV2B	0.0059	0.0084	0.0080	0.0082	0.0082	0.0077	0.0074	0.0071	0.0071	0.0071	0.0071
HDDV3	0.0017	0.0023	0.0022	0.0023	0.0021	0.0020	0.0018	0.0017	0.0018	0.0019	0.0019
HDDV4	0.0021	0.0019	0.0019	0.0019	0.0019	0.0018	0.0020	0.0020	0.0020	0.0021	0.0021
HDDV5	0.0027	0.0025	0.0024	0.0025	0.0025	0.0023	0.0021	0.0023	0.0024	0.0025	0.0025
HDDV6	0.0063	0.0079	0.0069	0.0078	0.0075	0.0079	0.0084	0.0070	0.0071	0.0072	0.0072
HDDV7	0.0065	0.0050	0.0062	0.0059	0.0063	0.0064	0.0054	0.0049	0.0062	0.0060	0.0060
HDDV8A	0.0083	0.0079	0.0080	0.0079	0.0080	0.0084	0.0079	0.0083	0.0084	0.0083	0.0083
HDDV8B	0.0296	0.0282	0.0295	0.0282	0.0285	0.0297	0.0296	0.0314	0.0297	0.0297	0.0297
MC	0.0047	0.0045	0.0045	0.0044	0.0042	0.0047	0.0042	0.0044	0.0043	0.0043	0.0043
HDGB	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
HDDBT	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
HDDBS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
LDDT34	0.0013	0.0009	0.0010	0.0009	0.0010	0.0009	0.0015	0.0014	0.0015	0.0015	0.0015

Table 7
2016 Summer VMT Mix Fractions for Local Analysis

					2016 Sur	nmer VMT Mix	Fractions				
Vehicle Type	DC		IV	laryland Counti	es			,	Virginia Countie	s	
	DC	Calvert	Charles	Frederick	Montgomery	Prince George'	Alexandria	Arlington	Fairfax	Loudon	Prince William
LDGV	0.2954	0.3011	0.3022	0.3024	0.2925	0.2991	0.2916	0.2939	0.2929	0.2929	0.2929
LDGT1	0.0935	0.0952	0.0911	0.0916	0.0935	0.0914	0.0881	0.0927	0.0945	0.0948	0.0948
LDGT2	0.3456	0.3373	0.3387	0.3422	0.3467	0.3413	0.3496	0.3456	0.3447	0.3442	0.3442
LDGT3	0.1157	0.1147	0.1165	0.1135	0.1183	0.1169	0.1200	0.1179	0.1180	0.1177	0.1177
LDGT4	0.0565	0.0589	0.0588	0.0576	0.0566	0.0584	0.0577	0.0567	0.0568	0.0574	0.0574
HDGV2B	0.0219	0.0211	0.0201	0.0205	0.0203	0.0190	0.0205	0.0204	0.0204	0.0203	0.0203
HDGV3	0.0011	0.0008	0.0007	0.0008	0.0007	0.0007	0.0009	0.0009	0.0009	0.0010	0.0010
HDGV4	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003	0.0003	0.0003	0.0003	0.0003
HDGV5	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
HDGV6	0.0003	0.0004	0.0004	0.0004	0.0004	0.0004	0.0005	0.0005	0.0005	0.0005	0.0005
HDGV7	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000
HDGV8A	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
HDGV8B	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
LDDV	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002	0.0003	0.0003	0.0002	0.0002
LDDT12	0.0002	0.0001	0.0001	0.0001	0.0002	0.0002	0.0002	0.0002	0.0002	0.0001	0.0001
HDDV2B	0.0059	0.0084	0.0080	0.0082	0.0082	0.0077	0.0074	0.0071	0.0071	0.0071	0.0071
HDDV3	0.0017	0.0023	0.0022	0.0023	0.0021	0.0020	0.0018	0.0017	0.0018	0.0019	0.0019
HDDV4	0.0021	0.0019	0.0019	0.0019	0.0019	0.0018	0.0020	0.0020	0.0020	0.0021	0.0021
HDDV5	0.0027	0.0025	0.0024	0.0025	0.0025	0.0023	0.0021	0.0023	0.0024	0.0025	0.0025
HDDV6	0.0063	0.0079	0.0069	0.0078	0.0075	0.0079	0.0084	0.0070	0.0071	0.0072	0.0072
HDDV7	0.0065	0.0050	0.0062	0.0059	0.0063	0.0064	0.0054	0.0049	0.0062	0.0060	0.0060
HDDV8A	0.0083	0.0079	0.0080	0.0079	0.0080	0.0084	0.0079	0.0083	0.0084	0.0083	0.0083
HDDV8B	0.0296	0.0282	0.0295	0.0282	0.0285	0.0297	0.0296	0.0314	0.0297	0.0297	0.0297
MC	0.0047	0.0045	0.0045	0.0044	0.0042	0.0047	0.0042	0.0044	0.0043	0.0043	0.0043
HDGB	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
HDDBT	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
HDDBS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
LDDT34	0.0013	0.0009	0.0010	0.0009	0.0010	0.0009	0.0015	0.0014	0.0015	0.0015	0.0015

Table 8
2016 Summer VMT Mix Fractions for Auto Access to Transit Analysis

					2016 Sur	nmer VMT Mix	Fractions				
Vehicle Type	DC		IV	laryland Counti	es			1	Virginia Countie	!S	
	DC	Calvert	Charles	Frederick	Montgomery	Prince George's	Alexandria	Arlington	Fairfax	Loudon	Prince William
LDGV	0.2954	0.3298	0.3309	0.3312	0.2925	0.3274	0.3193	0.3219	0.2929	0.2929	0.2965
LDGT1	0.0935	0.1043	0.0997	0.1003	0.0935	0.1000	0.0965	0.1016	0.0945	0.0948	0.0951
LDGT2	0.3456	0.3694	0.3709	0.3748	0.3467	0.3737	0.3829	0.3785	0.3447	0.3442	0.3408
LDGT3	0.1157	0.1257	0.1275	0.1244	0.1183	0.1281	0.1314	0.1291	0.1180	0.1177	0.1169
LDGT4	0.0565	0.0645	0.0645	0.0630	0.0566	0.0641	0.0632	0.0621	0.0568	0.0574	0.0575
HDGV2B	0.0219	0.0000	0.0000	0.0000	0.0203	0.0000	0.0000	0.0000	0.0204	0.0203	0.0200
HDGV3	0.0011	0.0000	0.0000	0.0000	0.0007	0.0000	0.0000	0.0000	0.0009	0.0010	0.0010
HDGV4	0.0004	0.0000	0.0000	0.0000	0.0004	0.0000	0.0000	0.0000	0.0003	0.0003	0.0003
HDGV5	0.0001	0.0000	0.0000	0.0000	0.0001	0.0000	0.0000	0.0000	0.0001	0.0001	0.0001
HDGV6	0.0003	0.0000	0.0000	0.0000	0.0004	0.0000	0.0000	0.0000	0.0005	0.0005	0.0005
HDGV7	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
HDGV8A	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
HDGV8B	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
LDDV	0.0003	0.0003	0.0003	0.0003	0.0003	0.0004	0.0002	0.0003	0.0003	0.0002	0.0003
LDDT12	0.0002	0.0001	0.0001	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0001	0.0001
HDDV2B	0.0059	0.0000	0.0000	0.0000	0.0082	0.0000	0.0000	0.0000	0.0071	0.0071	0.0070
HDDV3	0.0017	0.0000	0.0000	0.0000	0.0021	0.0000	0.0000	0.0000	0.0018	0.0019	0.0018
HDDV4	0.0021	0.0000	0.0000	0.0000	0.0019	0.0000	0.0000	0.0000	0.0020	0.0021	0.0020
HDDV5	0.0027	0.0000	0.0000	0.0000	0.0025	0.0000	0.0000	0.0000	0.0024	0.0025	0.0023
HDDV6	0.0063	0.0000	0.0000	0.0000	0.0075	0.0000	0.0000	0.0000	0.0071	0.0072	0.0074
HDDV7	0.0065	0.0000	0.0000	0.0000	0.0063	0.0000	0.0000	0.0000	0.0062	0.0060	0.0069
HDDV8A	0.0083	0.0000	0.0000	0.0000	0.0080	0.0000	0.0000	0.0000	0.0084	0.0083	0.0082
HDDV8B	0.0296	0.0000	0.0000	0.0000	0.0285	0.0000	0.0000	0.0000	0.0297	0.0297	0.0294
MC	0.0047	0.0049	0.0050	0.0049	0.0042	0.0051	0.0046	0.0048	0.0043	0.0043	0.0045
HDGB	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
HDDBT	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
HDDBS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
LDDT34	0.0013	0.0010	0.0011	0.0010	0.0010	0.0010	0.0017	0.0016	0.0015	0.0015	0.0014

Table 9
2011 VMT Mix Fractions
For School Bus and Transit Bus Analysis

Vahiala	VMT Mix F	ractions
Vehicle Type	School Bus	Transit Bus
LDV	0.0000	0.0000
LDT1	0.0000	0.0000
LDT2	0.0000	0.0000
LDT3	0.0000	0.0000
LDT4	0.0000	0.0000
HDV2B	0.0000	0.0000
HDV3	0.0000	0.0000
HDV4	0.0000	0.0000
HDV5	0.0000	0.0000
HDV6	0.0000	0.0000
HDV7	0.0000	0.0000
HDV8A	0.0000	0.0000
HDV8B	0.0000	0.0000
HDBS	1.0000	0.0000
HDBT	0.0000	1.0000
MC	0.0000	0.0000

National Capital Region Transportation Planning Board

777 North Capitol Street, N.E., Suite 300, Washington, D.C. 20002-4290 (202) 962-3310 Fax: (202) 962-3202

October 12, 2010

To:

Air Quality Conformity Files

From:

Daivamani Sivasailam

Principal Transportation Engineer

Subject:

Development of vehicle age distributions and diesel vehicle percentages for

Mobile 6.2 model using VIN decoder software - 2008 Registration Data

Introduction

This memorandum summarizes the methodology used, and the results obtained, in developing Mobile 6 input files of vehicle characteristics data summarized from 2008 District of Columbia, Maryland and Virginia vehicle registration data. EPA's Mobile 6 model requires age distribution (1-25+ years) and diesel fueled vehicle percentages for 16 separate vehicle types (passenger cars, motorcycles, light trucks, and heavy trucks in ascending weight categories). The model then generates 28 vehicle types by applying the diesel percentages to the relevant vehicle types. This work continues the cycle of obtaining consistent vehicle registrations on a 3 year basis. These results will be used in the development of the mobile source emissions inventories for the air quality conformity assessment of 2009 Constrained Long Range Plan (CLRP) and FY 2010-2015 Transportation Improvement Program.

Background

In 2005, Department of Transportation Planning staff embarked on the use of VIN decoder software to develop registration and diesel sales percentages. Similarly during the Summer of 2008 the newest version of the software was purchased and registration data were obtained from the three state air agencies as of July 1, 2008. Using an approach similar to the 2005 exercise staff successfully decoded the VIN numbers and developed jurisdictional level vehicle age distribution and diesel sales fraction files.

Committee Review

Several conference calls and meetings were held with air and transportation department representatives to discuss the results, and a number of changes were suggested to improve the vehicle age distributions and diesel vehicle percentages. Changes to the procedures as compared to the 2005 exercise are listed below.

1) Vehicles Aged 25 Years and Older:

Since the VIN decoder software could not fully decode vehicles manufactured prior to 1981, staff used the registration data base (which contained control totals of total number of vehicle registrations by model year) to identify the total number of vehicles that were 25 years and older. These vehicles were then distributed among the 16 vehicle types using the vehicle type distribution of vehicles aged 25 through 27 that were decoded using the software.

2) Aggregation of Diesel Fractions by Jurisdiction

In Maryland and Northern Virginia, age distributions by vehicle type were developed at the county level. However, diesel percentages by vehicle type were aggregated to represent all counties in Maryland, and all jurisdictions in Northern Virginia. The District's data, due to an under-representation of vehicles for some types, were combined with the urban jurisdictions of Montgomery, Prince George's, Alexandria, Arlington and Fairfax to develop diesel vehicle percentages for the District of Columbia. For school bus and transit bus there is a single regional diesel fraction file.

Detailed Documentation

Three individual detailed memoranda, one each for the District of Columbia, Maryland, and Virginia, have been prepared and are available upon request. These memos detail the work activities including control totals, data tables, and charts of the age distribution and diesel vehicle fractions for each vehicle type.

Final Input Files

Attached are the final input files (XX.RDT) and (XX.DSF) for the Mobile 6.2 model prepared using the vehicle registration data.

Attachments

Alexandria, VA- 2008 Registration Data

```
0.1468 0.1295 0.0726 0.0577 0.0572 0.0633 0.0595 0.0567 0.0568 0.0469
0.0409 0.0382 0.0292 0.0300 0.0228 0.0186 0.0140 0.0109 0.0100 0.0064
0.0046 0.0036 0.0026 0.0021 0.0189
0.0251 0.0689 0.0589 0.0562 0.0328 0.1214 0.1104 0.0962 0.0536 0.0645
0.0711 0.0787 0.0483 0.0120 0.0077 0.0055 0.0066 0.0087 0.0044 0.0077
0.0068 0.0066 0.0077 0.0000 0.0403
0.1637 0.1608 0.0731 0.0731 0.0766 0.0630 0.0620 0.0556 0.0503 0.0414
0.0376 0.0301 0.0229 0.0220 0.0169 0.0110 0.0069 0.0058 0.0040 0.0037
0.0031 0.0017 0.0018 0.0009 0.0120
0.1798 0.1351 0.1007 0.0783 0.0772 0.0729 0.0605 0.0526 0.0511 0.0435
0.0263 0.0195 0.0166 0.0158 0.0147 0.0078 0.0068 0.0046 0.0043 0.0051
0.0036 0.0021 0.0017 0.0017 0.0176
 * LDT4
0.2031 0.2115 0.0685 0.0785 0.0862 0.0714 0.0352 0.0379 0.0454 0.0479
0.0337 0.0282 0.0077 0.0073 0.0128 0.0042 0.0031 0.0005 0.0031 0.0026
0.0026 0.0020 0.0020 0.0000 0.0048
  HDV2B
0.1247 0.0906 0.0787 0.0861 0.0705 0.0732 0.0656 0.0489 0.0615 0.0391
0.0226 0.0342 0.0225 0.0330 0.0181 0.0133 0.0108 0.0045 0.0054 0.0060
0.0143 0.0104 0.0102 0.0058 0.0500
0.1174 0.0741 0.0969 0.0896 0.0515 0.0804 0.0477 0.0398 0.0695 0.0465
0.0256 0.0277 0.0109 0.0532 0.0239 0.0068 0.0051 0.0138 0.0088 0.0084
0.0207 0.0161 0.0127 0.0042 0.0487
* HDV4
0.0288 0.0806 0.1727 0.0461 0.0288 0.0576 0.0633 0.0633 0.0864 0.0921
0.0374 0.0604 0.0201 0.0461 0.0201 0.0115 0.0086 0.0115 0.0058 0.0144
0.0115 0.0058 0.0029 0.0029 0.0213
0.0326 0.0762 0.0653 0.0435 0.1850 0.1088 0.0000 0.0435 0.0544 0.1197
0.0218 0.0762 0.0544 0.0109 0.0109 0.0109 0.0000 0.0000 0.0109 0.0109
0.0000 0.0326 0.0109 0.0109 0.0098
0.1140 0.1374 0.1268 0.1672 0.0484 0.0375 0.0349 0.0433 0.0426 0.0273
0.0245 0.0375 0.0219 0.0304 0.0115 0.0063 0.0112 0.0030 0.0030 0.0002
0.0046 0.0074 0.0118 0.0031 0.0441
0.0000 0.0366 0.0366 0.0183 0.0366 0.0275 0.0275 0.0183 0.1465 0.0183
0.0458 0.0366 0.0550 0.0916 0.0000 0.0366 0.0458 0.0641 0.0366 0.0366
0.0092 0.0366 0.0092 0.0092 0.1208
* HDV8A
0.0622 0.0957 0.0335 0.0813 0.0478 0.0478 0.0526 0.0526 0.0718 0.0813
0.0383 0.0191 0.0478 0.0431 0.0526 0.0191 0.0191 0.0191 0.0048 0.0191
0.0144 0.0048 0.0144 0.0048 0.0526
* HDV8B
0.0769 0.1154 0.0385 0.0769 0.0385 0.0385 0.0769 0.0385 0.0769 0.0769
0.0385 0.0385 0.0385 0.0385 0.0385 0.0385 0.0385 0.0385 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0385
 HDBS
0.0876 0.0537 0.0407 0.0093 0.0860 0.0416 0.0644 0.0658 0.0618 0.0723
0.0604 0.0450 0.0197 0.0325 0.0241 0.0139 0.0117 0.0236 0.0415 0.0404
0.0111 0.0179 0.0089 0.0042 0.0618
0.0564 0.0312 0.0839 0.1056 0.0594 0.0545 0.0651 0.0641 0.0947 0.0426
0.0634 0.0756 0.0156 0.0208 0.0179 0.0096 0.0166 0.0096 0.0085 0.0259
0.0190 0.0216 0.0015 0.0063 0.0306
0.0528 0.1196 0.1366 0.0838 0.0880 0.0813 0.0686 0.0546 0.0461 0.0285
0.0297 0.0206 0.0182 0.0219 0.0140 0.0079 0.0073 0.0055 0.0067 0.0030
0.0042 0.0055 0.0091 0.0085 0.0779
```

Arlington County, VA- 2008 Registration Data

```
0.0468 0.0743 0.0737 0.0708 0.0731 0.0752 0.0771 0.0720 0.0694 0.0606
0.0522 0.0460 0.0356 0.0353 0.0275 0.0220 0.0177 0.0150 0.0118 0.0081
0.0058 0.0048 0.0036 0.0026 0.0189
0.0278 0.0722 0.0559 0.0673 0.0183 0.0861 0.1052 0.1035 0.0618 0.0618
0.0687 0.0644 0.0644 0.0132 0.0061 0.0096 0.0113 0.0070 0.0061 0.0122
0.0104 0.0165 0.0073 0.0026 0.0403
* LDT2
0.0521 0.0825 0.0847 0.0907 0.1026 0.0855 0.0820 0.0733 0.0688 0.0515
0.0483 0.0382 0.0299 0.0269 0.0201 0.0140 0.0086 0.0083 0.0057 0.0045
0.0034 0.0026 0.0024 0.0016 0.0120
0.0682 0.0772 0.1126 0.0932 0.0947 0.0868 0.0740 0.0703 0.0585 0.0588
0.0305 0.0294 0.0246 0.0219 0.0208 0.0109 0.0083 0.0049 0.0078 0.0105
0.0074 0.0041 0.0040 0.0028 0.0176
0.0660 0.1687 0.0687 0.0872 0.1167 0.0959 0.0498 0.0554 0.0567 0.0675
0.0561 0.0305 0.0199 0.0125 0.0125 0.0025 0.0044 0.0033 0.0056 0.0044
0.0037 0.0052 0.0019 0.0002 0.0048
0.0269 0.0454 0.1217 0.0613 0.0725 0.0888 0.0690 0.0787 0.0731 0.0554
0.0241 0.0407 0.0299 0.0368 0.0294 0.0202 0.0107 0.0085 0.0096 0.0138
0.0141 0.0083 0.0056 0.0057 0.0500
0.0265 0.0329 0.1241 0.1021 0.0874 0.0833 0.0279 0.0478 0.0619 0.0742
0.0232 0.0501 0.0171 0.0326 0.0227 0.0114 0.0062 0.0066 0.0095 0.0175
0.0379 0.0156 0.0208 0.0118 0.0487
* HDV4
0.0087 0.0173 0.0996 0.0779 0.0390 0.0563 0.0779 0.0693 0.0953 0.0563
0.0779 0.0779 0.0173 0.0476 0.0433 0.0303 0.0303 0.0173 0.0043 0.0130
0.0130 0.0043 0.0043 0.0000 0.0213
0.0183 0.0550 0.0733 0.1467 0.1100 0.0550 0.0367 0.1284 0.0917 0.1100
0.0000 0.0183 0.0183 0.0183 0.0000 0.0183 0.0183 0.0183 0.0183 0.0000
0.0000 0.0367 0.0000 0.0000 0.0098
0.0105 0.0879 0.0910 0.0574 0.1047 0.0441 0.0412 0.0352 0.0729 0.0974
0.0419 0.0726 0.0276 0.0247 0.0178 0.0098 0.0022 0.0165 0.0165 0.0162
0.0025 0.0327 0.0086 0.0241 0.0441
0.0000 0.0412 0.0412 0.0000 0.0000 0.0000 0.0137 0.0687 0.0137 0.0412
0.1236 0.0550 0.0137 0.0412 0.0412 0.0412 0.0412 0.0137 0.0137 0.0687
0.0687 0.0275 0.0412 0.0687 0.1208
0.0136 0.0543 0.0950 0.0407 0.0633 0.1131 0.0317 0.0724 0.1629 0.0452
0.0317 0.0136 0.0226 0.0226 0.0317 0.0362 0.0136 0.0226 0.0181 0.0226
0.0226 0.0000 0.0045 0.0045 0.0407
* HDV8B
0.0000 0.0588 0.1176 0.0588 0.0588 0.1176 0.0588 0.0588 0.1765 0.0588
0.0588 0.0000 0.0000 0.0000 0.0588 0.0588 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0588
0.0876 0.0537 0.0407 0.0093 0.0860 0.0416 0.0644 0.0658 0.0618 0.0723
0.0604 0.0450 0.0197 0.0325 0.0241 0.0139 0.0117 0.0236 0.0415 0.0404
 .0111 0.0179 0.0089 0.0042 0.0618
0.0564 0.0312 0.0839 0.1056 0.0594 0.0545 0.0651 0.0641 0.0947 0.0426
0.0634 0.0756 0.0156 0.0208 0.0179 0.0096 0.0166 0.0096 0.0085 0.0259
0.0190 0.0216 0.0015 0.0063 0.0306
0.0459 0.1028 0.1014 0.1097 0.0854 0.0959 0.0615 0.0643 0.0473 0.0317
0.0271 0.0193 0.0216 0.0165 0.0211 0.0142 0.0096 0.0073 0.0092 0.0055
0.0037 0.0028 0.0110 0.0073 0.0779
```

Calvert County, MD- 2008 Registration Data

```
* LDV
0.0521 0.0741 0.0730 0.0784 0.0721 0.0753 0.0746 0.0657 0.0677 0.0564
0.0496 0.0435 0.0328 0.0347 0.0272 0.0223 0.0167 0.0148 0.0120 0.0085
0.0073 0.0067 0.0059 0.0045 0.0241
* LDT1
0.0459 0.0879 0.1116 0.0953 0.0342 0.0798 0.0684 0.0667 0.0293 0.0358
0.0326 0.0277 0.0342 0.0065 0.0033 0.0147 0.0130 0.0065 0.0081 0.0231
       0.0293 0.0247 0.0114 0.0660
0.0396 0.0684 0.0750 0.0926 0.0925 0.0845 0.0819 0.0649 0.0686 0.0538
0.0456 0.0410 0.0303 0.0275 0.0244 0.0190 0.0129 0.0122 0.0096 0.0107
0.0087 0.0069 0.0068 0.0037 0.0190
0.0420 0.0684 0.0790 0.0880 0.0998 0.0985 0.0832 0.0685 0.0566 0.0521
0.0346 0.0316 0.0310 0.0326 0.0277 0.0166 0.0129 0.0079 0.0120 0.0082
0,0080 0.0063 0.0055 0.0028 0.0264
0.0488 0.1431 0.0981 0.1133 0.1437 0.1018 0.0559 0.0470 0.0437 0.0578
0.0406 0.0289 0.0115 0.0155 0.0115 0.0063 0.0031 0.0044 0.0050 0.0045
0.0045 0.0008 0.0015 0.0012 0.0074
0.0320 0.0471 0.0951 0.0806 0.0929 0.1043 0.0812 0.0616 0.0642 0.0430
0.0223 0.0450 0.0279 0.0317 0.0160 0.0150 0.0132 0.0057 0.0111 0.0148
0.0105 0.0072 0.0098 0.0070 0.0608

    HDV3

0.0526 0.0568 0.1295 0.1088 0.0768 0.0866 0.0652 0.0544 0.0470 0.0498
0.0224 0.0292 0.0059 0.0206 0.0109 0.0104 0.0124 0.0047 0.0096 0.0225
0.0211 0.0132 0.0139 0.0049 0.0709
* HDV4
0.0379 0.0379 0.0730 0.0433 0.0352 0.1055 0.0595 0.0379 0.0703 0.0703
0.0270 0.0460 0.0406 0.0514 0.0433 0.0243 0.0135 0.0189 0.0270 0.0298
0.0243 0.0162 0.0081 0.0162 0.0425
0.0253 0.0505 0.1178 0.1263 0.1263 0.0926 0.0842 0.0253 0.0421 0.0505
0.0253 0.0842 0.0084 0.0505 0.0421 0.0000 0.0084 0.0000 0.0084 0.0000
0.0000 0.0084 0.0000 0.0084 0.0152
0.0302 0.0692 0.0693 0.0521 0.1250 0.0778 0.0649 0.0648 0.0908 0.0777
0.0217 \ 0.0131 \ 0.0216 \ 0.0348 \ 0.0217 \ 0.0133 \ 0.0218 \ 0.0044 \ 0.0131 \ 0.0218
0.0174 0.0088 0.0130 0.0044 0.0474
0.0000 0.0000 0.0150 0.0450 0.0674 0.0375 0.0150 0.0300 0.0375 0.0225
0.0150 0.0375 0.0075 0.0450 0.0075 0.0225 0.0450 0.0599 0.0749 0.0824
0.0749 0.0300 0.0375 0.0525 0.1382
* HDV8A
0.0294 0.0490 0.0588 0.0621 0.0817 0.0490 0.0294 0.0686 0.0621 0.0458
0.0458 0.0392 0.0359 0.0490 0.0425 0.0229 0.0098 0.0392 0.0131 0.0229
0.0229 0.0196 0.0131 0.0163 0.0719
0.0268 0.0536 0.0536 0.0625 0.0804 0.0446 0.0268 0.0714 0.0625 0.0446
0.0446 0.0445 0.0357 0.0536 0.0446 0.0268 0.0089 0.0357 0.0089 0.0179
  .0268 0,0179 0.0179 0.0179 0.0714
0.0876 0.0537 0.0407 0.0093 0.0860 0.0416 0.0644 0.0658 0.0618 0.0723
0.0604 0.0450 0.0197 0.0325 0.0241 0.0139 0.0117 0.0236 0.0415 0.0404
0.0111 0.0179 0.0089 0.0042 0.0618
0.0564 0.0312 0.0839 0.1056 0.0594 0.0545 0.0651 0.0641 0.0947 0.0426
0.0634 0.0756 0.0156 0.0208 0.0179 0.0096 0.0166 0.0096 0.0085 0.0259
0.0190 0.0216 0.0015 0.0063 0.0306
0.0473 0.1172 0.1052 0.0999 0.0784 0.0905 0.0676 0.0514 0.0455 0.0353
0.0247 0.0191 0.0206 0.0153 0.0109 0.0118 0.0100 0.0050 0.0082 0.0065
0.0071 0.0050 0.0109 0.0088 0.0981
```

Charles County, MD- 2008 Registration Data

```
* LDV
 0.0463 0.0722 0.0745 0.0774 0.0730 0.0800 0.0764 0.0666 0.0703 0.0565
 0.0478 0.0451 0.0352 0.0361 0.0269 0.0217 0.0172 0.0131 0.0105 0.0083
0.0066 0.0057 0.0047 0.0035 0.024;
 * LDT1
0.0425 0.0744 0.0600 0.0906 0.0319 0.0853 0.0794 0.0683 0.0410 0.0440
 0.0304 0.0364 0.0486 0.0167 0.0076 0.0094 0.0091 0.0137 0.0139 0.0182
0.0519 0.0258 0.0182 0.0170 0.0660
* LDT2
0.0352 0.0707 0.0732 0.0950 0.0937 0.0865 0.0840 0.0671 0.0655 0.0483
0.0490 0.0421 0.0301 0.0275 0.0278 0.0185 0.0115 0.0122 0.0089 0.0086
0.0094 0.0067 0.0058 0.0039 0.0190
0.0358 0.0671 0.0910 0.0914 0.1101 0.1024 0.0848 0.0641 0.0537 0.0571
0.0333 0.0298 0.0279 0.0301 0.0255 0.0142 0.0108 0.0064 0.0097 0.0078
  .0070 0.0050 0.0053 0.0034 0.0264
0.0443 0.1350 0.0900 0.1166 0.1502 0.1028 0.0533 0.0561 0.0530 0.0612
0.0421 0.0264 0.0119 0.0089 0.0057 0.0049 0.0019 0.0026 0.0050 0.0050
0.0083 0.0043 0.0015 0.0015 0.0074
* HDV2B
0.0309 0.0455 0.0894 0.0751 0.0978 0.0989 0.0751 0.0650 0.0556 0.0488
0.0210 0.0419 0.0306 0.0348 0.0201 0.0169 0.0128 0.0096 0.0140 0.0143
0.0121 0.0076 0.0141 0.0074 0.0608
* HDV3
0.0347 0.0569 0.1080 0.1027 0.0756 0.0921 0.0925 0.0796 0.0536 0.0469
0.0176 0.0188 0.0184 0.0177 0.0184 0.0152 0.0015 0.0036 0.0099 0.0146
0.0110 0.0120 0.0164 0.0114 0.0709
* HDV4
0.0417 0.0636 0.0894 0.0457 0.0556 0.0576 0.0715 0.0477 0.0556 0.0556
0.0258 0.0377 0.0199 0.0338 0.0656 0.0358 0.0219 0.0219 0.0258 0.0417
0.0278 0.0040 0.0040 0.0079 0.0425
0.0556 0.0556 0.1892 0.0779 0.0779 0.0779 0.0779 0.0389 0.0445 0.0779
0.0278 0.0389 0.0278 0.0334 0.0056 0.0056 0.0167 0.0167 0.0056 0.0000
0.0167 0.0167 0.0000 0.0000 0.0152
0.0080 0.0565 0.0701 0.0565 0.0778 0.0725 0.0590 0.0644 0.0804 0.0725
0.0404 0.0456 0.0431 0.0379 0.0243 0.0083 0.0189 0.0109 0.0243 0.0164
0.0135 0.0082 0.0323 0.0107 0.0474
* HDV7
0.0270 0.0270 0.0338 0.0575 0.0304 0.0372 0.0406 0.0575 0.0575 0.0270
0.0439 0.0304 0.0372 0.0642 0.0304 0.0270 0.0237 0.0304 0.0304 0.0338
0.0203 0.0541 0.0237 0.0169 0.1382
* HDV8A
0.0306 0.0881 0.0252 0.0773 0.0414 0.0791 0.0396 0.0629 0.0953 0.0540
0.0486 0.0252 0.0360 0.0414 0.0198 0.0288 0.0054 0.0198 0.0180 0.0180
0.0216 0.0252 0.0162 0.0144 0.0683
* HDV8B
0.0357\ 0.0952\ 0.0238\ 0.0833\ 0.0476\ 0.0833\ 0.0357\ 0.0595\ 0.0952\ 0.0476
0.0476 0.0238 0.0357 0.0357 0.0238 0.0238 0.0119 0.0238 0.0119 0.0119
0.0238 0.0238 0.0119 0.0119 0.0714
0.0876 0.0537 0.0407 0.0093 0.0860 0.0416 0.0644 0.0658 0.0618 0.0723
0.0604 0.0450 0.0197 0.0325 0.0241 0.0139 0.0117 0.0236 0.0415 0.0404
0.0111 0.0179 0.0089 0.0042 0.0618
0.0564 0.0312 0.0839 0.1056 0.0594 0.0545 0.0651 0.0641 0.0947 0.0426
0.0634 0.0756 0.0156 0.0208 0.0179 0.0096 0.0166 0.0096 0.0085 0.0259
0.0190 0.0216 0.0015 0.0063 0.0306
0.0495 0.1138 0.1112 0.0993 0.0769 0.0896 0.0678 0.0596 0.0460 0.0335
0.0251 0.0209 0.0181 0.0153 0.0132 0.0097 0.0091 0.0071 0.0056 0.0065
0.0039 0.0048 0.0078 0.0076 0.0981
```

District of Columbia- 2008 Registration Data

							010-5	NO. 10 10	
* LDV									
0.0392 0	.0695	0.0668	0.0653	0.0679	0.0724	0.0691	0.0718	0.0731	0.0629
0.0534 0	.0521	0.0400	0.0412	0.0313	0.0250	0.0210	0.0157	0.0143	0.0023
0.0088 0	0068	0 0047	0.0033	0.0343	0.0250	0.0210	0.0157	0.0143	0.0103
	.0000	0.0047	0.0033	0.0142					
* LDT1									
0.0460 0	.0272	0.0763	0.0590	0.0201	0.0862	0.1030	0.0888	0.0602	0.0648
0.0732 0	.0726	0.0654	0.0143	0.0091	0.0039	0.0084	0.0026	0.0026	0 0494
0.0207 0	.0138	0.0078	0.0032	0.0215					0.0131
* LDT2			7.7774	0,0213					
	0763	0.0033	0.0004	0 0000					
0.0434 0	.0763	0.0833	0.0904	0.0959	0.0787	0.0828	0.0695	0.0630	0.0553
0.0491 0	.0429	0.0335	0.0303	0.0236	0.0194	0.0115	0.0100	0.0070	0.0072
0.0072 0	.0056	0.0027	0.0024	0.0090					
* LDT3	one section — recover						01560		
0.0527 0	0673	0.0970	0 0829	0 1017	0 0056	0 0744	0 0500	0.0555	
0.0320 0	0010	0.0370	0.0025	0.1017	0.0056	0.0744	0.0623	0.0565	0.0591
0.0339 0	. U312	0.0294	0.0318	0.0273	0.0165	0.0129	0.0085	0.0128	0.0102
0.0116 0	.0074	0.0050	0.0049	0.0173					
* LDT4									
0.0537 0	.1422	0.0664	0.0793	0.1236	0.0957	0.0505	0 0606	0.0661	0.0674
0.0576 0	0444	0 0167	0 0141	0 0102	0.0056	0.0005	0.0000	0.0055	0.0074
0.0370 0	0022	0.0107	0.0141	0.0102	0.0056	0.0046	0.0042	0.0055	0.0096
0.0088 0	.0033	V-0025	0.0018	0.0055					
* HDV2B									
0.0368 0	.0621	0.0694	0.0603	0.0580	0.0628	0.0634	0.0721	0.0712	0.0617
0.0530 0	.0469	0.0320	0.0297	0.0254	0.0210	0.0131	0.0165	0 0157	0 0101
0.0226 0	0243	0.0073	0 0117	0.0451	3.0210	0.0101	0.0103	V. VI3/	0.0181
	CFaV.	0.00/3	0,011/	0.0451					
* HDV3					15				
0.0716 0	.0341	0.0585	0.0738	0.0589	0.1298	0.0595	0.0777	0.0544	0.0463
0.0598 0	.0326	0.0134	0.0211	0.0451	0.0197	0.0072	0.0129	0.0191	0.0285
0.0148 0	.0213	0.0076	0.0047	0.0276					
* HDV4									
	0147	0 2222	0.0064	0.0100	0 0005	0.0000	0.000		
0.0141 0	.0141	0.2322	0.0264	0.0T80	0.0225	0.0663	0.0619	0.1136	0.0574
0.0888 0	.0551	0.0259	0.0219	0.0365	0.0141	0.0214	0.0129	0.0219	0.0202
0.0107 0	.0090	0.0051	0.0062	0.0239			100		
* HDV5									
							100	7.7	
	.0929	0.1266	0.0816	0.1097	0.0450	0.0563	0 0291	0 0366	0 0070
0.1745 0	.0929	0.1266	0.0816	0.1097	0.0450	0.0563	0.0281	0.0366	0.0872
0.1745 0	.0084	0.0028	0.0084	0.0056	0.0450	0.0563	0.0281	0.0366	0.0872
0.1745 0 0.0028 0 0.0169 0	.0084	0.0028	0.0084	0.0056	0.0450 0.0028	0.0563	0.0281 0.0028	0.0366 0.0028	0.0872 0.0056
0.1745 0 0.0028 0 0.0169 0 * HDV6	.0084	0.0028	0.0084	0.0056	0.0028	0.0113	0.0028	0.0028	0.0056
0.1745 0 0.0028 0 0.0169 0 * HDV6	.0084	0.0028	0.0084	0.0056	0.0028	0.0113	0.0028	0.0028	0.0056
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0	.0084	0.0028 0.0225 0.0582	0.0084 0.0084 0.0371	0.0056 0.0489 0.0332	0.0028	0.0113	0.0028	0.0028	0.0056
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0 0.0386 0	.0084 .0113 .0664 .0158	0.0028 0.0225 0.0582 0.0243	0.0084 0.0084 0.0371 0.0489	0.0056 0.0489 0.0332 0.0357	0.0028	0.0113	0.0028	0.0028	0.0056
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0 0.0386 0	.0084 .0113 .0664 .0158	0.0028 0.0225 0.0582 0.0243	0.0084 0.0084 0.0371 0.0489	0.0056 0.0489 0.0332 0.0357	0.0028	0.0113	0.0028	0.0028	0.0056
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0 0.0386 0 0.0527 0	.0084 .0113 .0664 .0158 .0475	0.0028 0.0225 0.0582 0.0243 0.0076	0.0084 0.0084 0.0371 0.0489 0.0232	0.0056 0.0489 0.0332 0.0357 0.0674	0.0235 0.0374	0.0113 0.0905 0.0209	0.0028 0.0712 0.0528	0.0028 0.0455 0.0177	0.0340 0.0349
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0 0.0386 0 0.0527 0 * HDV7 0.0282 0	.0084 .0113 .0664 .0158 .0475	0.0028 0.0225 0.0582 0.0243 0.0076	0.0084 0.0084 0.0371 0.0489 0.0232	0.0056 0.0489 0.0332 0.0357 0.0674	0.0028 0.0235 0.0374 0.0628	0.0113 0.0905 0.0209	0.0028 0.0712 0.0528	0.0028 0.0455 0.0177	0.0340 0.0349 0.0188
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0 0.0386 0 0.0527 0 * HDV7 0.0282 0	.0084 .0113 .0664 .0158 .0475	0.0028 0.0225 0.0582 0.0243 0.0076	0.0084 0.0084 0.0371 0.0489 0.0232	0.0056 0.0489 0.0332 0.0357 0.0674	0.0028 0.0235 0.0374 0.0628	0.0113 0.0905 0.0209	0.0028 0.0712 0.0528	0.0028 0.0455 0.0177	0.0340 0.0349 0.0188
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0 0.0386 0 0.0527 0 * HDV7 0.0282 0 0.0220 0	.0084 .0113 .0664 .0158 .0475	0.0028 0.0225 0.0582 0.0243 0.0076 0.0282 0.0094	0.0084 0.0084 0.0371 0.0489 0.0232 0.0126 0.0847	0.0056 0.0489 0.0332 0.0357 0.0674 0.0188 0.0628	0.0028 0.0235 0.0374 0.0628	0.0113 0.0905 0.0209	0.0028 0.0712 0.0528	0.0028 0.0455 0.0177	0.0340 0.0349 0.0188
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0 0.0386 0 0.0527 0 * HDV7 0.0282 0 0.0220 0	.0084 .0113 .0664 .0158 .0475	0.0028 0.0225 0.0582 0.0243 0.0076 0.0282 0.0094	0.0084 0.0084 0.0371 0.0489 0.0232 0.0126 0.0847	0.0056 0.0489 0.0332 0.0357 0.0674 0.0188 0.0628	0.0028 0.0235 0.0374 0.0628	0.0113 0.0905 0.0209	0.0028 0.0712 0.0528	0.0028 0.0455 0.0177	0.0340 0.0349 0.0188
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0 0.0386 0 0.0527 0 * HDV7 0.0282 0 0.0220 0 0.0282 0 * HDV8A	.0084 .0113 .0664 .0158 .0475 .0377 .0094 .0659	0.0028 0.0225 0.0582 0.0243 0.0076 0.0282 0.0094 0.0157	0.0084 0.0084 0.0371 0.0489 0.0232 0.0126 0.0847 0.0157	0.0056 0.0489 0.0332 0.0357 0.0674 0.0188 0.0628 0.0522	0.0028 0.0235 0.0374 0.0628 0.0471	0.0113 0.0905 0.0209 0.0879 0.0910	0.0028 0.0712 0.0528 0.0471 0.0220	0.0028 0.0455 0.0177 0.0534 0.0471	0.0340 0.0349 0.0188 0.0314
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0 0.0386 0 0.0527 0 * HDV7 0.0282 0 0.0220 0 0.0220 0 * HDV8A 0.0431 0	.0084 .0113 .0664 .0158 .0475 .0377 .0094 .0659	0.0028 0.0225 0.0582 0.0243 0.0076 0.0282 0.0094 0.0157	0.0084 0.0084 0.0371 0.0489 0.0232 0.0126 0.0847 0.0157	0.0056 0.0489 0.0332 0.0357 0.0674 0.0188 0.0628 0.0522	0.0235 0.0374 0.0628 0.0471	0.0905 0.0209 0.0879 0.0910	0.0712 0.0528 0.0471 0.0220	0.0028 0.0455 0.0177 0.0534 0.0471	0.0340 0.0349 0.0188 0.0314
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0 0.0386 0 0.0527 0 * HDV7 0.0282 0 0.0220 0 0.0220 0 * HDV8A 0.0431 0 0.0215 0	.0084 .0113 .0664 .0158 .0475 .0377 .0094 .0659	0.0028 0.0225 0.0582 0.0243 0.0076 0.0282 0.0094 0.0157 0.0626 0.0078	0.0084 0.0084 0.0371 0.0489 0.0232 0.0126 0.0847 0.0157 0.0450 0.0196	0.0056 0.0489 0.0332 0.0357 0.0674 0.0188 0.0628 0.0522 0.0117 0.0274	0.0235 0.0374 0.0628 0.0471	0.0905 0.0209 0.0879 0.0910	0.0712 0.0528 0.0471 0.0220	0.0028 0.0455 0.0177 0.0534 0.0471	0.0340 0.0349 0.0188 0.0314
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0 0.0386 0 0.0527 0 * HDV7 0.0282 0 0.0220 0 0.0220 0 * HDV8A 0.0431 0 0.0215 0	.0084 .0113 .0664 .0158 .0475 .0377 .0094 .0659	0.0028 0.0225 0.0582 0.0243 0.0076 0.0282 0.0094 0.0157 0.0626 0.0078	0.0084 0.0084 0.0371 0.0489 0.0232 0.0126 0.0847 0.0157 0.0450 0.0196	0.0056 0.0489 0.0332 0.0357 0.0674 0.0188 0.0628 0.0522 0.0117 0.0274	0.0235 0.0374 0.0628 0.0471	0.0905 0.0209 0.0879 0.0910	0.0712 0.0528 0.0471 0.0220	0.0028 0.0455 0.0177 0.0534 0.0471	0.0340 0.0349 0.0188 0.0314
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0 0.0527 0 * HDV7 0.0282 0 0.0220 0 0.0282 0 * HDV8A 0.0431 0 0.0215 0 0.0587 0	.0084 .0113 .0664 .0158 .0475 .0377 .0094 .0659	0.0028 0.0225 0.0582 0.0243 0.0076 0.0282 0.0094 0.0157 0.0626 0.0078	0.0084 0.0084 0.0371 0.0489 0.0232 0.0126 0.0847 0.0157 0.0450 0.0196	0.0056 0.0489 0.0332 0.0357 0.0674 0.0188 0.0628 0.0522 0.0117 0.0274	0.0235 0.0374 0.0628 0.0471	0.0905 0.0209 0.0879 0.0910	0.0712 0.0528 0.0471 0.0220	0.0028 0.0455 0.0177 0.0534 0.0471	0.0340 0.0349 0.0188 0.0314
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0 0.0386 0 0.0527 0 * HDV7 0.0282 0 0.0220 0 0.0282 0 0.0282 0 0.0283 0 0.0283 0 0.0285 0 0.0285 0 0.0285 0 * HDV8B	.0084 .0113 .0664 .0158 .0475 .0377 .0094 .0659	0.0028 0.0225 0.0582 0.0243 0.0076 0.0282 0.0094 0.0157 0.0626 0.0078 0.0117	0.0084 0.0084 0.0371 0.0489 0.0232 0.0126 0.0847 0.0157 0.0450 0.0196 0.0000	0.0056 0.0489 0.0332 0.0357 0.0674 0.0188 0.0628 0.0522 0.0117 0.0274 0.0157	0.0235 0.0374 0.0628 0.0471 0.0587 0.0313	0.0905 0.0209 0.0879 0.0910 0.1037 0.0059	0.0712 0.0528 0.0471 0.0220 0.2035 0.0235	0.0028 0.0455 0.0177 0.0534 0.0471 0.0372 0.0431	0.0340 0.0349 0.0188 0.0314 0.0548 0.0000
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0 0.0386 0 0.0527 0 * HDV7 0.0282 0 0.0220 0 0.0282 0 0.0220 0 0.0283 0 0.0257 0 * HDV8B 0.0435 0	.0084 .0113 .0664 .0158 .0475 .0377 .0094 .0659	0.0028 0.0225 0.0582 0.0243 0.0076 0.0282 0.0094 0.0157 0.0626 0.0078 0.0117	0.0084 0.0084 0.0371 0.0489 0.0232 0.0126 0.0847 0.0157 0.0450 0.0196 0.0000	0.0056 0.0489 0.0332 0.0357 0.0674 0.0188 0.0628 0.0522 0.0117 0.0274 0.0157 0.0145	0.0235 0.0374 0.0628 0.0471 0.0587 0.0313	0.0905 0.0209 0.0879 0.0910 0.1037 0.0059	0.0712 0.0528 0.0471 0.0220 0.2035 0.0235	0.0028 0.0455 0.0177 0.0534 0.0471 0.0372 0.0431	0.0340 0.0349 0.0188 0.0314 0.0548 0.0000
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0 0.0386 0 0.0527 0 * HDV7 0.0282 0 0.0220 0 0.0220 0 0.0282 0	.0084 .0113 .0664 .0158 .0475 .0377 .0094 .0659 .0254 .0489 .0391	0.0028 0.0225 0.0582 0.0243 0.0076 0.0282 0.0094 0.0157 0.0626 0.0078 0.0117 0.0580 0.0000	0.0084 0.0084 0.0371 0.0489 0.0232 0.0126 0.0847 0.0157 0.0450 0.0196 0.0000 0.0435 0.0145	0.0056 0.0489 0.0332 0.0357 0.0674 0.0188 0.0628 0.0522 0.0117 0.0274 0.0157 0.0145 0.0290	0.0235 0.0374 0.0628 0.0471 0.0587 0.0313	0.0905 0.0209 0.0879 0.0910 0.1037 0.0059	0.0712 0.0528 0.0471 0.0220 0.2035 0.0235	0.0028 0.0455 0.0177 0.0534 0.0471 0.0372 0.0431	0.0340 0.0349 0.0188 0.0314 0.0548 0.0000
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0 0.0386 0 0.0527 0 * HDV7 0.0282 0 0.0220 0 0.0282 0 0.0282 0 0.0282 0 0.0282 0 0.0282 0 0.0282 0 0.0282 0 0.0282 0 0.0282 0 0.0282 0 0.0282 0 0.0282 0 0.0282 0 0.0282 0 0.0282 0 0.0282 0 0.0282 0 0.0283 0 0.0293 0 * HDV8B 0.0435 0 0.0290 0	.0084 .0113 .0664 .0158 .0475 .0377 .0094 .0659 .0254 .0489 .0391	0.0028 0.0225 0.0582 0.0243 0.0076 0.0282 0.0094 0.0157 0.0626 0.0078 0.0117 0.0580 0.0000	0.0084 0.0084 0.0371 0.0489 0.0232 0.0126 0.0847 0.0157 0.0450 0.0196 0.0000 0.0435 0.0145	0.0056 0.0489 0.0332 0.0357 0.0674 0.0188 0.0628 0.0522 0.0117 0.0274 0.0157 0.0145 0.0290	0.0235 0.0374 0.0628 0.0471 0.0587 0.0313	0.0905 0.0209 0.0879 0.0910 0.1037 0.0059	0.0712 0.0528 0.0471 0.0220 0.2035 0.0235	0.0028 0.0455 0.0177 0.0534 0.0471 0.0372 0.0431	0.0340 0.0349 0.0188 0.0314 0.0548 0.0000
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0 0.0386 0 0.0527 0 * HDV7 0.0282 0 0.0220 0 0.0220 0 0.0282 0 0.0587 0 0.0282 0 0.0282 0 0.0580 0 0.0580 0	.0084 .0113 .0664 .0158 .0475 .0377 .0094 .0659 .0254 .0489 .0391	0.0028 0.0225 0.0582 0.0243 0.0076 0.0282 0.0094 0.0157 0.0626 0.0078 0.0117 0.0580 0.0000	0.0084 0.0084 0.0371 0.0489 0.0232 0.0126 0.0847 0.0157 0.0450 0.0196 0.0000 0.0435 0.0145	0.0056 0.0489 0.0332 0.0357 0.0674 0.0188 0.0628 0.0522 0.0117 0.0274 0.0157 0.0145 0.0290	0.0235 0.0374 0.0628 0.0471 0.0587 0.0313	0.0905 0.0209 0.0879 0.0910 0.1037 0.0059	0.0712 0.0528 0.0471 0.0220 0.2035 0.0235	0.0028 0.0455 0.0177 0.0534 0.0471 0.0372 0.0431	0.0340 0.0349 0.0188 0.0314 0.0548 0.0000
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0 0.0386 0 0.0527 0 * HDV7 0.0282 0 0.0220 0 0.0282 0 * HDV8A 0.0431 0 0.0215 0 0.0587 0 * HDV8B 0.0435 0 0.0290 0 0.0290 0 0.0580 0 * HDBS	.0084 .0113 .0664 .0158 .0475 .0377 .0094 .0659 .0254 .0489 .0391	0.0028 0.0225 0.0582 0.0243 0.0076 0.0282 0.0094 0.0157 0.0626 0.0078 0.0117 0.0580 0.0000 0.0145	0.0084 0.0084 0.0371 0.0489 0.0232 0.0126 0.0847 0.0157 0.0450 0.0196 0.0000 0.0435 0.0145 0.0145	0.0056 0.0489 0.0332 0.0357 0.0674 0.0188 0.0628 0.0522 0.0117 0.0274 0.0157 0.0145 0.0290 0.0145	0.0235 0.0374 0.0628 0.0471 0.0587 0.0313 0.0580 0.0290	0.0905 0.0209 0.0879 0.0910 0.1037 0.0059	0.0712 0.0528 0.0471 0.0220 0.2035 0.0235	0.0455 0.0177 0.0534 0.0471 0.0372 0.0431 0.0435 0.0435	0.0340 0.0349 0.0188 0.0314 0.0548 0.0000 0.0580 0.0000
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0 0.0527 0 * HDV7 0.0282 0 0.0220 0 0.0282 0 0.0282 0 * HDV8A 0.0431 0 0.0587 0 * HDV8B 0.0435 0 0.0587 0 * HDV8B 0.0435 0 0.0580 0 * HDBS 0.0876 0	.0084 .0113 .0664 .0158 .0475 .0377 .0094 .0659 .0254 .0489 .0391 .0290 .0435 .0435	0.0028 0.0225 0.0582 0.0243 0.0076 0.0282 0.0094 0.0157 0.0626 0.0078 0.0117 0.0580 0.0000 0.0145 0.0407	0.0084 0.0084 0.0371 0.0489 0.0232 0.0126 0.0847 0.0157 0.0450 0.0196 0.0000 0.0435 0.0145 0.0000	0.0056 0.0489 0.0332 0.0357 0.0674 0.0188 0.0628 0.0522 0.0117 0.0274 0.0157 0.0145 0.0290 0.0145	0.0235 0.0374 0.0628 0.0471 0.0587 0.0313 0.0580 0.0290	0.0905 0.0209 0.0879 0.0910 0.1037 0.0059	0.0028 0.0712 0.0528 0.0471 0.0220 0.2035 0.0235 0.2029 0.0290	0.0028 0.0455 0.0177 0.0534 0.0471 0.0372 0.0431 0.0435 0.0435	0.0056 0.0340 0.0349 0.0188 0.0314 0.0548 0.0000 0.0580 0.0000
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0 0.0386 0 0.0527 0 * HDV7 0.0282 0 0.0220 0 0.0282 0 * HDV8A 0.0431 0 0.0215 0 0.0587 0 * HDV8B 0.0435 0 0.0290 0 0.0290 0 0.0580 0 * HDBS 0.0876 0 0.0876 0	.0084 .0113 .0664 .0158 .0475 .0377 .0094 .0659 .0254 .0489 .0391 .0290 .0435 .0435	0.0028 0.0225 0.0582 0.0243 0.0076 0.0282 0.0094 0.0157 0.0626 0.0078 0.0117 0.0580 0.0000 0.0145	0.0084 0.0084 0.0371 0.0489 0.0232 0.0126 0.0847 0.0157 0.0450 0.0196 0.0000 0.0435 0.0145 0.0000	0.0056 0.0489 0.0332 0.0357 0.0674 0.0188 0.0628 0.0522 0.0117 0.0274 0.0157 0.0145 0.0290 0.0145	0.0235 0.0374 0.0628 0.0471 0.0587 0.0313 0.0580 0.0290	0.0905 0.0209 0.0879 0.0910 0.1037 0.0059	0.0028 0.0712 0.0528 0.0471 0.0220 0.2035 0.0235 0.2029 0.0290	0.0028 0.0455 0.0177 0.0534 0.0471 0.0372 0.0431 0.0435 0.0435	0.0056 0.0340 0.0349 0.0188 0.0314 0.0548 0.0000 0.0580 0.0000
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0 0.0386 0 0.0527 0 * HDV7 0.0282 0 0.0220 0 0.0282 0 * HDV8A 0.0431 0 0.0215 0 0.0587 0 * HDV8B 0.0435 0 0.0290 0 0.0290 0 0.0580 0 * HDBS 0.0876 0 0.0876 0	.0084 .0113 .0664 .0158 .0475 .0377 .0094 .0659 .0254 .0489 .0391 .0290 .0435 .0435	0.0028 0.0225 0.0582 0.0243 0.0076 0.0282 0.0094 0.0157 0.0626 0.0078 0.0117 0.0580 0.0000 0.0145	0.0084 0.0084 0.0371 0.0489 0.0232 0.0126 0.0847 0.0157 0.0450 0.0196 0.0000 0.0435 0.0145 0.0000	0.0056 0.0489 0.0332 0.0357 0.0674 0.0188 0.0628 0.0522 0.0117 0.0274 0.0157 0.0145 0.0290 0.0145	0.0235 0.0374 0.0628 0.0471 0.0587 0.0313 0.0580 0.0290	0.0905 0.0209 0.0879 0.0910 0.1037 0.0059	0.0028 0.0712 0.0528 0.0471 0.0220 0.2035 0.0235 0.2029 0.0290	0.0028 0.0455 0.0177 0.0534 0.0471 0.0372 0.0431 0.0435 0.0435	0.0056 0.0340 0.0349 0.0188 0.0314 0.0548 0.0000 0.0580 0.0000
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0 0.0386 0 0.0527 0 * HDV7 0.0282 0 0.0220 0 0.0282 0 * HDV8A 0.0431 0 0.0215 0 0.0587 0 * HDV8B 0.0435 0 0.0290 0 0.0290 0 0.0580 0 * HDBS 0.0876 0 0.0604 0 0.0611 0	.0084 .0113 .0664 .0158 .0475 .0377 .0094 .0659 .0254 .0489 .0391 .0290 .0435 .0435	0.0028 0.0225 0.0582 0.0243 0.0076 0.0282 0.0094 0.0157 0.0626 0.0078 0.0117 0.0580 0.0000 0.0145	0.0084 0.0084 0.0371 0.0489 0.0232 0.0126 0.0847 0.0157 0.0450 0.0196 0.0000 0.0435 0.0145 0.0000	0.0056 0.0489 0.0332 0.0357 0.0674 0.0188 0.0628 0.0522 0.0117 0.0274 0.0157 0.0145 0.0290 0.0145	0.0235 0.0374 0.0628 0.0471 0.0587 0.0313 0.0580 0.0290	0.0905 0.0209 0.0879 0.0910 0.1037 0.0059	0.0028 0.0712 0.0528 0.0471 0.0220 0.2035 0.0235 0.2029 0.0290	0.0028 0.0455 0.0177 0.0534 0.0471 0.0372 0.0431 0.0435 0.0435	0.0056 0.0340 0.0349 0.0188 0.0314 0.0548 0.0000 0.0580 0.0000
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0 0.0386 0 0.0527 0 * HDV7 0.0282 0 0.0220 0 0.0228 0 * HDV8A 0.0431 0 0.0215 0 0.0587 0 * HDV8B 0.0435 0 0.0290 0 0.0290 0 0.0580 0 * HDBS 0.0876 0 0.0604 0 0.0111 0 * HDBT	.0084 .0113 .0664 .0158 .0475 .0377 .0094 .0659 .0254 .0489 .0391 .0290 .0435 .0435 .0450 .0179	0.0028 0.0225 0.0582 0.0243 0.0076 0.0282 0.0094 0.0157 0.0626 0.0078 0.0117 0.0580 0.0000 0.0145 0.0407 0.0197 0.0089	0.0084 0.0084 0.0371 0.0489 0.0232 0.0126 0.0847 0.0157 0.0450 0.0196 0.0000 0.0435 0.0145 0.0000	0.0056 0.0489 0.0332 0.0357 0.0674 0.0188 0.0628 0.0522 0.0117 0.0274 0.0157 0.0145 0.0290 0.0145 0.0860 0.0241 0.0618	0.0235 0.0374 0.0628 0.0471 0.0587 0.0313 0.0580 0.0290 0.0416 0.0139	0.0113 0.0905 0.0209 0.0879 0.0910 0.1037 0.0059 0.1014 0.0000 0.0644 0.0117	0.0028 0.0712 0.0528 0.0471 0.0220 0.2035 0.2035 0.2029 0.0290 0.0658 0.0236	0.0028 0.0455 0.0177 0.0534 0.0471 0.0372 0.0431 0.0435 0.0435 0.0415	0.0056 0.0340 0.0349 0.0188 0.0314 0.0548 0.0000 0.0580 0.0000 0.0723 0.0404
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0 0.0386 0 0.0527 0 * HDV7 0.0282 0 0.0220 0 0.0283 0 * HDV8A 0.0431 0 0.0215 0 0.0587 0 * HDV8B 0.0435 0 0.0290 0 0.0290 0 0.0280 0 * HDBS 0.0476 0 0.0676 0 0.0611 0 * HDBT 0.0564 0	.0084 .0113 .0664 .0158 .0475 .0377 .0094 .0659 .0254 .0489 .0391 .0290 .0435 .0435 .0450 .0179	0.0028 0.0225 0.0582 0.0243 0.0076 0.0282 0.0094 0.0157 0.0626 0.0078 0.0117 0.0580 0.0145 0.0407 0.0197 0.0089 0.0839	0.0084 0.0084 0.0371 0.0489 0.0232 0.0126 0.0847 0.0157 0.0450 0.0196 0.0000 0.0435 0.0145 0.0000 0.0093 0.0093 0.0325 0.0042 0.1056	0.0056 0.0489 0.0332 0.0357 0.0674 0.0188 0.0628 0.0522 0.0117 0.0274 0.0157 0.0145 0.0290 0.0145 0.0860 0.0241 0.0618	0.0235 0.0374 0.0628 0.0471 0.0587 0.0313 0.0580 0.0290 0.0416 0.0139	0.0113 0.0905 0.0209 0.0879 0.0910 0.1037 0.0059 0.1014 0.0000 0.0644 0.0117	0.0028 0.0712 0.0528 0.0471 0.0220 0.2035 0.2035 0.2029 0.0236 0.0658 0.0236	0.0028 0.0455 0.0177 0.0534 0.0471 0.0372 0.0435 0.0435 0.0435 0.0415	0.0056 0.0340 0.0349 0.0188 0.0314 0.0548 0.0000 0.0580 0.0000 0.0723 0.0404
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0 0.0386 0 0.0527 0 * HDV7 0.0282 0 0.0220 0 0.0220 0 0.0283 0 * HDV8A 0.0431 0 0.0215 0 0.0587 0 * HDV8B 0.0435 0 0.0290 0 0.0290 0 0.0580 0 * HDBS 0.0436 0 0.0587 0 * HDBS 0.0436 0 0.0587 0 * HDBS	.0084 .0113 .0664 .0158 .0475 .0377 .0094 .0659 .0254 .0489 .0391 .0290 .0435 .0435 .0435	0.0028 0.0225 0.0582 0.0243 0.0076 0.0282 0.0094 0.0157 0.0626 0.0078 0.0117 0.0580 0.0145 0.0407 0.0197 0.0089 0.0839 0.0156	0.0084 0.0084 0.0371 0.0489 0.0232 0.0126 0.0847 0.0157 0.0450 0.0196 0.0000 0.0435 0.0145 0.0000 0.0093 0.0093 0.0325 0.0042 0.1056 0.0208	0.0056 0.0489 0.0332 0.0357 0.0674 0.0188 0.0628 0.0522 0.0117 0.0274 0.0157 0.0145 0.0290 0.0145 0.0860 0.0241 0.0618 0.0594 0.0179	0.0235 0.0374 0.0628 0.0471 0.0587 0.0313 0.0580 0.0290 0.0416 0.0139	0.0113 0.0905 0.0209 0.0879 0.0910 0.1037 0.0059 0.1014 0.0000 0.0644 0.0117	0.0028 0.0712 0.0528 0.0471 0.0220 0.2035 0.2035 0.2029 0.0236 0.0658 0.0236	0.0028 0.0455 0.0177 0.0534 0.0471 0.0372 0.0435 0.0435 0.0435 0.0415	0.0056 0.0340 0.0349 0.0188 0.0314 0.0548 0.0000 0.0580 0.0000 0.0723 0.0404
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0 0.0386 0 0.0527 0 * HDV7 0.0282 0 0.0220 0 0.0220 0 0.0283 0 * HDV8A 0.0431 0 0.0215 0 0.0587 0 * HDV8B 0.0435 0 0.0290 0 0.0290 0 0.0580 0 * HDBS 0.0436 0 0.0587 0 * HDBS 0.0436 0 0.0587 0 * HDBS	.0084 .0113 .0664 .0158 .0475 .0377 .0094 .0659 .0254 .0489 .0391 .0290 .0435 .0435 .0435	0.0028 0.0225 0.0582 0.0243 0.0076 0.0282 0.0094 0.0157 0.0626 0.0078 0.0117 0.0580 0.0145 0.0407 0.0197 0.0089 0.0839 0.0156	0.0084 0.0084 0.0371 0.0489 0.0232 0.0126 0.0847 0.0157 0.0450 0.0196 0.0000 0.0435 0.0145 0.0000 0.0093 0.0093 0.0325 0.0042 0.1056	0.0056 0.0489 0.0332 0.0357 0.0674 0.0188 0.0628 0.0522 0.0117 0.0274 0.0157 0.0145 0.0290 0.0145 0.0860 0.0241 0.0618 0.0594 0.0179	0.0235 0.0374 0.0628 0.0471 0.0587 0.0313 0.0580 0.0290 0.0416 0.0139	0.0113 0.0905 0.0209 0.0879 0.0910 0.1037 0.0059 0.1014 0.0000 0.0644 0.0117	0.0028 0.0712 0.0528 0.0471 0.0220 0.2035 0.2035 0.2029 0.0236 0.0658 0.0236	0.0028 0.0455 0.0177 0.0534 0.0471 0.0372 0.0435 0.0435 0.0435 0.0415	0.0056 0.0340 0.0349 0.0188 0.0314 0.0548 0.0000 0.0580 0.0000 0.0723 0.0404
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0 0.0386 0 0.0527 0 * HDV7 0.0282 0 0.0220 0 0.0282 0 0.0228 0 0.0215 0 0.0215 0 0.0587 0 * HDV8B 0.0435 0 0.0258 0 * HDV8B 0.0435 0 0.0290 0 0.0580 0 * HDBS 0.0604 0 0.0111 0 0.0111 0 0.0111 0 0.0634 0 0.0190 0 * MC	.0084 .0113 .0664 .0158 .0475 .0377 .0094 .0659 .0254 .0489 .0391 .0290 .0435 .0435 .0435 .0435	0.0028 0.0225 0.0582 0.0243 0.0076 0.0282 0.0094 0.0157 0.0626 0.0078 0.0117 0.0580 0.0000 0.0145 0.0407 0.0197 0.0089 0.0839 0.0839 0.0156 0.0015	0.0084 0.0084 0.0371 0.0489 0.0232 0.0126 0.0847 0.0157 0.0450 0.0196 0.0000 0.0435 0.0145 0.0145 0.0000 0.0093 0.0325 0.0042 0.1056 0.0208 0.0208	0.0056 0.0489 0.0332 0.0357 0.0674 0.0188 0.0628 0.0522 0.0117 0.0274 0.0157 0.0145 0.0290 0.0145 0.0241 0.0618 0.0594 0.0594 0.0594 0.0179 0.0306	0.0235 0.0235 0.0374 0.0628 0.0471 0.0587 0.0313 0.0580 0.0290 0.0416 0.0139 0.0545 0.0096	0.0113 0.0905 0.0209 0.0879 0.0910 0.1037 0.0059 0.1014 0.0000 0.0644 0.0117 0.0651 0.0166	0.0028 0.0712 0.0528 0.0471 0.0220 0.2035 0.0235 0.2029 0.0290 0.0658 0.0236	0.0455 0.0177 0.0534 0.0471 0.0372 0.0435 0.0435 0.0435 0.0415	0.0056 0.0340 0.0349 0.0188 0.0314 0.0548 0.0000 0.0580 0.0000 0.0723 0.0404 0.0426 0.0259
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0 0.0386 0 0.0527 0 * HDV7 0.0282 0 0.0220 0 0.0220 0 0.0225 0 0.0215 0 0.0587 0 * HDV8B 0.0435 0 0.0258 0 * HDV8B 0.0435 0 0.0290 0 0.0580 0 * HDBS 0.0604 0 0.0110 0 0.0111 0 0.0634 0 0.0190 0 * MC	.0084 .0113 .0664 .0158 .0475 .0377 .0094 .0659 .0254 .0489 .0391 .0290 .0435 .0435 .0435 .0435	0.0028 0.0225 0.0582 0.0243 0.0076 0.0282 0.0094 0.0157 0.0626 0.0078 0.0117 0.0580 0.0000 0.0145 0.0407 0.0197 0.0089 0.0839 0.0839 0.0156 0.0015	0.0084 0.0084 0.0371 0.0489 0.0232 0.0126 0.0847 0.0157 0.0450 0.0196 0.0000 0.0435 0.0145 0.0145 0.0000 0.0093 0.0325 0.0042 0.1056 0.0208 0.0208	0.0056 0.0489 0.0332 0.0357 0.0674 0.0188 0.0628 0.0522 0.0117 0.0274 0.0157 0.0145 0.0290 0.0145 0.0241 0.0618 0.0594 0.0594 0.0594 0.0179 0.0306	0.0235 0.0235 0.0374 0.0628 0.0471 0.0587 0.0313 0.0580 0.0290 0.0416 0.0139 0.0545 0.0096	0.0113 0.0905 0.0209 0.0879 0.0910 0.1037 0.0059 0.1014 0.0000 0.0644 0.0117 0.0651 0.0166	0.0028 0.0712 0.0528 0.0471 0.0220 0.2035 0.0235 0.2029 0.0290 0.0658 0.0236	0.0455 0.0177 0.0534 0.0471 0.0372 0.0435 0.0435 0.0435 0.0415	0.0056 0.0340 0.0349 0.0188 0.0314 0.0548 0.0000 0.0580 0.0000 0.0723 0.0404 0.0426 0.0259
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0 0.0386 0 0.0527 0 * HDV7 0.0282 0 0.0220 0 0.0282 0 0.0220 0 0.0283 0 0.0215 0 0.0215 0 0.0587 0 * HDV8B 0.0435 0 0.0290 0 0.0580 0 * HDBS 0.0604 0 0.0111 0 * HDBT 0.0634 0 0.0190 0 * MC 0.0190 0 * MC	.0084 .0113 .0664 .0158 .0475 .0377 .0094 .0659 .0254 .0489 .0391 .0290 .0435 .0435 .0435 .0537 .0450 .0179	0.0028 0.0225 0.0582 0.0243 0.0076 0.0282 0.0094 0.0157 0.0626 0.0078 0.0117 0.0580 0.0000 0.0145 0.0407 0.0197 0.0089 0.0839 0.0156 0.0015	0.0084 0.0084 0.0371 0.0489 0.0232 0.0126 0.0847 0.0157 0.0450 0.0196 0.0000 0.0435 0.0145 0.00435 0.0042	0.0056 0.0489 0.0332 0.0357 0.0674 0.0188 0.0628 0.0522 0.0117 0.0274 0.0157 0.0145 0.0290 0.0145 0.0860 0.0241 0.0618 0.0594 0.0594 0.0594 0.0179 0.0179	0.0235 0.0235 0.0374 0.0628 0.0471 0.0587 0.0313 0.0580 0.0290 0.0416 0.0139 0.0545 0.0096	0.0113 0.0905 0.0209 0.0879 0.0910 0.1037 0.0059 0.1014 0.0000 0.0644 0.0117 0.0651 0.0166	0.0028 0.0712 0.0528 0.0471 0.0220 0.2035 0.0235 0.2029 0.0658 0.0236 0.0641 0.0096	0.0028 0.0455 0.0177 0.0534 0.0471 0.0372 0.0435 0.0435 0.0435 0.0618 0.0415 0.0947 0.0085	0.0056 0.0340 0.0349 0.0188 0.0314 0.0548 0.0000 0.0580 0.0000 0.0723 0.0404 0.0426 0.0259
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0 0.0386 0 0.0527 0 0.0282 0 0.0220 0 0.0282 0 0.0282 0 * HDV8A 0.0431 0 0.0587 0 * HDV8B 0.0435 0 0.0290 0 0.0580 0 * HDBS 0.0436 0 0.0111 0 * HDBT 0.0634 0 0.0111 0 * HDBT 0.0634 0 0.0190 0 * MC 0.0479 0 0.0479 0 0.0179 0	.0084 .0113 .0664 .0158 .0475 .0377 .0094 .0659 .0254 .0489 .0391 .0290 .0435 .0435 .0435 .0435 .0537 .0450 .0179	0.0028 0.0225 0.0582 0.0243 0.0076 0.0282 0.0094 0.0157 0.0626 0.0078 0.0117 0.0580 0.0000 0.0145 0.0407 0.0197 0.0089 0.0839 0.0156 0.0015	0.0084 0.0084 0.0371 0.0489 0.0232 0.0126 0.0847 0.0157 0.0450 0.0196 0.0000 0.0435 0.0145 0.0000 0.093 0.0325 0.0042 0.1056 0.0208 0.0208 0.0063	0.0056 0.0489 0.0332 0.0357 0.0674 0.0188 0.0628 0.0522 0.0117 0.0274 0.0157 0.0145 0.0290 0.0145 0.0860 0.0241 0.0618 0.0594 0.0179 0.0306 0.0853 0.0853	0.0235 0.0235 0.0374 0.0628 0.0471 0.0587 0.0313 0.0580 0.0290 0.0416 0.0139 0.0545 0.0096	0.0113 0.0905 0.0209 0.0879 0.0910 0.1037 0.0059 0.1014 0.0000 0.0644 0.0117 0.0651 0.0166	0.0028 0.0712 0.0528 0.0471 0.0220 0.2035 0.0235 0.2029 0.0658 0.0236 0.0641 0.0096	0.0028 0.0455 0.0177 0.0534 0.0471 0.0372 0.0435 0.0435 0.0435 0.0618 0.0415 0.0947 0.0085	0.0056 0.0340 0.0349 0.0188 0.0314 0.0548 0.0000 0.0580 0.0000 0.0723 0.0404 0.0426 0.0259
0.1745 0 0.0028 0 0.0169 0 * HDV6 0.0149 0 0.0386 0 0.0527 0 * HDV7 0.0282 0 0.0220 0 0.0282 0 0.0220 0 0.0285 0 0.0215 0 0.0215 0 0.0587 0 * HDV8B 0.0431 0 0.0587 0 * HDV8B 0.0435 0 0.0580 0 * HDBS 0.0604 0 0.0111 0 * HDBT 0.0564 0 0.0190 0 * MC 0.0190 0 * MC	.0084 .0113 .0664 .0158 .0475 .0377 .0094 .0659 .0254 .0489 .0391 .0290 .0435 .0435 .0435 .0435 .0537 .0450 .0179	0.0028 0.0225 0.0582 0.0243 0.0076 0.0282 0.0094 0.0157 0.0626 0.0078 0.0117 0.0580 0.0000 0.0145 0.0407 0.0197 0.0089 0.0839 0.0156 0.0015	0.0084 0.0084 0.0371 0.0489 0.0232 0.0126 0.0847 0.0157 0.0450 0.0196 0.0000 0.0435 0.0145 0.0000 0.093 0.0325 0.0042 0.1056 0.0208 0.0208 0.0063	0.0056 0.0489 0.0332 0.0357 0.0674 0.0188 0.0628 0.0522 0.0117 0.0274 0.0157 0.0145 0.0290 0.0145 0.0860 0.0241 0.0618 0.0594 0.0179 0.0306 0.0853 0.0853	0.0235 0.0235 0.0374 0.0628 0.0471 0.0587 0.0313 0.0580 0.0290 0.0416 0.0139 0.0545 0.0096	0.0113 0.0905 0.0209 0.0879 0.0910 0.1037 0.0059 0.1014 0.0000 0.0644 0.0117 0.0651 0.0166	0.0028 0.0712 0.0528 0.0471 0.0220 0.2035 0.0235 0.2029 0.0658 0.0236 0.0641 0.0096	0.0028 0.0455 0.0177 0.0534 0.0471 0.0372 0.0435 0.0435 0.0435 0.0618 0.0415 0.0947 0.0085	0.0056 0.0340 0.0349 0.0188 0.0314 0.0548 0.0000 0.0580 0.0000 0.0723 0.0404 0.0426 0.0259

Frederick County, MD- 2008 Registration Data

* LDV									
0.0464	0.0683	0.0744	0.0777	0.0740	0.0778	0.0795	0.0704	0.0715	0.0590
0.0492	0.0443	0.0358	0.0346	0.0257	0.0205	0.0156	0.0138	0.0108	0.0081
0.0060	0.0055	0.0040	0.0030	0 0241				0.0100	0.0001
* LDT1				V. 1 V U 1 2					
		0.0500							
0.0462	0.0676	0.0637	0.0733	0.0256	0.0816	0.0882	0.0866	0.0495	0.0422
0.0396	0.0388	0.0552	0.0157	0.0109	0.0051	0.0091	0.0074	0.0115	0.0183
0.0412	0.0308	0.0194	0.0067	0.0660		-			200100.00
* LDT2									
		0 0750	0 3055	0 0000	0.0000	0.0050	0.000		
0.0338	0.0002	0.0756	0.0955	0.0965	0.0882	0.0860	0.0707	0.0693	0.0530
		0.0285	0.0272		0.0155	0.0114	0.0103	0.0089	0.0077
0.0074	0.0057	0.0044	0.0027	0.0190			<u> </u>		700 31
* LDT3									
0.0405	0.0578	0.0793	0.0840	0.0991	0 1001	0.0845	0 0661	0.0604	0.0540
0.0361	0 0300	0 0295	0.0352	0.000	0.1166	0.0035	0.0001	0.0001	0.0343
	0.0309	0.0295	0.0352	0.0275	0.0166	0.0135	0.0077	0.0091	0.0102
0.0087		0.0085	0.0044	0.0264					
* LDT4		E3 -33999				3000	***************************************		
0.0442	0.1264	0.0839	0.1140	0.1429	0.0926	0.0623	0.0536	0.0472	0.0681
0.0379	0.0352	0.0115	0.0102	0.0109	0.0064	0.0050	0.0000	0.0000	0.0001
					0.0004	0.0058	0.0027	0.0069	0.0081
		0.0011	0.0010	0.0074			- 24 - 52		
* HDV2									
0.0267	0.0441	0.0768	0.0742	0.1017	0.0938	0.0758	0.0754	0.0613	0.0557
0.0243	0.0526	0.0315	0.0336	0.0178	0.0141	0.0102	0.0075	0.0126	0.0152
0.0092	0 0072	0.0102	0.0079	0 0500	2.4414	3.0102	3.0013	3.0140	0.0132
		0.0102	4.0073	0.0008			7		
* HDV3									
0.0588	0.0614	0.1241	0.1098	0.0746	0.0721	0.0693	0.0584	0.0552	0.0491
0.0135	0.0295	0.0190	0.0256	0.0139	0.0125	0.0087	0.0091	0.0121	0.0109
			0.0076						
* HDV4				2.0.07					
		0 0000	0.0000	0.000	0.0555	0.000			
0.0291	0.0381	0.0762	0.0672	0.0632	0.0602	0.0632	0.0732	0.0712	0.0722
0.0341	0.0501	0.0341	0.0361	0.0461	0.0221	0.0211	0.0201	0.0150	0.0291
0.0180	0.0080	0.0050	0.0050	0.0425					
* HDV5									
	0 0797	2 1200	0.1053	0 0011	0.0000	0.0770	0 0500	0.0710	0 0022
0.0313	0.0757	0.1309	0.1053	0.0911	0.0882	0.0712	0.0598	0.0/12	0.0911
			0.0370	0.0171	0.0114	0.0028	0.0028	0.0085	0.0057
0.0000	0.0028	0.0000	0.0028	0.0152	112	COS.			
* HDV6	Tomas volume and an arrange								
		0 0797	0.0721	0.0734	0.0436	0.0621	0 0650	0 0033	0 0746
0.0546	0.0301	0.0757	0.0722	0.0754	0.0430	0.0021	0.0038	0.0632	0.0746
			0.0523		0.0213	0.0089	0.0137	0.0126	0.0100
	0.0139	0.0087	0.0063	0.0474		200	****	17130	
* HDV7		23-22							
0.0234	0.0371	0.0234	0.0567	0.0293	0.0430	0.0215	0.0293	0.0547	0 0313
0.0293	0 0313	0.0176	0.0391	0 0313	0 0215	0.0313	0.0460	0.0400	0.0000
		0.0170	0.0351	0.0313	0.0213	0.0373	0.0469	0.0489	0.0293
	0.0528	U.U469	0.0352	U.1382					
* HDV8									
0.0217	0.0462	0.0774	0.0943	0.0491	0.0462	0.0283	0.0481	0.0689	0.0745
0.0302	0.0358	0.0396	0.0481	0.0292	0.0226	0.0151	0.0113	0.0217	0.0170
0.0340	0.0203	0.0151	0.0142	0.0021	3.0440	J. UAUA	J. U.L.L.J	J, U41	0.01/0
		TLIVIL	J. U.142	0.0021					
* HDV8									
0.0223	0.0446	0.0764	0.0955	0.0478	0.0446	0.0287	0.0478	0.0701	0.0732
0.0318	0.0350	0.0382	0.0478	0.0287	0.0223	0.0159	0.0127	0.0223	0.0159
			0.0159						
* HDBS									
	0.0555	A A							
	0.0537	0.0407	0.0093	0.0860	0.0416	0.0644	0.0658	0.0618	0.0723
0.0604	0.0450	0.0197	0.0325	0.0241	0.0139	0.0117	0.0236	0.0415	0.0404
0.0111			0.0042						
* HDBT					0 05-5	0 0555	0.05.5	0.00:5	
* HDBT	0.0310	0 0000			O DEAR	D DEET	0.0641	0 0047	0 0424
0.0564	0.0312	0.0839	0.1056	0.0594	0.0345	0.0651	0.0012	0.0347	0.0420
0.0564	0.0756	0.0156	0.0208	0.0594	0.0096	0.0166	0.0096	0.0085	0.0259
0.0564	0.0756	0.0156	0.0208	0.0594	0.0096	0.0166	0.0096	0.0085	0.0259
0.0564 0.0634 0.0190	0.0756	0.0839 0.0156 0.0015	0.0208	0.0179	0.0096	0.0166	0.0096	0.0085	0.0259
0.0564 0.0634 0.0190 * MC	0.0756	0.0156	0.0208	0.0179	0.0096	0.0166	0.0096	0.0085	0.0259
0.0564 0.0634 0.0190 * MC 0.0497	0.0756 0.0216 0.1040	0.0156 0.0015 0.1084	0.0208 0.0063 0.0973	0.0179 0.0306 0.0731	0.0096	0.0166	0.0096	0.0085	0.0259
0.0564 0.0634 0.0190 * MC 0.0497 0.0292	0.0756 0.0216 0.1040 0.0191	0.0156 0.0015 0.1084	0.0208	0.0179 0.0306 0.0731	0.0096	0.0166	0.0096	0.0085	0.0259
0.0564 0.0634 0.0190 * MC 0.0497	0.0756 0.0216 0.1040 0.0191	0.0156 0.0015 0.1084 0.0216	0.0208 0.0063 0.0973	0.0179 0.0306 0.0731 0.0127	0.0096	0.0166	0.0096	0.0085	0.0259

Fairfax County, VA- 2008 Registration Data

```
0.0499 0.0776 0.0744 0.0721 0.0723 0.0770 0.0737 0.0699 0.0728 0.0607
0.0518 0.0454 0.0358 0.0355 0.0274 0.0213 0.0167 0.0132 0.0108 0.0077
0.0053 0.0042 0.0031 0.0024 0.0189
* LDT
0.0357 0.0854 0.0583 0.0593 0.0230 0.0996 0.1231 0.0951 0.0555 0.0633
0.0550 0.0640 0.0519 0.0091 0.0075 0.0075 0.0069 0.0080 0.0048 0.0089
0.0134 0.0116 0.0094 0.0035 0.0403
0.0494 0.0824 0.0886 0.0967 0.1041 0.0861 0.0835 0.0719 0.0689 0.0530
0.0467 0.0380 0.0278 0.0245 0.0193 0.0131 0.0081 0.0075 0.0049 0.0044
0.0034 0.0026 0.0020 0.0012 0.0120
0.0635 0.0789 0.1102 0.0936 0.1095 0.0966 0.0796 0.0684 0.0620 0.0514
0.0296 0.0253 0.0211 0.0237 0.0188 0.0098 0.0069 0.0053 0.0068 0.0070
0.0056 0.0037 0.0030 0.0019 0.0176
0.0553 0.1456 0.0862 0.1128 0.1332 0.1003 0.0547 0.0577 0.0530 0.0671
0.0416 0.0321 0.0130 0.0098 0.0099 0.0051 0.0018 0.0016 0.0031 0.0037
  0041 0.0018 0.0007 0.0008 0.0048
0.0316 0.0527 0.0903 0.0757 0.1019 0.1013 0.0762 0.0740 0.0656 0.0569
0.0266 0.0396 0.0262 0.0335 0.0203 0.0131 0.0107 0.0066 0.0101 0.0104
0.0086 0.0055 0.0070 0.0056 0.0500
* HDV3
0.0444 0.0502 0.1242 0.1006 0.0844 0.0754 0.0632 0.0651 0.0656 0.0550
0.0282 0.0333 0.0159 0.0265 0.0219 0.0116 0.0081 0.0069 0.0128 0.0122
0.0190 0.0127 0.0081 0.0061 0.0487
0.0237 0.0608 0.0773 0.0762 0.0691 0.0638 0.0758 0.0608 0.0845 0.0848
0.0285 0.0777 0.0267 0.0372 0.0357 0.0165 0.0161 0.0135 0.0109 0.0139
0.0101 0.0064 0.0049 0.0038 0.0213
0.0432 0.0833 0.1160 0.0917 0.1023 0.0949 0.0738 0.0569 0.0960 0.0833
0.0148 0.0390 0.0169 0.0285 0.0127 0.0032 0.0042 0.0042 0.0063 0.0032
0.0084 0.0042 0.0021 0.0011 0.0098
0.0213 0.0977 0.0786 0.0816 0.0852 0.0353 0.0523 0.0732 0.0764 0.0628
0.0425 0.0452 0.0248 0.0692 0.0144 0.0145 0.0105 0.0081 0.0152 0.0115
0.0097 0.0090 0.0067 0.0101 0.0441
0.0151 0.0429 0.0324 0.0498 0.0510 0.0266 0.0348 0.0718 0.0765 0.0533
0.0487 0.0197 0.0266 0.0440 0.0336 0.0185 0.0290 0.0127 0.0452 0.0336
0.0359 0.0382 0.0209 0.0185 0.1208
* HDV8A
0.0201 0.0726 0.0659 0.0944 0.0815 0.0648 0.0430 0.0787 0.0921 0.0475
0.0480 0.0436 0.0352 0.0324 0.0296 0.0179 0.0117 0.0151 0.0128 0.0140
0.0145 0.0084 0.0089 0.0028 0.0447
* HDV8B
0.0193 0.0740 0.0675 0.0932 0.0804 0.0643 0.0418 0.0804 0.0932 0.0482
0.0482 0.0418 0.0354 0.0322 0.0289 0.0161 0.0129 0.0161 0.0129 0.0129
0.0129 0.0096 0.0096 0.0032 0.0450
0.0876 0.0537 0.0407 0.0093 0.0860 0.0416 0.0644 0.0658 0.0618 0.0723
0.0604 0.0450 0.0197 0.0325 0.0241 0.0139 0.0117 0.0236 0.0415 0.0404
0.0111 0.0179 0.0089 0.0042 0.0618
0.0564 0.0312 0.0839 0.1056 0.0594 0.0545 0.0651 0.0641 0.0947 0.0426
0.0634 0.0756 0.0156 0.0208 0.0179 0.0096 0.0166 0.0096 0.0085 0.0259
0.0190 0.0216 0.0015 0.0063 0.0306
* MC
0.0452 0.1023 0.1040 0.0971 0.0780 0.0953 0.0727 0.0617 0.0550 0.0383
0.0287 0.0214 0.0215 0.0171 0.0150 0.0128 0.0098 0.0066 0.0061 0.0054
0.0050 0.0054 0.0089 0.0088 0.0779
```

Loudoun County, VA- 2008 Registration Data

```
* LDV
0.0581 0.0808 0.0796 0.0797 0.0781 0.0791 0.0756 0.0706 0.0716 0.0596
0.0486 0.0414 0.0327 0.0316 0.0240 0.0186 0.0143 0.0108 0.0088 0.0056
0.0040 0.0034 0.0026 0.0018 0.0189
0.0406 0.0901 0.0736 0.0840 0.0317 0.0977 0.1097 0.0824 0.0514 0.0590
0.0438 0.0425 0.0520 0.0089 0.0082 0.0051 0.0095 0.0108 0.0089 0.0120
0.0141 0.0146 0.0054 0.0038 0.0403
0.0490 0.0871 0.0929 0.1090 0.1100 0.0886 0.0860 0.0726 0.0660 0.0482
0.0417 0.0352 0.0245 0.0192 0.0170 0.0105 0.0068 0.0063 0.0040 0.0042
0.0033 0.0027 0.0018 0.0013 0.0120
0.0614 0.0814 0.1124 0.1060 0.1237 0.1032 0.0795 0.0668 0.0568 0.0460
0.0264 0.0206 0.0185 0.0204 0.0151 0.0099 0.0067 0.0032 0.0058 0.0055
0.0044 0.0033 0.0033 0.0019 0.0176
* LDT4
0.0564 0.1720 0.0817 0.1237 0.1514 0.1078 0.0579 0.0526 0.0427 0.0486
0.0328 0.0232 0.0081 0.0088 0.0088 0.0042 0.0029 0.0007 0.0028 0.0020
0.0035 0.0017 0.0003 0.0007 0.0048
* HDV2B
0.0325 0.0499 0.0869 0.0771 0.1000 0.0990 0.0731 0.0769 0.0798 0.0534
0.0218 0.0431 0.0316 0.0296 0.0193 0.0143 0.0091 0.0059 0.0082 0.0119
0.0062 0.0056 0.0074 0.0074 0.0500
0.0488 0.0540 0.1275 0.1196 0.0930 0.0721 0.0617 0.0663 0.0632 0.0634
0.0177 0.0305 0.0200 0.0182 0.0178 0.0107 0.0073 0.0061 0.0069 0.0142
0.0135 0.0106 0.0056 0.0028 0.0487
0.0397 0.0659 0.1047 0.0605 0.0831 0.0686 0.0596 0.0524 0.0876 0.0921
0.0244 0.0722 0.0289 0.0334 0.0370 0.0117 0.0108 0.0108 0.0090 0.0099
0.0108 0.0036 0.0018 0.0000 0.0213
0.0497 0.0644 0.1693 0.1141 0.1307 0.0939 0.0718 0.0626 0.0644 0.0736
0.0074 0.0129 0.0000 0.0147 0.0129 0.0129 0.0037 0.0018 0.0110 0.0018
0.0055 0.0074 0.0018 0.0018 0.0098
0.0277 0.0868 0.0649 0.1084 0.0926 0.0358 0.0489 0.0640 0.0940 0.0565
0.0560 0.0372 0.0282 0.0441 0.0148 0.0199 0.0145 0.0073 0.0145 0.0108
0.0134 0.0039 0.0073 0.0046 0.0441
0.0221 0.0258 0.0331 0.0497 0.0478 0.0294 0.0166 0.0533 0.0920 0.0515
0.0533 0.0478 0.0294 0.0405 0.0497 0.0239 0.0313 0.0184 0.0349 0.0129
0.0441 0.0386 0.0166 0.0166 0.1208
0.0161 0.1001 0.0784 0.0784 0.0557 0.0642 0.0491 0.0746 0.0689 0.0548
0.0453 0.0415 0.0189 0.0463 0.0434 0.0198 0.0085 0.0066 0.0161 0.0189
0.0198 0.0094 0.0170 0.0057 0.0425
* HDV8B
0.0180 0.1007 0.0791 0.0791 0.0540 0.0647 0.0504 0.0719 0.0683 0.0540
0.0468 0.0432 0.0180 0.0468 0.0432 0.0180 0.0072 0.0072 0.0144 0.0180
0.0180 0.0108 0.0180 0.0072 0.0432
* HDBS
0.0876 0.0537 0.0407 0.0093 0.0860 0.0416 0.0644 0.0658 0.0618 0.0723
0.0604 0.0450 0.0197 0.0325 0.0241 0.0139 0.0117 0.0236 0.0415 0.0404
0.0111 0.0179 0.0089 0.0042 0.0618
0.0564 0.0312 0.0839 0.1056 0.0594 0.0545 0.0651 0.0641 0.0947 0.0426
0.0634 0.0756 0.0156 0.0208 0.0179 0.0096 0.0166 0.0096 0.0085 0.0259
0.0190 0.0216 0.0015 0.0063 0.0306
0.0472 0.1071 0.1076 0.0983 0.0710 0.0995 0.0742 0.0606 0.0469 0.0388
0.0255 0.0240 0.0226 0.0185 0.0139 0.0122 0.0093 0.0065 0.0079 0.0076
0.0041 0.0041 0.0063 0.0085 0.0779
```

Montgomery County, MD- 2008 Registration Data

* LDV		mu w moon						
0.0646 0.0753	0.0684	0 0702	0 0700	0 0760	0.0764	0 0707	0 0774	0.0506
0.0040 0.0755	0.0004	0.0702	0.0703	0.0768	0.0754	0.0702	0.0714	0.0596
0.0514 0.0455	0.0360	0.0358	0.0264	0.0196	0.0154	0.0117	0.0100	0.0066
0.0050 0.0043	0.0030	0.0023	0.0241					
* LDT1		200						
	0 0500	0.0550						
0.0434 0.0716	0.0603	0.0529	0.0193	0.1035	0.1246	0.1091	0.0563	0.0621
0.0527 0.0625	0.0496	0.0090	0.0054	0.0042	0.0092	0.0052	0.0054	0 0044
0.0080 0.0077	0.0060	0 0016	0.0660					0.0011
	0.0000	0.0010	0.0000					
* LDT2								
0.0650 0.0857	0.0862	0.0953	0.1028	0.0861	0.0841	0.0712	0.0674	0.0516
0.0440 0.0355	0.0266	0.0231	0 0168	0.0117	0 0066	0.0057	0.0040	0.0021
0 0000 0 0000	0.0010	0.0232	0.0100	0.0117	0.0000	0.0057	0.0042	0.0031
0.0030 0.0024	0.0017	0.0010	0.0190					
* LDT3					0.00			
0.0941 0.0743	0.0985	0.0867	0 1075	0 0021	0 0014	0 0606	0 0506	0.0515
0 0277 0 0243	0.0005	0.0007	0.1075	0.0331	0.0014	0.0005	0.0596	0.0515
0.0277 0.0243	0.0205	0.0214	0.0179	0.0094	0.0068	0.0050	0.0065	0.0060
0.0045 0.0036	0.0029	0.0016	0.0264					
* LDT4								
	0.0000	0.1000						
0.0650 0.1398	0.0837	0.1020	0.1293	0.0980	0.0608	0.0611	0.0515	0.0664
0.0386 0.0333	0.0131	0.0125	0.0098	0.0046	0.0032	0.0020	0.0049	0.0038
0.0052 0.0023	0.0011	0 0006	0 0074				7.0017	2.0030
	0.0011	0.0000	V. 0014			- 2		
* HDV2B		- 10						
0.0485 0.0596	0.0958	0.0799	0.0916	0.0935	0.0766	0.0755	0.0674	0.0527
0.0262 0.0383	0 0266	0 0294	0 0150	0.0110	0.0000	0 0000	0.0074	0.0000
0.0202 0.0303	0.0200	0.0264	0.0120	0.0112	0.0080	0.0065	0.0080	0.0088
0.0063 0.0045	0.0055	0.0044	0.0608	3. 11. 69. 75.				
* HDV3		iis e	ver en en en					
0.0386 0.0579	2 1100	0 0000	0 0015	0 0716	0 0000	0 0000	0.055	0.055
V.V300 V.V3/3	V. 1170	0.0996	0.0815	0.0716	0.0727	0.0626	0.0574	0.0637
0.0206 0.0263	0.0162	0.0293	0.0182	0.0144	0.0069	0.0091	0.0138	0.0095
0.0126 0.0087	0.0125	0.0056	0.0709					
* HDV4					-			
0.0370 0.0441	0.0957	0.0542	0.0714	0.0644	0.0683	0.0741	0.0793	0.0723
0.0309 0.0688	0.0216	0.0397	0.0384	0.0176	0.0119	0.0119	0.0194	0.0132
0.0115 0.0053	2 0025	0.0040	0 0475	0.02.0	4.0112	0.0117	0.0104	0.0132
	3.0026	0.0040	0.0425					
* HDV5								
0.0679 0.0761	0.1077	0.1288	0.1382	0.1077	0.0761	0.0515	0.0550	0.0621
0.0199 0.0211	0.0117	0.0120	0 0347	0.2305	0.0702	0.0013	0.0000	0.0021
0.0199 0.0211	J.ULL!	0.0129	0.0141	0.0105	0.0059	0.0047	0.0047	0.0023
0.0023 0.0035	0.0000	0.0000	0.0152			****		
* HDV6					-77	6 60 60	00 000000	
0.0202 0.1068	0.0672	0 0050	0 0030	0.0460	0.000	0 0000	0 5000	0.000
0.0202 0.1066	0.0072	0.0000	0.0030	0.0462	0.0604	0.0686	0.0760	0.0698
0.0479 0.0530	0.0247	0.0354	0.0134	0.0216	0.0108	0.0089	0.0183	0.0095
0.0082 0.0095	0.0032	0.0038	0.0474					
* HDV7								
0.0393 0.0328	0.0508	0.0524	0.0393	0.0311	0.0229	0.0590	0.0508	0.0475
0.0393 0.0393	0.0377	0.0311	0.0131	0.0295	0.0344	0.0279	0.0524	0 0279
0.0377 0.0279	0.0197	0.0100	0 1202		5.5511	2.32/3	3.0027	0.02/3
	0.0197	0.0100	U.1362					
* HDV8A	20 000	6000 F2	100000		100			
0.0376 0.0716	0.0615	0.0781	0.0701	0.0441	0.0542	0.0463	0.0875	0.0557
0 0499 0 0343	0 0275	0.0204	0 0000	0 0015	0.0302	0.0103	0.0073	0.0001
0.0499 0.0347				0.0217	0.0123	0.0275	0.0181	0.0210
0.0130 0.0217	0.0123	0.0116	0.0716			1000000	2000	
* HDV8B								
	0.0600	0 0777	0.0001	0 0445	0 0555	0.0455		0.05-0
0.0387 0.0718	0.0008	0.0773	0.0691	0.0442	0.0552	0.0470	0.0884	0.0552
0.0497 0.0359	0.0276	0.0304	0.0193	0.0221	0.0110	0.0276	0.0166	0.0221
0.0138 0.0221								
* HDBS								
0.0876 0.0537	0.0407	0.0093	0.0860	0.0416	0.0644	0.0658	0.0618	0.0723
0.0604 0.0450	0.0197	0.0325	0.0241	0.0139	0.0117	0.0236	0 0416	0 0404
0.0111 0.0179	0.0000	0 0040	0 0035	0103	/	0.0230	0.0413	0.0404
	0.0089	0.0042	0.0618					22.0
* HDBT			neeseways ye					
0.0564 0.0312	0.0839	0.7056	0.0594	0 0545	0 0657	0.0643	0 0047	0.0426
0.0001 0.0012	0.0033	0.2036	0.005%	0.0345	A.002T	0.0041	0.094/	0.0426
0.0634 0.0756	V.U156	0.0208	U.0179	0.0096	0.0166	0.0096	0.0085	0.0259
0.0190 0.0216	0.0015	0.0063	0.0306					
* MC								
0.0429 0.1078	0.1038	0.0971	0.0725	0.0888	0.0652	0.0601	0.0453	0.0326
0.0293 0.0206	0.0196	0.0176	0.0147	0.0138	0.0111	0.0083	0.0069	0.0074
0 0004 0 0003	0.0101	0.0702	0 0001			2,0003	0.0000	0.00/4
0.0084 0.0081	OFOTOT	0.0102	0.0981					

Prince George's County, MD- 2008 Registration Data

* LDV
0.0363 0.0609 0.0652 0.0683 0.0661 0.0727 0.0715 0.0664 0.0733 0.0605
0.0543 0.0514 0.0431 0.0441 0.0348 0.0270 0.0209 0.0158 0.0135 0.0094
0.0071 0.0057 0.0043 0.0032 0.0241
* LDT1
0.0257 0.0559 0.0427 0.0518 0.0230 0.0907 0.1057 0.1137 0.0512 0.0575
0.0490 0.0575 0.0640 0.0160 0.0070 0.0102 0.0083 0.0106 0.0075 0.0186
0.0263 0.0155 0.0173 0.0081 0.0660
* LDT2
0.0330 0.0615 0.0697 0.0856 0.0915 0.0802 0.0819 0.0707 0.0723 0.0585
0.0547 0.0483 0.0383 0.0340 0.0282 0.0182 0.0120 0.0104 0.0080 0.0069
0.0064 0.0048 0.0039 0.0021 0.0190
* LDT3
0.0349 0.0572 0.0853 0.0836 0.1073 0.0979 0.0870 0.0662 0.0651 0.0641
0.0359 0.0318 0.0279 0.0303 0.0247 0.0161 0.0107 0.0078 0.0108 0.0086
0.0068 0.0055 0.0047 0.0034 0.0264
* LDT4
0.0454 0.1278 0.0760 0.0936 0.1278 0.1029 0.0540 0.0672 0.0640 0.0719
0.0584 0.0408 0.0135 0.0103 0.0098 0.0065 0.0023 0.0022 0.0036 0.0046
0.0055 0.0028 0.0010 0.0007 0.0074
* HDV2B
0.0397 0.0494 0.0999 0.0680 0.0777 0.0863 0.0640 0.0699 0.0724 0.0495
0.0307 0.0461 0.0295 0.0349 0.0213 0.0141 0.0118 0.0084 0.0110 0.0127
0.0126 0.0083 0.0104 0.0104 0.0608
* HDV3
0.0550 0.0502 0.1228 0.0835 0.0705 0.0651 0.0604 0.0583 0.0615 0.0633
0.0275 0.0323 0.0155 0.0272 0.0235 0.0089 0.0089 0.0073 0.0131 0.0130
0.0179 0.0203 0.0118 0.0111 0.0709
* HDV4
0.0378 0.0703 0.0789 0.0546 0.0506 0.0687 0.0506 0.0595 0.0891 0.0841
0.0325 0.0516 0.0276 0.0365 0.0509 0.0171 0.0164 0.0125 0.0174 0.0174
0.0171 0.0062 0.0039 0.0059 0.0425
* HDV5
0.0473 0.0946 0.1164 0.0880 0.1230 0.0861 0.0473 0.0549 0.0634 0.0643
0.0161 0.0710 0.0359 0.0237 0.0170 0.0076 0.0085 0.0019 0.0028 0.0057
0.0019 0.0028 0.0019 0.0028 0.0152
* HDV6
0.0426 0.1203 0.1095 0.1059 0.0599 0.0489 0.0537 0.0514 0.0620 0.0520
0.0447 0.0379 0.0299 0.0457 0.0131 0.0144 0.0000 0.0114 0.0620 0.0520
0.0447 0.0379 0.0299 0.0457 0.0131 0.0144 0.0099 0.0114 0.0115 0.0054
0.0051 0.0063 0.0065 0.0046 0.0474
* HDV7
0.0318 0.0457 0.0498 0.0579 0.0318 0.0416 0.0433 0.0465 0.0579 0.0612
0.0433 0.0277 0.0228 0.0433 0.0212 0.0253 0.0188 0.0367 0.0481 0.0269
0.0318 0.0245 0.0106 0.0131 0.1382
* HDV8A
0.0500 0.0741 0.0887 0.0949 0.0470 0.0587 0.0441 0.0649 0.0587 0.0545
0.0516 0.0250 0.0304 0.0354 0.0221 0.0137 0.0125 0.0121 0.0175 0.0200
0.0170.0.0174.0.0070.0.0070.0.007
* HDV8B
0.0508 0.0733 0.0883 0.0959 0.0470 0.0583 0.0451 0.0658 0.0583 0.0545
0.0508 0.0244 0.0301 0.0357 0.0226 0.0132 0.0132 0.0132 0.0169 0.0207
0.0150 0.0150 0.0075 0.0075 0.0771
* HDBS
0.0876 0.0537 0.0407 0.0093 0.0860 0.0416 0.0644 0.0658 0.0618 0.0723
0.0604 0.0450 0.0197 0.0325 0.0241 0.0139 0.0117 0.0236 0.0415 0.0404
0.0111 0.0179 0.0089 0.0042 0.0618
* HDBT
0.0564 0.0312 0.0839 0.1056 0.0594 0.0545 0.0651 0.0641 0.0947 0.0426
0.0634 0.0756 0.0156 0.0208 0.0179 0.0096 0.0166 0.0096 0.0085 0.0259
0.0190 0.0216 0.0015 0.0063 0.0306
* MC
0.0453 0.1243 0.1154 0.0976 0.0734 0.0864 0.0691 0.0628 0.0476 0.0346
0.0210 0.0183 0.0186 0.0173 0.0113 0.0085 0.0092 0.0060 0.0058 0.0052
0.0048 0.0047 0.0085 0.0062 0.0981

Prince William County, VA- 2008 Registration Data

* LDV	
0.0485 0.0754 0.0752 0.0782 0.0734 0.0765 0.0697 0.0648	0 0690 0 0567
0.0507 0.0461 0.0380 0.0370 0.0297 0.0236 0.0185 0.0149	0.0000 0.0000
0.0055 0.0045 0.0032 0.0024 0.0189	0.0118 0.0078
* LDT1	
0.0486 0.0967 0.0680 0.0753 0.0224 0.0899 0.0937 0.0760	0.0541 0.0515
0.0372 0.0456 0.0532 0.0119 0.0084 0.0106 0.0097 0.0080	0.0101 0.0186
0.0253 0.0249 0.0154 0.0044 0.0403	
* LDT2	
0.0380 0.0754 0.0836 0.0963 0.0992 0.0847 0.0823 0.0673	0.0000 0.0000
0.0493 0.0423 0.0312 0.0296 0.0243 0.0166 0.0103 0.0093	0.0689 0.0522
	0.0071 0.0065
0.0050 0.0038 0.0028 0.0018 0.0120	- A
* LDT3	
0.0398 0.0692 0.0968 0.0980 0.1142 0.1022 0.0879 0.0675	0.0639 0.0573
0.0318 0.0266 0.0250 0.0259 0.0197 0.0123 0.0102 0.0051	0 0072 0 0067
0.0056 0.0045 0.0027 0.0023 0.0176	0.0072 0.0007
* LDT4	
0.0403 0.1263 0.0946 0.1283 0.1487 0.1001 0.0571 0.0557	0.0505 0.0688
0.0432 0.0317 0.0118 0.0090 0.0083 0.0039 0.0025 0.0013	0.0032 0.0034
0.0040 0.0018 0.0005 0.0003 0.0048	
* HDV2B	
0.0198 0.0402 0.0857 0.0794 0.1047 0.0977 0.0744 0.0794	0 0736 0 0606
0.0301 0.0432 0.0273 0.0281 0.0223 0.0131 0.0096 0.0060	
	0.0089 0.0127
0.0094 0.0076 0.0085 0.0076 0.0500	
* HDV3	
0.0380 0.0468 0.1215 0.1343 0.0885 0.0774 0.0684 0.0690	0.0607 0.0659
0.0191 0.0245 0.0134 0.0230 0.0162 0.0096 0.0085 0.0040	0.0110 0.0076
0.0170 0.0101 0.0093 0.0074 0.0487	
* HDV4	
	A 4888
0.0295 0.0403 0.0869 0.0915 0.0729 0.0636 0.0558 0.0574	0.0737 0.0861
0.0326 0.0512 0.0279 0.0372 0.0458 0.0209 0.0163 0.0093	0.0240 0.0302
0.0202 0.0016 0.0008 0.0031 0.0213	
* HDV5	
	0.0789 0.0957
0.0269 0.0688 0.1225 0.0890 0.1427 0.0940 0.0587 0.0688	
0.0269 0.0688 0.1225 0.0890 0.1427 0.0940 0.0587 0.0688 0.0050 0.0504 0.0168 0.0101 0.0084 0.0101 0.0067 0.0000	
0.0269 0.0688 0.1225 0.0890 0.1427 0.0940 0.0587 0.0688 0.0050 0.0504 0.0168 0.0101 0.0084 0.0101 0.0067 0.0000 0.0034 0.0067 0.0000 0.0000 0.0098	
0.0269 0.0688 0.1225 0.0890 0.1427 0.0940 0.0587 0.0688 0.0050 0.0504 0.0168 0.0101 0.0084 0.0101 0.0067 0.0000 0.0034 0.0067 0.0000 0.0000 0.0098 * HDV6	0.0134 0.0134
0.0269 0.0688 0.1225 0.0890 0.1427 0.0940 0.0587 0.0688 0.0050 0.0504 0.0168 0.0101 0.0084 0.0101 0.0067 0.0000 0.0034 0.0067 0.0000 0.0000 0.0098 * HDV6	0.0134 0.0134
0.0269 0.0688 0.1225 0.0890 0.1427 0.0940 0.0587 0.0688 0.0050 0.0504 0.0168 0.0101 0.0084 0.0101 0.0067 0.0000 0.0034 0.0067 0.0000 0.0000 0.0098 * HDV6 0.0284 0.0766 0.1006 0.1021 0.0993 0.0538 0.0637 0.0566	0.0134 0.0134
0.0269 0.0688 0.1225 0.0890 0.1427 0.0940 0.0587 0.0688 0.0050 0.0504 0.0168 0.0101 0.0084 0.0101 0.0067 0.0000 0.0034 0.0067 0.0000 0.0000 0.0098 * HDV6 0.0284 0.0766 0.1006 0.1021 0.0993 0.0538 0.0637 0.0566 0.0393 0.0229 0.0236 0.0422 0.0212 0.0159 0.0090 0.0109	0.0134 0.0134
0.0269 0.0688 0.1225 0.0890 0.1427 0.0940 0.0587 0.0688 0.0050 0.0504 0.0168 0.0101 0.0084 0.0101 0.0067 0.0000 0.0034 0.0067 0.0000 0.0000 0.0098 * HDV6 0.0284 0.0766 0.1006 0.1021 0.0993 0.0538 0.0637 0.0566 0.0393 0.0229 0.0236 0.0422 0.0212 0.0159 0.0090 0.0109 0.0020 0.0100 0.0102 0.0032 0.0441	0.0134 0.0134
0.0269 0.0688 0.1225 0.0890 0.1427 0.0940 0.0587 0.0688 0.0050 0.0504 0.0168 0.0101 0.0084 0.0101 0.0067 0.0000 0.0034 0.0067 0.0000 0.0000 0.0098 * HDV6 0.0284 0.0766 0.1006 0.1021 0.0993 0.0538 0.0637 0.0566 0.0393 0.0229 0.0236 0.0422 0.0212 0.0159 0.0090 0.0109 0.0020 0.0100 0.0102 0.0032 0.0441 * HDV7	0.0134 0.0134 0.0740 0.0659 0.0133 0.0113
0.0269 0.0688 0.1225 0.0890 0.1427 0.0940 0.0587 0.0688 0.0050 0.0504 0.0168 0.0101 0.0084 0.0101 0.0067 0.0000 0.0034 0.0067 0.0000 0.0000 0.0098 * HDV6 0.0284 0.0766 0.1006 0.1021 0.0993 0.0538 0.0637 0.0566 0.0393 0.0229 0.0236 0.0422 0.0212 0.0159 0.0090 0.0109 0.0020 0.0100 0.0102 0.0032 0.0441 * HDV7 0.0259 0.0628 0.0499 0.0813 0.0462 0.0462 0.0351 0.0425	0.0134 0.0134 0.0740 0.0659 0.0133 0.0113 0.0646 0.0536
0.0269 0.0688 0.1225 0.0890 0.1427 0.0940 0.0587 0.0688 0.0050 0.0504 0.0168 0.0101 0.0084 0.0101 0.0067 0.0000 0.0034 0.0067 0.0000 0.0000 0.0098 * HDV6 0.0284 0.0766 0.1006 0.1021 0.0993 0.0538 0.0637 0.0566 0.0393 0.0229 0.0236 0.0422 0.0212 0.0159 0.0090 0.0109 0.0020 0.0100 0.0102 0.0032 0.0441 * HDV7 0.0259 0.0628 0.0499 0.0813 0.0462 0.0462 0.0351 0.0425 0.0277 0.0425 0.0296 0.0369 0.0166 0.0166 0.0296 0.0148	0.0134 0.0134 0.0740 0.0659 0.0133 0.0113 0.0646 0.0536
0.0269 0.0688 0.1225 0.0890 0.1427 0.0940 0.0587 0.0688 0.0050 0.0504 0.0168 0.0101 0.0084 0.0101 0.0067 0.0000 0.0034 0.0067 0.0000 0.0000 0.0098 * HDV6 0.0284 0.0766 0.1006 0.1021 0.0993 0.0538 0.0637 0.0566 0.0393 0.0229 0.0236 0.0422 0.0212 0.0159 0.0090 0.0109 0.0020 0.0100 0.0102 0.0032 0.0441 * HDV7 0.0259 0.0628 0.0499 0.0813 0.0462 0.0462 0.0351 0.0425 0.0277 0.0425 0.0296 0.0369 0.0166 0.0166 0.0296 0.0148 0.0222 0.0296 0.0240 0.0203 0.1208	0.0134 0.0134 0.0740 0.0659 0.0133 0.0113 0.0646 0.0536
0.0269 0.0688 0.1225 0.0890 0.1427 0.0940 0.0587 0.0688 0.0050 0.0504 0.0168 0.0101 0.0084 0.0101 0.0067 0.0000 0.0034 0.0067 0.0000 0.0000 0.0098 * HDV6 0.0284 0.0766 0.1006 0.1021 0.0993 0.0538 0.0637 0.0566 0.0393 0.0229 0.0236 0.0422 0.0212 0.0159 0.0090 0.0109 0.0020 0.0100 0.0102 0.0032 0.0441 * HDV7 0.0259 0.0628 0.0499 0.0813 0.0462 0.0462 0.0351 0.0425 0.0277 0.0425 0.0296 0.0369 0.0166 0.0166 0.0296 0.0148 0.0222 0.0296 0.0240 0.0203 0.1208 * HDV8A	0.0134 0.0134 0.0740 0.0659 0.0133 0.0113 0.0646 0.0536 0.0388 0.0222
0.0269 0.0688 0.1225 0.0890 0.1427 0.0940 0.0587 0.0688 0.0050 0.0504 0.0168 0.0101 0.0084 0.0101 0.0067 0.0000 0.0034 0.0067 0.0000 0.0000 0.0098 * HDV6 0.0284 0.0766 0.1006 0.1021 0.0993 0.0538 0.0637 0.0566 0.0393 0.0229 0.0236 0.0422 0.0212 0.0159 0.0090 0.0109 0.0020 0.0100 0.0102 0.0032 0.0441 * HDV7 0.0259 0.0628 0.0499 0.0813 0.0462 0.0462 0.0351 0.0425 0.0277 0.0425 0.0296 0.0369 0.0166 0.0166 0.0296 0.0148 0.0222 0.0296 0.0240 0.0203 0.1208 * HDV8A	0.0134 0.0134 0.0740 0.0659 0.0133 0.0113 0.0646 0.0536 0.0388 0.0222
0.0269 0.0688 0.1225 0.0890 0.1427 0.0940 0.0587 0.0688 0.0050 0.0504 0.0168 0.0101 0.0084 0.0101 0.0067 0.0000 0.0034 0.0067 0.0000 0.0000 0.0098 * HDV6 0.0284 0.0766 0.1006 0.1021 0.0993 0.0538 0.0637 0.0566 0.0393 0.0229 0.0236 0.0422 0.0212 0.0159 0.0090 0.0109 0.0020 0.0100 0.0102 0.0032 0.0441 * HDV7 0.0259 0.0628 0.0499 0.0813 0.0462 0.0462 0.0351 0.0425 0.0277 0.0425 0.0296 0.0369 0.0166 0.0166 0.0296 0.0148 0.0222 0.0296 0.0240 0.0203 0.1208 * HDV8A 0.0082 0.0686 0.0890 0.0955 0.0710 0.0620 0.0522 0.0555	0.0134 0.0134 0.0740 0.0659 0.0133 0.0113 0.0646 0.0536 0.0388 0.0222 0.0694 0.0718
0.0269 0.0688 0.1225 0.0890 0.1427 0.0940 0.0587 0.0688 0.0050 0.0504 0.0168 0.0101 0.0084 0.0101 0.0067 0.0000 0.0034 0.0067 0.0000 0.0000 0.0098 * HDV6	0.0134 0.0134 0.0740 0.0659 0.0133 0.0113 0.0646 0.0536 0.0388 0.0222 0.0694 0.0718
0.0269 0.0688 0.1225 0.0890 0.1427 0.0940 0.0587 0.0688 0.0050 0.0504 0.0168 0.0101 0.0084 0.0101 0.0067 0.0000 0.0034 0.0067 0.0000 0.0000 0.0098 * HDV6	0.0134 0.0134 0.0740 0.0659 0.0133 0.0113 0.0646 0.0536 0.0388 0.0222 0.0694 0.0718
0.0269 0.0688 0.1225 0.0890 0.1427 0.0940 0.0587 0.0688 0.0050 0.0504 0.0168 0.0101 0.0084 0.0101 0.0067 0.0000 0.0034 0.0067 0.0000 0.0000 0.0098 * HDV6 0.0284 0.0766 0.1006 0.1021 0.0993 0.0538 0.0637 0.0566 0.0393 0.0229 0.0236 0.0422 0.0212 0.0159 0.0090 0.0109 0.0020 0.0100 0.0102 0.0032 0.0441 * HDV7 0.0259 0.0628 0.0499 0.0813 0.0462 0.0462 0.0351 0.0425 0.0277 0.0425 0.0296 0.0369 0.0166 0.0166 0.0296 0.0148 0.0222 0.0296 0.0240 0.0203 0.1208 * HDV8A 0.0082 0.0686 0.0890 0.0955 0.0710 0.0620 0.0522 0.0555 0.0449 0.0384 0.0376 0.0473 0.0310 0.0220 0.0106 0.0073 0.0212 0.0090 0.0082 0.0049 0.0041 * HDV8B	0.0134 0.0134 0.0740 0.0659 0.0133 0.0113 0.0646 0.0536 0.0388 0.0222 0.0694 0.0718 0.0114 0.0188
0.0269 0.0688 0.1225 0.0890 0.1427 0.0940 0.0587 0.0688 0.0050 0.0504 0.0168 0.0101 0.0084 0.0101 0.0067 0.0000 0.0034 0.0067 0.0000 0.0000 0.0098 * HDV6 0.0284 0.0766 0.1006 0.1021 0.0993 0.0538 0.0637 0.0566 0.0393 0.0229 0.0236 0.0422 0.0212 0.0159 0.0090 0.0109 0.0020 0.0100 0.0102 0.0032 0.0441 * HDV7 0.0259 0.0628 0.0499 0.0813 0.0462 0.0462 0.0351 0.0425 0.0277 0.0425 0.0296 0.0369 0.0166 0.0166 0.0296 0.0148 0.0222 0.0296 0.0240 0.0203 0.1208 * HDV8A 0.0082 0.0686 0.0890 0.0955 0.0710 0.0620 0.0522 0.0555 0.0449 0.0384 0.0376 0.0473 0.0310 0.0220 0.0106 0.0073 0.0212 0.0090 0.0082 0.0049 0.0441 * HDV8B 0.0067 0.0705 0.0906 0.0940 0.0705 0.0604 0.0537 0.0570	0.0134 0.0134 0.0740 0.0659 0.0133 0.0113 0.0646 0.0536 0.0388 0.0222 0.0694 0.0718 0.0114 0.0188 0.0705 0.0705
0.0269 0.0688 0.1225 0.0890 0.1427 0.0940 0.0587 0.0688 0.0050 0.0504 0.0168 0.0101 0.0084 0.0101 0.0067 0.0000 0.0034 0.0067 0.0000 0.0000 0.0098 * HDV6 0.0284 0.0766 0.1006 0.1021 0.0993 0.0538 0.0637 0.0566 0.0393 0.0229 0.0236 0.0422 0.0212 0.0159 0.0090 0.0109 0.0020 0.0100 0.0102 0.0032 0.0441 * HDV7 0.0259 0.0628 0.0499 0.0813 0.0462 0.0462 0.0351 0.0425 0.0277 0.0425 0.0296 0.0369 0.0166 0.0166 0.0296 0.0148 0.0222 0.0296 0.0240 0.0203 0.1208 * HDV8A 0.0082 0.0686 0.0890 0.0955 0.0710 0.0620 0.0522 0.0555 0.0449 0.0384 0.0376 0.0473 0.0310 0.0220 0.0106 0.0073 0.0212 0.0090 0.0082 0.0049 0.0441 * HDV8B 0.0067 0.0705 0.0906 0.0940 0.0705 0.0604 0.0537 0.0570	0.0134 0.0134 0.0740 0.0659 0.0133 0.0113 0.0646 0.0536 0.0388 0.0222 0.0694 0.0718 0.0114 0.0188 0.0705 0.0705
0.0269 0.0688 0.1225 0.0890 0.1427 0.0940 0.0587 0.0688 0.0050 0.0504 0.0168 0.0101 0.0084 0.0101 0.0067 0.0000 0.0034 0.0067 0.0000 0.0000 0.0098 * HDV6 0.0284 0.0766 0.1006 0.1021 0.0993 0.0538 0.0637 0.0566 0.0393 0.0229 0.0236 0.0422 0.0212 0.0159 0.0090 0.0109 0.0020 0.0100 0.0102 0.0032 0.041 * HDV7 0.0259 0.0628 0.0499 0.0813 0.0462 0.0462 0.0351 0.0425 0.0277 0.0425 0.0296 0.0369 0.0166 0.0166 0.0296 0.0148 0.0222 0.0296 0.0240 0.0203 0.1208 * HDV8A 0.0082 0.0686 0.0890 0.0955 0.0710 0.0620 0.0522 0.0555 0.0449 0.0384 0.0376 0.0473 0.0310 0.0220 0.0106 0.0073 0.0212 0.0090 0.0082 0.0049 0.0441 * HDV8B 0.0067 0.0705 0.0906 0.0940 0.0705 0.0604 0.0537 0.0570 0.0470 0.0403 0.0369 0.0470 0.0302 0.0201 0.0101 0.0067	0.0134 0.0134 0.0740 0.0659 0.0133 0.0113 0.0646 0.0536 0.0388 0.0222 0.0694 0.0718 0.0114 0.0188 0.0705 0.0705
0.0269 0.0688 0.1225 0.0890 0.1427 0.0940 0.0587 0.0688 0.0050 0.0504 0.0168 0.0101 0.0084 0.0101 0.0067 0.0000 0.0034 0.0067 0.0000 0.0000 0.0098 * HDV6 0.0284 0.0766 0.1006 0.1021 0.0993 0.0538 0.0637 0.0566 0.0393 0.0229 0.0236 0.0422 0.0212 0.0159 0.0090 0.0109 0.0020 0.0100 0.0102 0.0032 0.041 * HDV7 0.0259 0.0628 0.0499 0.0813 0.0462 0.0462 0.0351 0.0425 0.0277 0.0425 0.0296 0.0369 0.0166 0.0166 0.0296 0.0148 0.0222 0.0296 0.0240 0.0203 0.1208 * HDV8A 0.0082 0.0686 0.0890 0.0955 0.0710 0.0620 0.0522 0.0555 0.0449 0.0384 0.0376 0.0473 0.0310 0.0220 0.0106 0.0073 0.0212 0.0090 0.0082 0.0049 0.0441 * HDV8B 0.0067 0.0705 0.0906 0.0940 0.0705 0.0604 0.0537 0.0570 0.0470 0.0403 0.0369 0.0470 0.0302 0.0201 0.0101 0.0067 0.0201 0.0101 0.0067 0.0067 0.0436	0.0134 0.0134 0.0740 0.0659 0.0133 0.0113 0.0646 0.0536 0.0388 0.0222 0.0694 0.0718 0.0114 0.0188 0.0705 0.0705
0.0269 0.0688 0.1225 0.0890 0.1427 0.0940 0.0587 0.0688 0.0050 0.0504 0.0168 0.0101 0.0084 0.0101 0.0067 0.0000 0.0034 0.0067 0.0000 0.0000 0.0098 * HDV6 0.0284 0.0766 0.1006 0.1021 0.0993 0.0538 0.0637 0.0566 0.0393 0.0229 0.0236 0.0422 0.0212 0.0159 0.0090 0.0109 0.0020 0.0100 0.0102 0.0032 0.0441 * HDV7 0.0259 0.0628 0.0499 0.0813 0.0462 0.0462 0.0351 0.0425 0.0277 0.0425 0.0296 0.0369 0.0166 0.0166 0.0296 0.0148 0.0222 0.0296 0.0240 0.0203 0.1208 * HDV8A 0.0082 0.0686 0.0890 0.0955 0.0710 0.0620 0.0522 0.0555 0.0449 0.0384 0.0376 0.0473 0.0310 0.0220 0.0106 0.0073 0.0212 0.0090 0.0082 0.0049 0.0441 * HDV8B 0.0067 0.0705 0.0906 0.0940 0.0705 0.0604 0.0537 0.0570 0.0470 0.0403 0.0369 0.0470 0.0302 0.0201 0.0101 0.0067 0.0201 0.0101 0.0067 0.0067 0.0436 * HDBS	0.0134 0.0134 0.0740 0.0659 0.0133 0.0113 0.0646 0.0536 0.0388 0.0222 0.0694 0.0718 0.0114 0.0188 0.0705 0.0705 0.0101 0.0201
0.0269 0.0688 0.1225 0.0890 0.1427 0.0940 0.0587 0.0688 0.0050 0.0504 0.0168 0.0101 0.0084 0.0101 0.0067 0.0000 0.0034 0.0067 0.0000 0.0000 0.0098 * HDV6	0.0134 0.0134 0.0740 0.0659 0.0133 0.0113 0.0646 0.0536 0.0388 0.0222 0.0694 0.0718 0.0114 0.0188 0.0705 0.0705 0.0101 0.0201
0.0269	0.0134 0.0134 0.0740 0.0659 0.0133 0.0113 0.0646 0.0536 0.0388 0.0222 0.0694 0.0718 0.0114 0.0188 0.0705 0.0705 0.0101 0.0201
0.0269 0.0688 0.1225 0.0890 0.1427 0.0940 0.0587 0.0688 0.0050 0.0504 0.0168 0.0101 0.0084 0.0101 0.0067 0.0000 0.0034 0.0067 0.0000 0.0000 0.0098 * HDV6 0.0284 0.0766 0.1006 0.1021 0.0993 0.0538 0.0637 0.0566 0.0393 0.0229 0.0236 0.0422 0.0212 0.0159 0.0090 0.0109 0.0020 0.0100 0.0102 0.0032 0.0441 * HDV7 0.0259 0.0628 0.0499 0.0813 0.0462 0.0462 0.0351 0.0425 0.0277 0.0425 0.0296 0.0369 0.0166 0.0166 0.0296 0.0148 0.0222 0.0296 0.0240 0.0203 0.1208 * HDV8A 0.0082 0.0686 0.0890 0.0955 0.0710 0.0620 0.0522 0.0555 0.0449 0.0384 0.0376 0.0473 0.0310 0.0220 0.0106 0.0073 0.0212 0.0090 0.0082 0.0049 0.0441 * HDV8B 0.0067 0.0705 0.0906 0.0940 0.0705 0.0604 0.0537 0.0570 0.0470 0.0403 0.0369 0.0470 0.0302 0.0201 0.0101 0.0067 0.0201 0.0101 0.0067 0.0067 0.0436 * HDSS 0.0876 0.0537 0.0407 0.0093 0.0860 0.0416 0.0644 0.0658 0.0876 0.0537 0.0407 0.0093 0.0860 0.0416 0.0644 0.0658 0.0876 0.0537 0.0407 0.0093 0.0860 0.0416 0.0644 0.0658 0.0876 0.0537 0.0407 0.0093 0.0860 0.0416 0.0644 0.0658 0.0604 0.0450 0.0197 0.0325 0.0241 0.0139 0.0117 0.0236 0.0111 0.0179 0.0089 0.0042 0.0618	0.0134 0.0134 0.0740 0.0659 0.0133 0.0113 0.0646 0.0536 0.0388 0.0222 0.0694 0.0718 0.0114 0.0188 0.0705 0.0705 0.0101 0.0201
0.0269	0.0134 0.0134 0.0740 0.0659 0.0133 0.0113 0.0646 0.0536 0.0388 0.0222 0.0694 0.0718 0.0114 0.0188 0.0705 0.0705 0.0101 0.0201
0.0269 0.0688 0.1225 0.0890 0.1427 0.0940 0.0587 0.0688 0.0050 0.0504 0.0168 0.0101 0.0084 0.0101 0.0067 0.0000 0.0034 0.0067 0.0000 0.0000 0.0098 * HDV6 0.0284 0.0766 0.1006 0.1021 0.0993 0.0538 0.0637 0.0566 0.0393 0.0229 0.0236 0.0422 0.0212 0.0159 0.0090 0.0109 0.0020 0.0100 0.0102 0.0032 0.0441 * HDV7 0.0259 0.0628 0.0499 0.0813 0.0462 0.0462 0.0351 0.0425 0.0277 0.0425 0.0296 0.0369 0.0166 0.0166 0.0296 0.0148 0.0222 0.0296 0.0240 0.0203 0.1208 * HDV8A 0.0082 0.0686 0.0890 0.0955 0.0710 0.0620 0.0522 0.0555 0.0449 0.0384 0.0376 0.0473 0.0310 0.0220 0.0106 0.0073 0.0212 0.0090 0.0082 0.0049 0.0441 * HDV8B 0.0067 0.0705 0.0906 0.0940 0.0705 0.0604 0.0537 0.0570 0.0470 0.0403 0.0369 0.0470 0.0302 0.0201 0.0101 0.0067 0.0201 0.0101 0.0067 0.0067 0.0436 * HDBS 0.0876 0.0537 0.0407 0.0093 0.0860 0.0416 0.0644 0.0658 0.0604 0.0450 0.0197 0.0325 0.0241 0.0139 0.0117 0.0236 0.0111 0.0179 0.0089 0.0042 0.0618 * HDBT	0.0134 0.0134 0.0740 0.0659 0.0133 0.0113 0.0646 0.0536 0.0388 0.0222 0.0694 0.0718 0.0114 0.0188 0.0705 0.0705 0.0101 0.0201 0.0618 0.0723 0.0415 0.0404
0.0269	0.0134 0.0134 0.0740 0.0659 0.0133 0.0113 0.0646 0.0536 0.0388 0.0222 0.0694 0.0718 0.0114 0.0188 0.0705 0.0705 0.0101 0.0201 0.0618 0.0723 0.0415 0.0404 0.0947 0.0426
0.0269	0.0134 0.0134 0.0740 0.0659 0.0133 0.0113 0.0646 0.0536 0.0388 0.0222 0.0694 0.0718 0.0114 0.0188 0.0705 0.0705 0.0101 0.0201 0.0618 0.0723 0.0415 0.0404 0.0947 0.0426
0.0269 0.0688 0.1225 0.0890 0.1427 0.0940 0.0587 0.0688	0.0134 0.0134 0.0740 0.0659 0.0133 0.0113 0.0646 0.0536 0.0388 0.0222 0.0694 0.0718 0.0114 0.0188 0.0705 0.0705 0.0101 0.0201 0.0618 0.0723 0.0415 0.0404 0.0947 0.0426
0.0269 0.0688 0.1225 0.0890 0.1427 0.0940 0.0587 0.0688 0.0050 0.0504 0.0168 0.0101 0.0084 0.0101 0.0067 0.0000 0.0034 0.0067 0.0000 0.0000 0.0098 * HDV6 0.0284 0.0766 0.1006 0.1021 0.0993 0.0538 0.0637 0.0566 0.0393 0.0229 0.0236 0.0422 0.0212 0.0159 0.0090 0.0109 0.0020 0.0100 0.0102 0.0032 0.041 * HDV7 0.0259 0.0628 0.0499 0.0813 0.0462 0.0462 0.0351 0.0425 0.0277 0.0425 0.0296 0.0369 0.0166 0.0166 0.0296 0.0148 0.0222 0.0296 0.0240 0.0203 0.1208 * HDV8A 0.0082 0.0686 0.0890 0.0955 0.0710 0.0620 0.0522 0.0555 0.0449 0.0384 0.0376 0.0473 0.0310 0.0220 0.0106 0.0073 0.0212 0.0090 0.0082 0.0049 0.0441 * HDV8B 0.0067 0.0705 0.0906 0.0940 0.0705 0.0604 0.0537 0.0570 0.0470 0.0403 0.0369 0.0470 0.0302 0.0201 0.0101 0.0067 0.0201 0.0101 0.0067 0.0067 0.0436 * HDBS 0.0876 0.0537 0.0407 0.0093 0.0860 0.0416 0.0644 0.0658 0.0876 0.0537 0.0407 0.0093 0.0860 0.0416 0.0644 0.0658 0.0876 0.0537 0.0407 0.0093 0.0860 0.0416 0.0644 0.0658 0.0876 0.0537 0.0407 0.0093 0.0860 0.0416 0.0644 0.0658 0.0604 0.0450 0.0197 0.0325 0.0241 0.0139 0.0117 0.0236 0.0111 0.0179 0.0089 0.0042 0.0618 * HDBT 0.0564 0.0312 0.0839 0.1056 0.0594 0.0545 0.0651 0.0641 0.0634 0.0756 0.0156 0.0208 0.0179 0.0096 0.0166 0.0096 0.0190 0.0216 0.0015 0.0063 0.0306	0.0134 0.0134 0.0740 0.0659 0.0133 0.0113 0.0646 0.0536 0.0388 0.0222 0.0694 0.0718 0.0114 0.0188 0.0705 0.0705 0.0101 0.0201 0.0618 0.0723 0.0415 0.0404 0.0947 0.0426 0.0085 0.0259
0.0269 0.0688 0.1225 0.0890 0.1427 0.0940 0.0587 0.0688	0.0134 0.0134 0.0740 0.0659 0.0133 0.0113 0.0646 0.0536 0.0388 0.0222 0.0694 0.0718 0.0114 0.0188 0.0705 0.0705 0.0101 0.0201 0.0618 0.0723 0.0415 0.0404 0.0947 0.0426 0.0085 0.0259
0.0269 0.0688 0.1225 0.0890 0.1427 0.0940 0.0587 0.0688	0.0134 0.0134 0.0740 0.0659 0.0133 0.0113 0.0646 0.0536 0.0388 0.0222 0.0694 0.0718 0.0114 0.0188 0.0705 0.0705 0.0101 0.0201 0.0618 0.0723 0.0415 0.0404 0.0947 0.0426 0.0085 0.0259
0.0269 0.0688 0.1225 0.0890 0.1427 0.0940 0.0587 0.0688 0.0050 0.0504 0.0168 0.0101 0.0084 0.0101 0.0067 0.0000 0.0034 0.0067 0.0000 0.0000 0.0098 * HDV6 0.0284 0.0766 0.1006 0.1021 0.0993 0.0538 0.0637 0.0566 0.0393 0.0229 0.0236 0.0422 0.0212 0.0159 0.0090 0.0109 0.0020 0.0100 0.0102 0.0032 0.041 * HDV7 0.0259 0.0628 0.0499 0.0813 0.0462 0.0462 0.0351 0.0425 0.0277 0.0425 0.0296 0.0369 0.0166 0.0166 0.0296 0.0148 0.0222 0.0296 0.0240 0.0203 0.1208 * HDV8A 0.0082 0.0686 0.0890 0.0955 0.0710 0.0620 0.0522 0.0555 0.0449 0.0384 0.0376 0.0473 0.0310 0.0220 0.0106 0.0073 0.0212 0.0090 0.0082 0.0049 0.0441 * HDV8B 0.0067 0.0705 0.0906 0.0940 0.0705 0.0604 0.0537 0.0570 0.0470 0.0403 0.0369 0.0470 0.0302 0.0201 0.0101 0.0067 0.0201 0.0101 0.0067 0.0067 0.0436 * HDBS 0.0876 0.0537 0.0407 0.0093 0.0860 0.0416 0.0644 0.0658 0.0876 0.0537 0.0407 0.0093 0.0860 0.0416 0.0644 0.0658 0.0876 0.0537 0.0407 0.0093 0.0860 0.0416 0.0644 0.0658 0.0876 0.0537 0.0407 0.0093 0.0860 0.0416 0.0644 0.0658 0.0604 0.0450 0.0197 0.0325 0.0241 0.0139 0.0117 0.0236 0.0111 0.0179 0.0089 0.0042 0.0618 * HDBT 0.0564 0.0312 0.0839 0.1056 0.0594 0.0545 0.0651 0.0641 0.0634 0.0756 0.0156 0.0208 0.0179 0.0096 0.0166 0.0096 0.0190 0.0216 0.0015 0.0063 0.0306	0.0134 0.0134 0.0740 0.0659 0.0133 0.0113 0.0646 0.0536 0.0388 0.0222 0.0694 0.0718 0.0114 0.0188 0.0705 0.0705 0.0101 0.0201 0.0618 0.0723 0.0415 0.0404 0.0947 0.0426 0.0085 0.0259

District of Columbia- 2008 Diesel Sales Fractions

*LDV									
0.0000	0.0000	0.0057	0.0057	0.0025	0.0022	0.0031	0 0020	0 0017	0.0027
0.0021	0.0017		0.0021	0.0004	0.0018	0.0027	0.0020	0.0014	0.0009
0.0009						0.002/	0.0071	0.0014	0.0009
*LDT1								5.0	
0.0000	0.0000	0.0127	0.0136	0.0000	0 0000	0 0002	0 0000	0.0000	0.0000
0.0002									
0.0014	0.0054		0.0115	0.0115	0.000	0.0022	0.0013	0.0000	0.0039
*LDT2			0.0113	0.0113				16 1 4 10	
	0.0000	0.0010	0.0009	0 0000	0 0000	0 0000	0 0000	0 0000	0.0000
0.0000	0.0000				0.0000		0.0002		
0.0006	0.000				0.0000	0.0003	0.0002	0.0000	0.0013
*LDT3	0.0000	010001	0.0034	0.0054					
	0.0038	0.0005	0 0000	0.0004	0 0000	0 0002	0 0000	0.0001	0.000
0.0013	0.0024		0.0069				0.0002		
0.0085	0.0153			0.0302	0.0034	0.0009	0.0071	0.0053	0.0058
*LDT4	0.0200	0.0111	0.0302	0.0302					
	0.0024	0.0008	0.0000	0 0005	0.0000	0 0003	0.0000	0.0000	0.000
	0.0022				0.0000			0.0002	
0.0129	0.0355			0.1294	0.0051	0.0040	0.02/6	0.0140	0.0130
*HDV2B			J. 14474	V.4634				ersers as	
	0.1813	0.2401	0.2472	0 2263	0 1924	0 1007	0 1000	0.1688	0 2255
0.2031	0.2563		0.1831	0.2203	0.2278	0.1777			
	0.2577	0.2331	0.1586	0.1586	0.4410	4.1///	0.1917	0.2028	0.1914
*HDV3	0.2077	V.2331	0.1200	0.1300					
	0.5419	0.5403	0.5479	0 2005	0.5310	0 4610	0 4360	0 5045	0 5006
	0.4257				0.5035		0.4162	0.5045	
0.5132		0.4139	0.1761	0.1761	0.5035	0.3854	0.4647	0.5669	0.4169
*HDV4	0.4/41	0.4133	0.1/01	0.1/61					
	0.7298	0 8404	0.7818	0 7713	0 6200	0 5366	0 4710	0 5504	0 5560
0.6060	0.4581	0.4138	0.7010	0.3365	0.6366	0.3366			
0.2443	0.0896	0.0238	0.0204	0.0204	0.6453	0.2857	0.2803	0.3333	0.3659
*HDV5	0.0000	0.0236	0.0204	0.0204					
	0 9686	0 9316	0.9305	0 0262	0 0074	0.0224	0 0270	0.0004	0.0014
0.8039	0.6950	0.7606	0.5294	0.8000	0.9565	0.9324			
0.3333	0.6316	0.7692	0.0000	0.0000	0.3363	0.7391	0.5000	0.7500	0.6429
*HDV6	0.0010	0.7052	0.0000	0.0000					
0.9309	0 9910	0 9990	0.9633	0.0073	0 0006	0.0035	0 0001	0.0104	0.0501
0.8766	0.9027	0.8965				0.7168	0.8921	0.9134	
0.5872	0.6115	0.5407		0.6127	0.8920	0.7168	0.7483	0.7354	0.7290
*HDV7	0.6113	0.5407	0.6127	0.6127					
	1.0000	1 0000	1 0000	1 0000	0.0074	0.0000	0.000	0 0556	0.05.05
	0.9070	0.9762	0.9867					0.9752	
0.8889	0.8224	0.7692			0.9770	0.9623	0.9091	0,8933	0.9082
*HDV8A	V. 0224	J. 1032	0.7963	0.7963		- 100 miles			
	1 0000	1 0000	1 0000	1 0000	1 0000	1 0000	1 0000	0.0011	
1 0000	1 0000	1 0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9940	1.0000
			1.0000		T.0000	1.0000	1.0000	1.0000	0.9910
0.9833 *HDV8B	1.0000	0.96//	1.0000	1.0000					
	1 0000	1 0000	1 0000	1 0000	1 0000	1 0000	1 6655	0 0000	
1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	0.9900	1.0000
1.0000	1 0000		1.0000		1.0000	1.0000	1.0000	1.0000	1.0000
*HDBS	1.0000	1.0000	1.0000	1.0000					
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	A 65	
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000					
*HDBT	0.000	0.000							
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000					

Maryland- 2008 Diesel Sales Fractions

*LDV									
0.0001	0.0000	0.0072	0.0065	0 0030	0 0020	0 0030	0 0005	0.0023	0.0000
0.0024			0.0022		0.0018				
0.0011	0.0356		0.1174		0.0018	0.0025	0.0092	0.0014	0.0015
*LDT1	0.0336	0.0213	U, 11/4	U,11/4					
	0.0000	0.0337	0.0115	0.0000	0.0000	0 000=	0 000		
***************************************							0.0000	0.0000	
0.0003	0.0000		0.0000		0.0043	0.0034	0.0020	0.0021	0.0074
0.0021	0.0061	0.0095	0.0106	0.0106					
*LDT2									
	0.0000							0.0000	
	0.0000	0.0002	0.0000		0.0003	0.0004	0.0002	0.0003	0.0021
0.0011	0.0029	0.0048	0.0041	0.0041			- 141		
*LDT3								(30) 100p	
		0.0005		0.0002	0.0001				0.0006
0.0021	0.0020	0.0036	0.0090	0.0034	0.0034	0.0016	0.0046	0.0062	0.0053
0.0105	0.0135	0.0142	0.0283	0.0283					
*LDT4			_						
0.0058	0,0017	0.0006	0.0001	0.0002	0.0001	0.0002	0.0005	0.0001	0.0006
0.0016	0.0018	0.0081		0.0090			0.0146		0.0096
0.0119	0.0239	0.0663	0.1156	0.1156					
*HDV2B	8								
0.2489	0.2799	0.3226	0.3024	0.3018	0.2465	0.2574	0.2273	0.2142	0.2780
0.1759	0.3466	0.3010	0.2688	0.2802	0.3135	0.2249	0.2684	0.2284	0.1576
0.1451	0.1966	0.2637	0.1867	0.1867		2.4473	3.2004	0.2204	J. 15/6
*HDV3		3,2401	3.2007	3,2001					
	0.6937	0.6385	0.6512	0.5498	0 6095	0 5424	0 5226	0.6010	0 6400
	0.4679			0.3695		0.4535			
	0.4861	0.3768	0.1739	0.1739	0.5414	0.4555	0.4405	0.5072	0.4088
*HDV4	J. 4001	0.3/08	0.1139	0.1139					
	0.7538	0 7521	0 7202	0 7207	0 6100	0 6006	0 5000	0 5155	0.555
		0.4740						0.6163	
0.4602	0.5439		0.6007	0.3858	0.6454	0.3333	0.3107	0.3704	0.4444
0.3361	0.0000	0.0000	0.0476	0.0476					
*HDV5									
								0.8289	0.7977
0.6000	0.5317	0.6230		0.6429	0.9091	0.7368	0.5000	0.5833	0.8000
0.7143	0.5455	1.0000	0.2000	0.2000					
*HDV6							781600 0000000		
0.9316	0.8757	0.8770		0.8068	0.8317	0.8559	0.8795	0.8739	0.8325
0.8966	0.9438	0.9464	0.9586	0.8876	0.9417	0.7353	0.7612	0.8295	0.7308
0.6596	0.6667	0.6042	0.6129	0.6129					
*HDV7				1000	64h 8.80				
1.0000	1.0000	1.0000	0.9935	1.0000	1.0000	0.9891	0.9845	0.9868	0.9771
0.9813	0.9091	0,9722	1.0000	0.9500			0.9417	0.9111	0.9186
0.8942	0.8723	0.8525	0.7895	0.7895					
*HDV8A									
1.0000	1.0000	1.0000	0.9980	1.0000	1,0000	1.0000	1.0000	0.9975	1.0000
1.0000	1.0000	0.9946	1.0000	1.0000	1.0000	1,0000	1,0000	1.0000	1.0000
0.9911	1,0000	0.9846	1.0000	1.0000				2.0000	2.0000
*HDV8B									
1.0000	1.0000	1 0000	0 9919	1 0000	1 0000	1 0000	1 0000	7 0000	1 0000
1.0000	1 0000	1 0000	0.9915	1 0000	1 0000	1 0000	1 0000	1,0000	1.0000
	1.0000		1.0000		1.0000	T.0000	1.0000	T,0000	1.0000
*HDBS	*.0000	1.0000	1.0000	1.0000					
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0 0000	0.000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
0.0000				0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000					
*HDBT									
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000					7
							54		

Virginia- 2008 Diesel Sales Fractions

*LDV		-							
0.0000	0.0000	0.0068	0.0067	0.0032	0.0024	0.0033	0.0022	0.0020	0 0027
0.0021							0.0055		0.0012
0.0002			0.1350		010001	0.0025	0.0000	0.0017	0.0012
*LDT1				0.1000					
	0.0000	0.0160	0.0180	0.0000	0.0000	0 0000	0 0000	0.0000	0 0000
	0.0000		0.0035				0.0000		
0.0024	0.0012	0.0127	0.0210		0.0000	0.0000	0.0000	0.0000	0.0000
*LDT2	0.0022	0.0167	0.0210	0.0210					
10000 000000000000000000000000000000000	0.0000	0.0011	0.0012	0 0000	0.0000	0.0000	0.0000	0.0000	0 0000
	0.0000			0.0000		0.0000			0.0000
	0.0006		0.0052	0.0052	0.0000	0.0000	0.0000	0.0000	0.0000
*LDT3	0.0000	0.0037	0.0052	0.0052					
	0 0022	0 0000	0.0000	0 0005	0 0000	0.0001	0.0001	0.0001	
100.000 100 100 100 100 100 100 100 100	The state of the s	0.0008	- 100 - 10 - 10 - 10 - 10 - 10 - 10 - 1				0.0001		0.0011
0.0035	0.0032	0.0037	0.0077		0.0029	0.0016	0.0076	0.0065	0.0027
	0.0098	0.0185	0.0212	0.0212					
*LDT4								5040 97	
	0.0023							0.0002	
		0.0090		0.0144	0.0090	0.0069	0.0360	0.0181	0.0074
	0.0250	0.1038	0.1000	0.1000					
*HDV2B									
								0.2146	
	0.2791	0.2887		0.2491	0.2957	0.2366	0.2623	0.2062	0.2299
	0.1680	0.2313	0.2231	0.2231					
*HDV3									
					0.5224	0.5456		0.5369	0.5917
0.3981	0.5286	0.5172		0.4022	0.5567	0.4167	0.5614	0.5102	0.5000
0.5394	0.5000	0.4304	0.1481	0.1481					
*HDV4									
0.8280	0.7461	0.7872	0.7749					0.5501	
0.4773	0.4439	0.4667	0.5592	0.3868	0.5684	0.3837	0.3529	0.3836	0.4316
0.2500	0.0769	0.0556	0.0000	0.0000					
*HDV5	30.00								
0.9545	0.9758	0.9228	0.9346	0.8804	0.9095	0.9384	0.8929	0.8962	0.8653
0.7391	0.4634	0.5938	0.5349	0.6000	0.8889	0.6364	0.6667	0.7273	0.8462
0.2308	0.5882	0.0000	0.0000	0.0000					
&HDV6	V 20 - 20 - 20 V	- The state of the		- Wid - 1957	ole sent				
0.9108	0.8445	0.8244	0.9495	0.8416	0.8284	0.8340	0.8966	0.8782	0.8251
0.8802	0.8783	0.8651	0.8745	0.8642			0.8095	0.7206	0.7736
0.5500	0.6047	0.4634	0.5294	0.5294			1.5		
*HDV7									
	1.0000	0.9875	1.0000	1.0000	0.9701	0.9839	1.0000	0.9524	0.9167
0.9700	0.8784	0.9194	0.9677		0.9778		0.9459		and the second second second second
0.8356		0.6818	0.7143	0.7143					
*HDV8A						-			
	1,0000	1.0000	1,0000	1.0000	1,0000	1,0000	1,0000	0.9947	1,0000
1,0000	1,0000	1.0000	1,0000	1,0000	1,0000	1,0000	1.0000	1.0000	0.9870
1.0000							2.0000	2.0000	4.5570
*HDV8B				2.0000					
	1.0000	1.0000	1 0000	1 0000	1 0000	1 0000	1 0000	0.9865	1 0000
								1.0000	
		1.0000			1.0000	1.0000	1.0000	T.0000	1.0000
*HDBS	1.0000	1.0000	1.0000	±.0000					
	0.0000	0 0000	0 0000	0 0000	0.000	0.0000	0.0000	0.0000	0.0000
								0.0000	
					0.0000	0.0000	0.0000	Ų.0000	0.0000
	0.0000	0.0000	0.0000	0.0000					
*HDBT	0.0000	0.0000	0.000	0.0000	0.0005	0.0000	0.0000	0.000	0.0655
								0.0000	
					0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	U.0000	0.0000					

Region- 2008 Diesel Sales Fractions for Bus

47									
*LDV									
0.0000								0.0000	0.0000
0.0000					0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000		1000			
*LDT1			00 2 - 8						
0.0000			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
0.0000	0.0000	0.0000	0.0000	0.0000		-546			
*LDT2							HELLE WAS AND		
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
0.0000	0.0000	0.0000	0.0000	0.0000	00 101 Wat				
*LDT3		12.90	14					700 -000 -000	
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			0.0000
0.0000	0.0000	0.0000	0.0000	0.0000			0.0000	0.0000	0.0000
*LDT4									
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0 0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000
0.0000		0.0000	0.0000	0.0000	3,000	3,0000	J.0000	3.0000	0.0000
*HDV2B		3	2.0000	3,0000					
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0 0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	The state of the s	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
*HDV3	3.0000	3.0000	3.0000	0.0000					
	0.0000	0.0000	0.0000	0.0000	0.0000	0 0000	0.0000	0.000	
0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000					0.0000	0.0000	0.0000	0.0000	0.0000
*HDV4	0.000	0.0000	0.0000	0.0000					
0.0000	0.0000	0.0000	0 0000	0 0000	0.0000	0 000-	0.0000		
		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000					
*HDV5	A A566	0.0000	0.0000						
	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000					
*HDV6									
		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000					
*HDV7			200						
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000					
*HDV8A									
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0.0000	0.0000					
*HDV8B									
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
0.0000	0.0000	0.0000	0,0000	0.0000			0.000	5.0000	0.0000
*HDBS									
	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1 0000	1 0000	1 0000
1.0000	1.0000	1.0000	1.0000	1.0000	1 0000	1 0000	1 0000		
	1.0000			1.0000	2.0000	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.0000	0000	1.0000
*HDBT									
	1.0000	1,0000	1.0000	1.0000	1 0000	1 0000	1 0000	1 0000	1 0000
1.0000	1.0000	1.0000	1 0000	1 0000	1 0000	1 0000	1 0000	1 0000	1.0000
1 0000	1.0000	1 0000	1 0000	1 0000	1.0000	1.0000	T.0000	T.0000	1.0000
0000	1.0000	1.0000	1.0000	1.0000					

APPENDIX E

Documentation of Mobile Source Emission Calculations (post-processor)

MEMORANDUM

TO: Files

FROM: Ronald Milone

DATE: October 19, 2011

SUBJECT: Mobile Emissions Post Processor for the Version 2.3 Travel Demand Model

1.0 Introduction

This memorandum describes the mobile emissions post processor used in the Air Quality Conformity Determination of the 2011 CLRP. The post processor is a series of computer programs that are used to forecast air pollution attributed to the highway system in the Washington D.C. region. The programs are essentially used to multiply travel demand produced by the TPB's regional travel model (highway link VMT and trip tables) by emission rates developed by the EPA's Mobile 6.2 model.

The post processor has, in recent years, been applied with model outputs of the TPB's Version 2.2 travel demand model and the Mobile 6.2 model¹. With the draft release of the new Version 2.3 travel model in the spring of 2011, TPB staff has recognized the need to implement several updates to the post processor. The updates included expanding zonal dimensions of some programs to accommodate the new 3,722 TAZ system and addressing redefined modeled time periods. The post processor updates also included parameter updates that are consistent with the Version 2.3 model's base year, 2007.

In accordance with air quality planning requirements, the post processor is currently used to compute mobile source emissions associated with volatile organic compounds (VOC)², nitrogen oxide (NOx), carbon monoxide (CO), and particulate matter (PM_{2.5} and precursor NOx). As emission rates are sensitive to temperature, emission calculations are developed for specific seasonal periods. For analysis purposes, VOC and NOx emissions are computed for an average summer weekday conditions. CO emissions are computed for an average winter weekday. PM_{2.5} emissions are computed as annualized figures, based on the development of three individual seasonal calculations.

TPB staff currently estimates mobile emissions explicitly for two source categories: on-network and offnetwork sources. On-network emissions are generated by travel on the regional highway system and are computed using the regional travel model output. TPB staff develops on-network emissions for individual segments of the drive cycle. The segments include start-up emissions (emissions that occur shortly after the vehicle has been started), stabilized running emissions (emissions from an operating vehicle engine after it is fully "warmed"), and hot soaking (evaporative emissions that occur after the vehicle has been turned off). Alternatively, off-network emissions are concerned with vehicle-based

¹ See 5/26/2009 memorandum from Ronald Milone and Hamid Humeida to Files, Subject: Mobile Emissions Post Processor Description and Results

² VOC emissions are sometimes labeled as "HC" (or hydrocarbons) in the post processor output

evaporation and travel that is not addressed by the regional travel model (i.e., travel on local streets, bus travel, and auto travel related to accessing transit). The post processor currently addresses all onnetwork and local off-network emission sources. Emissions concerned with the remaining off-network categories are computed using off-line spreadsheet techniques that are not addressed in this memorandum.

As the term "post processor" implies, a key function of the emissions estimation is the refinement of highway volumes and speeds that are produced by the travel model in terms of gross time periods into hourly estimates. This is necessary because the running emission rates are sensitive to vehicle speed. The refinement of modeled speeds involves taking steps to ensure that:

- 1) Hourly link volumes are reasonable with respect to the diurnal profile of traffic
- 2) Hourly link volumes are reasonable with respect to the physical capacity of the link
- 3) Modified speed flow relationships are used to develop realistic hourly link volumes and speeds

Table 1 provides a summary of the emissions calculations by emission class and pollutant. It is notable to point out that the on-network emissions calculations are made at a very disaggregate level. Running emissions are computed at the network link level as a function of vehicle miles traveled (VMT) while trip start and soaking emissions are computed at the transportation analysis zone (TAZ) level, on a per trip basis. In contrast, local running emissions are computed on a jurisdiction level as a function of VMT.

Table 1 Summary of Mobile Emissions Calculation by Emission Type and Pollutant

Emission Type	Pollutant	Emission Rate Description	Travel Unit Description	How Emissions are Computed
Running/ On-Network	VOC CO NOx	gm/mile, by jurisdiction, facility type and speed	Vehicle miles	Emission rate * travel unit, computed at network link level, by hour of day
	PM _{2.5}	gm/mile, by jurisdiction	vehicle miles	Emission rate * travel unit, computed at network link level
Start-Up	VOC CO NOx	gm/trip, by jurisdiction and engine condition (hot/cold)	Vehicle starts	Emission rate * travel unit, computed at TAZ level, by hour of day
Soak	VOC	gm/trip, by jurisdiction	Vehicle stops	Emission rate * travel unit, computed at TAZ level
Running / Local (Off-Network)	VOC CO NOx	gm/mile, by jurisdiction in urbanized areas; by jurisdiction and speed in rural areas	vehicle miles	Emission rate * travel unit, computed at jurisdiction level, stratified by urban and rural areas; rural areas are further stratified by speed ranges
	PM _{2.5}	gm/mile, by jurisdiction	vehicle miles	Emission rate * travel unit, Computed at jurisdiction level

2.0 Overview of the Post Processor Steps

The post processor consists of eight Cube Voyager³ programs that are designed to read Mobile 6.2 generated emission rate files and Version 2.3 travel demand model outputs. The programs are listed in Table 2. There are two sets of programs, one used to compute average weekday emissions for a single-season, and another that is used to compute average daily emissions for three seasons⁴.

Table 2 Table of Post Processor Program Steps

	One-Season	Three-Season	
Seq. No.	Program Name	Program Name	Program Description
110.	i rogram reame	Trogram Nume	
1	AQTRIP.S	AQTRIP.S	Summarize jurisdiction level vehicle trip
1	AQTRIF.5	AQTAILS	distribution
2	ZONECDED C	ZONECDED C	Distributed daily vehicle trip ends among
2	ZONESPRD.S	ZONESPRD.S	hourly periods
2	DEAK CDDEAD C	DEAK CODEAD Consorol C	Distribute time period link volumes, among
3	PEAK_SPREAD.S	PEAK_SPREAD_Seasonal.S	hourly periods and develop hourly speeds
4	RUNNING.S	RUNNING_Seasonal.S	Compute running emissions
5	STRT_SKR.S	STRT_SKR_Seasonal.S	Computer trip start and soaking emissions
6	PRE_LOCAL.S	PRE_LOCAL.S	Estimated forecasted local VMT by jurisdiction
7	LOCAL.S	LOCAL_Seasonal.S	Compute local emissions by jurisdiction
	Danauta	Donost o	Summarize jurisdiction level emissions for the
8	Report.s	Report.s	MSA

The above programs are executed logically, in the sequence shown. Appendix A provides a more detailed graphical view of the post processor process flow. The *AQTRIP* program summarizes the final zone level vehicle trips produced by the regional travel demand model and combines them into AM, PM, and off-peak (night and midday periods). The program creates a distribution table indicating the percentage of daily vehicle travel that occurs between jurisdictions. A proportion table is needed because the Mobile emission rates are associated with the jurisdiction of vehicle registration, which is *not* necessarily the jurisdiction where the actual emissions occur. Therefore, the emission rates ultimately applied within the post processor are actually weighted average rates based on daily vehicular travel proportions between jurisdictions.

The AQTRIP program also writes vehicle trip-end files by time period which are used in the starting and soaking emissions calculation. The ZONESPRD.S program reads the daily trip-end files created above and apportions them among hourly time periods, which is necessary for starting and soaking emissions

³ All previous post processor versions have been TP+ scripts

⁴ The "three season" set of programs are executed three times, once for each season

computation. The <code>Peak_Spread</code> program refines the time period-specific link volumes from the loaded highway network and develops hourly volumes and speeds that are subsequently used in the running emission calculation that is made in the <code>Running</code> program. The <code>Strt_Skr</code> program is used to calculate starting and soaking emission at the TAZ level. The <code>Pre_local</code> and <code>Local</code> programs are used to compute local running emissions at the jurisdictional level of analysis. Finally, the <code>Report</code> program reads the various output files and creates a single report summarizing running, start, soak, and local emissions for the MSA.

The above programs are executed in a scenario-specific subdirectory, using a batch file that defines the location of the travel model files, the location and name of the Mobile 6.2 generated emission rate files, and seasonal parameters used to adjust the average weekday travel link volumes produced by the travel model to the appropriate seasonal period⁵. The "three-season" batch file additionally contains a parameter specifying the number of days in each seasonal period. This is necessary in order to arrive at annual emissions figures. The single season batch file is named EMISS.BAT while the three-season batch file is named 3_Season_Emiss.bat. The subdirectories used for executing 2011 CLRP air quality work appears in the appendix section of this memorandum (Table 13).

3.0 Seasonal VMT Adjustments

Table 3 indicates the factors used to convert average weekday link volumes produced by the travel model into the seasonal analysis period used for emissions calculation. The table also indicates the key pollutants that are most relevant to each seasonal period. The factors were formulated using 2007 traffic count data collected at permanent count stations throughout the region. While the continuously operating permanent count stations are limited in number (~60 locations), they provide a reasonable basis for understanding seasonal traffic variation in the Washington, D.C. region. The summer weekday period reflects about 2.5% higher traffic level than the average annual weekday condition while the wintertime period reflects about 4% lower traffic, which is consistent with expectations. Conversion factors from average weekday traffic to average annual daily traffic reflect uniformly lower traffic levels relative to average annual weekday traffic levels for each seasonal period (from 2.5 – 8.0% lower) as average annual traffic is inclusive of both weekend as well as weekday conditions.

⁵ Note that the link volume is seasonally adjusted thus affecting the running emission calculation but the triprelated emissions are not seasonally adjusted

Table 3 Conversion Factors for Converting AAWT to Seasonal Travel

Analysis Period	Pollutants Analyzed	Duration of Seasonal Period	Conversion Factor Applied to AAWDT	Result of Conversion
Summer/Ozone Season	VOC	May to September		Seasonal AAWDT
Scason	NOx		1.0262	
Wintertime	СО	December to February		Seasonal AAWDT
Season			0.9573	
Annual Total (sum of 3	PM _{2.5} NOx precursor	January to April	0.9177	Seasonal AADT
seasons)	precursor	May to September	0.9751	Seasonal AADT
		October to December	0.9212	Seasonal AADT

4.0 Mobile 6.0 Emission Rates

As emissions are affected by atmospheric and weather conditions as well as local fleet characteristics and inspection programs, TPB staff prepares a substantial number of Mobile 6.2-based emission files as input to the post processor. Running and trip-end emission files are therefore produced by season and by jurisdiction group⁶. Running emission rates are further developed by facility type groups and speed (from 0 to 65 in 5 mph increments). In all, 96 files are prepared for each single-season scenario (each file contains VOC, CO, and NOx rates). 320 files are prepared for each 3-season scenario (pollutant-specific files are developed individually). TPB uses a rigid naming system for the development of the emission rate files in order to facilitate tracking and quality control. A listing of single season and 3-season emission rate files for a given scenario is provided in the appendix section of this memorandum (Table 10 and Table 11).

5.0 Starting and Soaking Emissions Calculation

Starting emissions are developed by applying per-trip emission rates to modeled vehicle trips at the zone level, on an hour-by-hour basis. Starting pollutant rates are associated with VOC, CO, and NOx emissions, and are expressed in terms of *cold* and *hot transient* types. Cold starts relate to those auto trips with fully cooled engines (i.e., engines that have been turned off for at least one hour prior to the trip starting time). Alternatively, hot transient starts are those auto trips with warm engines (i.e.,

⁶ Emission rates are developed for 27 jurisdiction and external station groups

engines that have been turned off less than one hour prior to the trip start time). An hourly allocation of trip origins is necessary for the starting emission calculation since the proportion of cold and hot starts is dependent upon the time of day. The assumed hourly distribution of AM, PM, and Off-peak vehicle trips is shown in Table 4. The distribution shown was derived from the 2007/08 Household Travel Survey (HTS). The assumed hourly distribution for cold and hot transient starts is shown on Table 5.

Soaking emissions are associated with the evaporative VOC/HC emissions that result when the engine is turned off. The soak emissions consist of a single emission rate that is applied to trip destinations. There is no temporal component to the soaking emission computation.

The general TAZ level equation for computing starting emissions is as follows:

$$StartEm_{ih} = Starts_h * \sum_{j=1}^{27} ((CSR_j * CPCT_h + HSR_j * HPCT_h) * Tprop_{ij})$$

Where:

StartEm_{ih} = Zonal starting-up emissions (in grams) at hour h in jurisdiction i

Starts_h = Zonal vehicle starts at hour h

= Cold Start rate (gm/trip) for jun= Cold start proportion at hour h = Cold Start rate (gm/trip) for jurisdiction j CSR_i

 $CPCT_h$

 HSR_i = Hot Start rate (gm/trip) for jurisdiction j

 $HPCT_h$ = Hot start proportion at hour h

Tprop_{ii} = Proportion of daily trips between jurisdiction i/j

The TAZ level equation for computing soaking emissions is as follows:

$$SoakEm_{ih} = Stops_h * \sum_{j=1}^{27} (HSR_j * Tprop_{ij})$$

Where:

SoakEm_{ih} = Zonal hot soak emissions (in grams) at hour h in jurisdiction i

= Vehicle stops at hour h Stopsh

 HSR_i = Hot Soak rate (gm/trip) for jurisdiction j

= Proportion of daily trips between jurisdiction i and jurisdiction j Tprop_{ii}

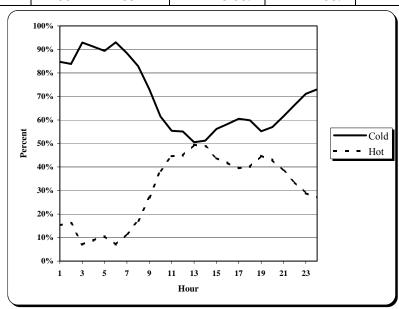

The regional total of starting/soaking emissions is, therefore, based on the result of the above equations accumulated over all TAZs, over all hours of the day. Regional emissions in grams are converted to tons using a conversion factor of 907,184.74 gm/ton.

Table 4 Distribution of AM, PM, and Off-Peak Period Auto Driver Trips among Hourly Periods

Hour		%	%	
No.		AM	PM	Off-Peak
1	12mid - 12:59AM			0.20%
2	1:00AM - 1:59AM			0.30%
3	2:00AM - 2:59AM			0.20%
4	3:00AM - 3:59AM			0.10%
5	4:00AM - 4:59AM			0.70%
6	5:00AM - 5:59AM			3.00%
7	6:00AM - 6:59AM	20.50%		0.00%
8	7:00AM - 7:59AM	37.80%		0.00%
9	8:00AM - 8:59AM	41.70%		0.00%
10	9:00AM - 9:59AM			11.90%
11	10:00AM - 10:59AM			10.00%
12	11:00AM - 11:59AM			10.90%
13	12noon - 12:59PM			11.90%
14	1:00PM - 1:59PM			11.30%
15	2:00PM - 2:59PM			11.30%
16	3:00PM - 3:59PM		20.70%	0.00%
17	4:00PM - 4:59PM		24.90%	0.00%
18	5:00PM - 5:59PM		29.40%	0.00%
19	6:00PM - 6:59PM		25.00%	0.00%
20	7:00PM - 7:59PM			11.50%
21	8:00PM - 8:59PM			7.30%
22	9:00PM - 9:59PM			5.30%
23	10:00PM - 10:59PM			2.90%
24	11:00PM - 11:59PM			1.20%
Total		100.00%	100.00%	100.00%

Table 5 Distribution of Cold / Hot Transient Vehicle Starts by Hour

Hour		%	%	
No.		Cold	Hot	Total
1	12mid - 12:59AM	84.70%	15.30%	100.00%
2	1:00AM - 1:59AM	83.80%	16.20%	100.00%
3	2:00AM - 2:59AM	92.90%	7.10%	100.00%
4	3:00AM - 3:59AM	91.20%	8.80%	100.00%
5	4:00AM - 4:59AM	89.40%	10.60%	100.00%
6	5:00AM - 5:59AM	93.00%	7.00%	100.00%
7	6:00AM - 6:59AM	88.40%	11.60%	100.00%
8	7:00AM - 7:59AM	82.90%	17.10%	100.00%
9	8:00AM - 8:59AM	73.00%	27.00%	100.00%
10	9:00AM - 9:59AM	61.50%	38.50%	100.00%
11	10:00AM - 10:59AM	55.40%	44.60%	100.00%
12	11:00AM - 11:59AM	55.10%	44.90%	100.00%
13	12noon - 12:59PM	50.50%	49.50%	100.00%
14	1:00PM - 1:59PM	51.20%	48.80%	100.00%
15	2:00PM - 2:59PM	56.20%	43.80%	100.00%
16	3:00PM - 3:59PM	58.30%	41.70%	100.00%
17	4:00PM - 4:59PM	60.50%	39.50%	100.00%
18	5:00PM - 5:59PM	59.90%	40.10%	100.00%
19	6:00PM - 6:59PM	55.20%	44.80%	100.00%
20	7:00PM - 7:59PM	57.00%	43.00%	100.00%
21	8:00PM - 8:59PM	61.60%	38.40%	100.00%
22	9:00PM - 9:59PM	66.40%	33.60%	100.00%
23	10:00PM - 10:59PM	71.10%	28.90%	100.00%
24	11:00PM - 11:59PM	73.00%	27.00%	100.00%

6.0 Running Emissions

Running emissions are associated with VOC/HC, CO, NOx, and PM_{2.5} pollutants emitted on the regional highway network. They are computed by applying per-mile emission rates to VMT at the network link level, and are computed on an hour-by-hour basis. The calculation is applied on an hourly basis because the running emission rates are provided as a function of highway speed⁷, which varies with congestion throughout the day. As with the trip-end emission calculation, the running emission rate for a given link is a weighted average of all jurisdictional rates based on the proportion of daily vehicle trips from each county to the specific county in which the network link is located. The modeled VMT is adjusted to account for seasonal traffic variation that is relevant to the given scenario.

The allocation of link volumes among hourly periods is done in a two-step manner. First, a default hourly distribution is applied to the traffic on each link based on the facility type and the general peaking orientation, i.e., whether the link volume is oriented toward AM period, the PM period, or neither the AM or PM periods (or a relatively even distribution). The link peaking orientation is established using the following peaking percentage formula:

Peaking Percentage = ((AM Volume* PM scale factor) – PM Volume) / Daily Link Volume

Where:

Peaking Percentage > 7.5% (AM oriented)
Peaking Percentage < - 7.5% (PM oriented)
Peaking Percentage >= - 7.5% and <= 7.5% (Even oriented)

The "PM scale factor" term in the above equation is used to ensure that global sum of AM volumes will match the global PM volume totals. The scaling factor is applied to ensure that a consistent number of AM- and PM- oriented links will be developed for the network system. Default hourly volume distributions associated with specific facility and peaking classifications are shown in Table 6. The distributions shown were developed from a geographically dispersed sample of 1,700 hourly directional traffic counts obtained from VDOT and MDOT for 2007.

In the second step, the initial hourly link volumes are compared to hourly link capacities. Special "peak spreading" measures are taken for cases where initial hourly volumes exceed hourly capacities as detailed on Table 7. In the case of overly congested freeways, the link capacities are moderated to reflect the fact that the "through-put" volumes cannot be sustained when the V/C ratio exceeds 1.0 (see Table 8). The peak spreading procedure detailed on Table 7 is essentially a technique for moving excessive peak hour traffic systematically into shoulder hours. Traffic assignments on rare occasions could produce severely overloaded link volumes to the point where a given link volume could exceed the capacity over *all* hours of the day. Because of this possibility, volume adjustments are *not* made for the first, noon, and last hours (hours 1, 13, and 24), even if a given link volume is determined to exceed capacity in those particular hours. An analysis of overloaded links for 2007 indicated that this condition occurred on about three percent of all links. The resulting "final" hourly link volumes are used to develop V/C ratios and speeds using the speed-flow relationship shown on Table 9.

⁷ The PM_{2.5} emission rate does not vary by speed, but the PM_{2.5} computation is still made on an hourly basis.

Table 6 Hourly Distribution of Daily Traffic by Link Orientation and Facility Type

		AM			PM		EVEN			
Hour	Freeway	Arterial	Collector	Freeway	Arterial	Collector	Freeway	Arterial	Collector	
1	0.81%	0.53%	0.43%	1.03%	0.72%	0.57%	0.95%	0.62%	0.56%	
2	0.60%	0.32%	0.27%	0.63%	0.40%	0.33%	0.62%	0.37%	0.31%	
3	0.56%	0.28%	0.23%	0.47%	0.30%	0.25%	0.51%	0.31%	0.25%	
4	0.82%	0.40%	0.31%	0.45%	0.27%	0.25%	0.59%	0.39%	0.32%	
5	2.45%	1.21%	1.30%	0.66%	0.50%	0.59%	1.25%	0.95%	0.82%	
6	5.76%	3.70%	4.11%	1.84%	1.44%	1.95%	3.24%	2.69%	2.50%	
7	7.90%	6.59%	7.76%	3.54%	3.20%	4.00%	5.29%	5.02%	5.02%	
8	8.89%	8.90%	9.44%	4.98%	5.13%	5.49%	6.64%	6.90%	6.61%	
9	7.72%	8.35%	7.92%	5.07%	5.37%	5.49%	6.56%	6.67%	6.59%	
10	6.15%	6.16%	5.55%	4.44%	4.64%	4.65%	5.70%	5.57%	5.50%	
11	4.90%	4.92%	4.59%	4.25%	4.36%	4.20%	4.94%	4.90%	4.71%	
12	4.53%	4.85%	4.64%	4.42%	4.75%	4.46%	4.95%	5.10%	5.11%	
13	4.55%	5.07%	4.91%	4.80%	5.23%	4.95%	5.15%	5.37%	5.41%	
14	4.55%	4.99%	4.84%	5.19%	5.38%	5.17%	5.29%	5.35%	5.32%	
15	4.94%	5.27%	5.15%	6.63%	6.15%	6.00%	6.01%	5.88%	5.83%	
16	5.46%	5.87%	6.05%	8.09%	7.67%	7.77%	6.56%	6.70%	6.88%	
17	5.75%	6.30%	6.75%	9.15%	8.95%	9.53%	6.91%	7.41%	7.98%	
18	5.87%	6.77%	7.13%	9.34%	9.65%	10.14%	7.15%	7.78%	8.23%	
19	4.95%	5.94%	5.83%	7.71%	8.18%	8.04%	6.16%	6.67%	6.84%	
20	3.72%	4.59%	4.41%	5.55%	6.04%	5.69%	4.74%	5.14%	5.13%	
21	3.01%	3.47%	3.35%	4.14%	4.46%	4.18%	3.69%	3.95%	3.98%	
22	2.61%	2.72%	2.57%	3.37%	3.52%	3.17%	3.13%	3.08%	3.07%	
23	2.10%	1.79%	1.59%	2.53%	2.30%	1.96%	2.38%	2.00%	1.92%	
24	1.39%	1.01%	0.88%	1.74%	1.38%	1.16%	1.58%	1.17%	1.10%	
Total	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	
No of Obs.	37	366	127	41	468	124	78	393	100	

Table 7 Peak Spreading Procedure Adjustment Process

Step 1:	The AM peak hour (hour 8) initial volume is compared to the link capacity. If the initial hour 8 volume exceeds capacity, then the hour 8 volume is set to capacity (or a moderated capacity value in the case of freeways) and the excess volume portion is added to the volume in periods occurring before <i>and</i> after the AM peak hour (hours 7 and 9) on a 50/50 basis.
Step 2:	The PM peak hour (hour 18) initial volume is compared to the link capacity. If the initial volume exceeds capacity, then the hour 18 volume is set to capacity (or a moderated capacity value in the case of freeways) and the excess volume portion is added to the volume in periods occurring before <i>and</i> after the PM peak hour (hours 17 and 19) on a 50/50 basis.
Step 3:	The volume occurring during pre-AM peak hours (hours 1 to 7) are sequentially checked against the link capacity as in steps 1 and 2, and adjusted (if necessary) in a backward-moving fashion. If the volume occurring in hour 7 exceeds capacity then the hour 7 volume is set to capacity and the excess volume portion is added to the volume of hour 6 volume, and so on. There is no volume spreading at hour 1, even for rare cases where the resulting hour 1 volume exceeds capacity.
Step 4:	The volume occurring during post-AM peak hours (hours 9 to 13) are sequentially checked against the link capacity as in steps 1 and 2, and adjusted (if necessary) in a forward-moving fashion. If the volume occurring in hour 9 exceeds capacity then the hour 9 volume is set to capacity and the excess volume portion is added to the volume of hour 10 volume, and so on. There is no volume spreading at hour 13 (the midday hour), even for rare cases where the resulting hour 13 volume exceeds capacity.
Step 5:	The volume occurring during pre-PM peak hours (hours 13 to 17) are sequentially checked against the link capacity as in steps 1 and 2, and adjusted (if necessary) in a backward-moving fashion. If the volume occurring in hour 17 exceeds capacity then the hour 17 volume is set to capacity and the excess volume portion is added to the volume of hour 16 volume, and so on. There is no volume spreading at hour 13 (the midday hour), even for rare cases where the resulting hour 13 volume exceeds capacity.
Step 6:	The volume occurring during post-PM peak hours (hours 19 to 24) are sequentially checked against the link capacity as in steps 1 and 2, and adjusted (if necessary) in a forward-moving fashion. If the volume occurring in hour 19 exceeds capacity then the hour 19 volume is set to capacity and the excess volume portion is added to the volume of hour 20 volume, and so on. There is no volume spreading at hour 24, even for rare cases where the resulting hour 24 volume exceeds capacity.

Table 8 Freeway Through-Put Capacities Under Congested Conditions

	Fwy	Fwy	Fwy	Fwy	Fwy	FWY
V/C	AT1	AT2	AT3	AT4	AT5	AT6
1.00	1,900	1,900	2,000	2,000	2,000	2,000
1.20	1,815	1,815	1,910	1,910	1,910	1,910
1.40	1,729	1,729	1,820	1,820	1,820	1,820
1.60	1,729	1,729	1,820	1,820	1,820	1,820
1.80	1,729	1,729	1,820	1,820	1,820	1,820
2.00	1,729	1,729	1,820	1,820	1,820	1,820
2.20	1,729	1,729	1,820	1,820	1,820	1,820
9.99	1,729	1,729	1,820	1,820	1,820	1,820

Table 9 Speed Delay Functions used in the Mobile Emissions Post Processor by Facility Type and Area Type (1-7)

V/C	V/C Freeway				Major A	rterial			Minor a	rterial			Colle	ctor		Ex	pressway	1
Atp>	1-2	3-4	5-7	1-2	3-4	5	6-7	1-2	3-4	5	6-7	1-2	3-4	5	6-7	1-2	3-5	6-7
0.000	55.000	60.000	67.000	25.000	35.000	40.000	45.000	20.000	30.000	35.000	40.000	15.000	20.000	25.000	30.000	45.000	50.000	55.000
0.100	54.783	59.764	66.736	24.774	34.683	39.638	44.593	19.762	29.643	34.583	39.523	14.630	19.506	24.383	29.259	44.649	49.610	54.571
0.200	54.479	59.431	66.365	24.464	34.250	39.143	44.036	19.441	29.161	34.022	38.882	14.171	18.895	23.619	28.342	44.166	49.074	53.981
0.300	54.174	59.099	65.994	24.155	33.817	38.648	43.479	19.120	28.680	33.460	38.240	13.713	18.284	22.855	27.426	43.683	48.537	53.390
0.400	53.645	58.522	65.350	23.646	33.105	37.834	42.563	18.611	27.916	32.569	37.222	13.093	17.457	21.822	26.186	42.878	47.642	52.406
0.500	53.116	57.945	64.705	23.138	32.393	37.020	41.648	18.102	27.152	31.678	36.203	12.473	16.631	20.789	24.947	42.073	46.747	51.422
0.600	51.976	56.701	63.316	22.165	31.031	35.465	39.898	17.193	25.790	30.088	34.387	11.631	15.508	19.385	23.262	40.485	44.984	49.482
0.700	50.835	55.456	61.926	21.193	29.670	33.909	38.147	16.285	24.427	28.499	32.570	10.789	14.385	17.982	21.578	38.898	43.220	47.542
0.800	48.329	52.722	58.873	19.427	27.198	31.083	34.969	14.789	22.183	25.880	29.577	9.762	13.016	16.270	19.524	35.880	39.867	43.853
0.900	42.731	46.616	52.054	16.595	23.233	26.552	29.871	12.669	19.003	22.171	25.338	8.643	11.524	14.405	17.286	30.702	34.113	37.524
1.000	27.500	30.000	33.500	12.500	17.500	20.000	22.500	10.000	15.000	17.500	20.000	7.500	10.000	12.500	15.000	22.500	25.000	27.500
1.100	22.610	24.665	27.543	11.200	15.681	17.921	20.161	9.155	13.733	16.022	18.311	7.141	9.521	11.901	14.282	19.893	22.103	24.313
1.170	19.187	20.931	23.373	10.291	14.407	16.465	18.524	8.564	12.846	14.987	17.129	6.889	9.186	11.482	13.779	18.068	20.075	22.083
1.200	17.719	19.330	21.585	9.901	13.861	15.842	17.822	8.311	12.466	14.544	16.622	6.782	9.042	11.303	13.563	17.286	19.206	21.127
1.300	12.829	13.995	15.628	8.601	12.042	13.762	15.483	7.466	11.200	13.066	14.933	6.423	8.563	10.704	12.845	14.678	16.309	17.940
1.400	12.829	13.995	15.628	8.601	12.042	13.762	15.483	7.466	11.200	13.066	14.933	6.423	8.563	10.704	12.845	14.678	16.309	17.940
1.500	12.829	13.995	15.628	8.601	12.042	13.762	15.483	7.466	11.200	13.066	14.933	6.423	8.563	10.704	12.845	14.678	16.309	17.940
1.600	12.829	13.995	15.628	8.601	12.042	13.762	15.483	7.466	11.200	13.066	14.933	6.423	8.563	10.704	12.845	14.678	16.309	17.940
1.800	12.829	13.995	15.628	8.601	12.042	13.762	15.483	7.466	11.200	13.066	14.933	6.423	8.563	10.704	12.845	14.678	16.309	17.940
2.000	12.829	13.995	15.628	8.601	12.042	13.762	15.483	7.466	11.200	13.066	14.933	6.423	8.563	10.704	12.845	14.678	16.309	17.940
2.250	12.829	13.995	15.628	8.601	12.042	13.762	15.483	7.466	11.200	13.066	14.933	6.423	8.563	10.704	12.845	14.678	16.309	17.940
99.990	12.829	13.995	15.628	8.601	12.042	13.762	15.483	7.466	11.200	13.066	14.933	6.423	8.563	10.704	12.845	14.678	16.309	17.940

Subsequent to the development of 'final' hourly link volumes and speeds, the general equation for computing running emissions at the link level is:

$$RunningEm_{ih} = VMT_h * \sum_{j=1}^{27} (RRate_j * Tprop_{ij})$$

Where:

RunningEm_{ih} = Running link emissions at hour h in jurisdiction i VMT_h = Vehicle Miles Travel (after peak-spreading) at hour h

RRate_i = Running rate (gm/mi) as a function of highway speed for jurisdiction j

Tprop_{ij} = Proportion of daily trips between jurisdiction i/j

The regional running emissions are the accumulation of calculated hourly emissions over all network links in the study area. Emissions in grams are converted to tons using a conversion factor of 907,184.74 gm/ton.

7.0 Local Emissions

Local (or off-network) emissions are those generated on smaller facilities that are not included in the regional network. Local emissions are associated with VOC/HC, CO, NOx, and PM 2.5 pollutants and are computed at jurisdiction level by applying per-mile emission rates to the local VMT. However, the local emission calculation requires that local VMT be further allocated among urban and rural categories, as the emission calculation is different.

Local VMT is developed by extrapolating base-year HPMS figures into the future based on the VMT growth forecasts produced by the travel model. TPB staff has summarized base year local VMT at the jurisdiction level for 2007 (see Table 12 in the appendix section of this memorandum).

The calculation steps of local emissions are detailed below:

- 1) Modeled network VMT for the analysis year is summarized at jurisdiction level and merged with the base year information, above.
- 2) Local urban and rural VMT is estimated for the analysis year. First, local VMT is estimated by applying a growth factor to the base year (2007) local VMT. The growth factor is based on modeled VMT change between the base year and analysis year. Next, the base year urban and rural percentages are applied to the local VMT computed for the analysis year.
- 3) Local PM_{2.5} emissions are computed based on total (urban and rural) VMT.
- 4) Urban/local NOx, CO, and VOC emissions are computed using the single local/stabilized emission factor produced by Mobile. This factor is based on an assumed speed of 12.9 mph.
- 5) Rural/local NOx, CO, and VOC emissions are computed by first allocating the rural VMT among speed 'bins' using an assumed average speed profile. The profile reflects a VMT distribution for rural jurisdictions that was summarized from previous modeling files. Next, rural arterial rates are applied to the VMT on the basis of speed.

Previous local emissions calculations have been made using the single (12.9 mph-based) local rate. It is believed that the use of arterial rates at higher speed levels will yield a more accurate emission result for rural areas of the region.

8.0 Conclusions

This memorandum has presented an overview of the technical procedures used to estimate mobile source emissions in the Washington, D.C. region, also known as the post processor. The process combines the travel demand outputs of the regional travel model with emission rates developed with the EPA Mobile 6.2 model. TPB staff has recently updated the post processor to become compliant with the recently released Version 2.3 model, which has been developed using a new 3,722 TAZ system.

Appendix A Post-Processor Flow Chart

Figure 1

Figure 1 Single-season process

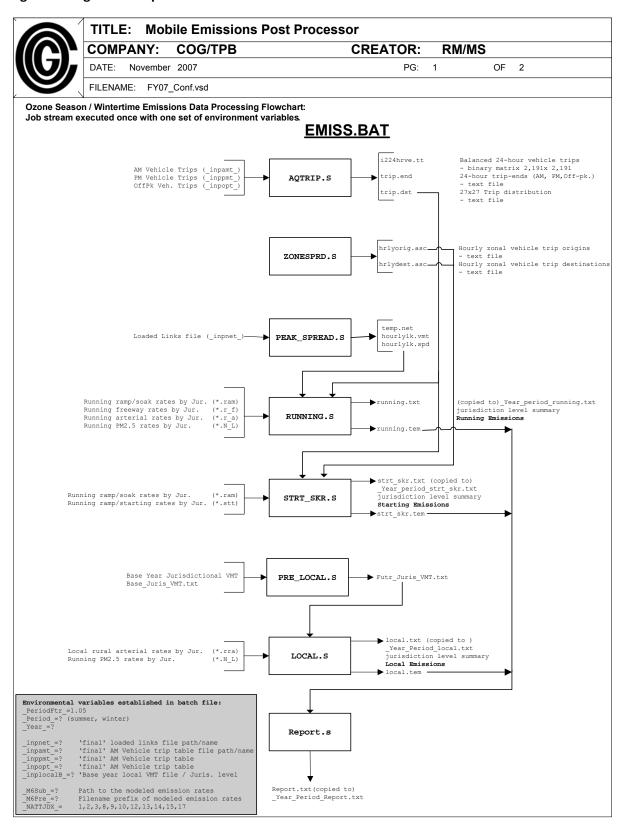
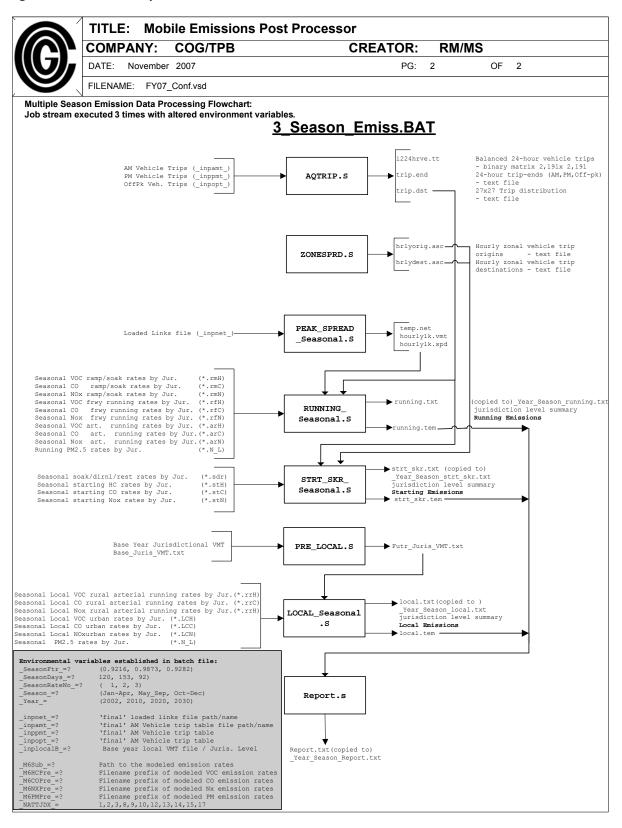



Figure 2

Figure 2 Three-season process

Appendix B

Mobile 6 rates

Table 10

Table 10 Listing of Emission Rate Filenames Prepared for the Post-Processor / Single-Season Post-Processor

	Running Arterial Rates	Running Freeway Rates	Running Freeway Ramp Rates	Starting (Hot/Cold) Rates	Running Local Rates	Running Local -Rural Arterial Rates
Jurisdiction	VOC, CO, Nx Rates by speed	VOC, CO, Nx Rates by speed	VOC, CO, Nx Rates @ 35 mph	Hot VOC, CO, Nox / Cold VOC, CO, Nox Rates	VOC, CO, Nox Rates @ 12.9 mph	VOC, CO, Nx Rates by speed
Alexandria	<pre><prefix>AL.r_a</prefix></pre>	<pre><prefix>AL.r_f</prefix></pre>	<pre><prefix>AL.ram</prefix></pre>	<pre><prefix>AL.stt</prefix></pre>	<pre><prefix>AL.lcl</prefix></pre>	<prefix>AL.r_r</prefix>
Arlington	<pre><prefix>AR.r_a</prefix></pre>	<pre><prefix>AR.r_f</prefix></pre>	<pre><prefix>AR.ram</prefix></pre>	<pre><prefix>AR.stt</prefix></pre>	<pre><pre><pre>AR.lcl</pre></pre></pre>	<pre><prefix>AR.r_r</prefix></pre>
Calvert	<pre><prefix>CA.r_a</prefix></pre>	<pre><prefix>CA.r_f</prefix></pre>	<pre><prefix>CA.ram</prefix></pre>	<pre><prefix>CA.stt</prefix></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><prefix>CA.r_r</prefix></pre>
Charles	<pre><prefix>CH.r_a</prefix></pre>	<pre><prefix>CH.r_f</prefix></pre>	<pre><prefix>CH.ram</prefix></pre>	<pre><prefix>CH.stt</prefix></pre>	<pre><prefix>CH.lcl</prefix></pre>	<pre><prefix>CH.r_r</prefix></pre>
Calvert	<pre><prefix>CL.r_a</prefix></pre>	<pre><prefix>CL.r_f</prefix></pre>	<pre><prefix>CL.ram</prefix></pre>	<pre><prefix>CL.stt</prefix></pre>	<pre><prefix>CL.lcl</prefix></pre>	<pre><prefix>CL.r_r</prefix></pre>
DC	<pre><prefix>DC.r_a</prefix></pre>	<pre><prefix>DC.r_f</prefix></pre>	<pre><prefix>DC.ram</prefix></pre>	<pre><prefix>DC.stt</prefix></pre>	<pre><prefix>DC.lcl</prefix></pre>	<pre><prefix>DC.r_r</prefix></pre>
Frederick	<pre><prefix>FR.r_a</prefix></pre>	<pre><prefix>FR.r_f</prefix></pre>	<pre><prefix>FR.ram</prefix></pre>	<pre><prefix>FR.stt</prefix></pre>	<pre><pre><pre>fix>FR.lcl</pre></pre></pre>	<pre><prefix>FR.r_r</prefix></pre>
Fairfax	<pre><prefix>FX.r_a</prefix></pre>	<pre><prefix>FX.r_f</prefix></pre>	<pre><prefix>FX.ram</prefix></pre>	<pre><prefix>FX.stt</prefix></pre>	<pre><prefix>FX.lcl</prefix></pre>	<pre><prefix>FX.r_r</prefix></pre>
Loudoun	<pre><prefix>LD.r_a</prefix></pre>	<pre><prefix>LD.r_f</prefix></pre>	<pre><prefix>LD.ram</prefix></pre>	<pre><prefix>LD.stt</prefix></pre>	<pre><prefix>LD.lcl</prefix></pre>	<pre><prefix>LD.r_r</prefix></pre>
Montgomery	<pre><prefix>MC.r_a</prefix></pre>	<pre><prefix>MC.r_f</prefix></pre>	<pre><prefix>MC.ram</prefix></pre>	<pre><prefix>MC.stt</prefix></pre>	<pre><prefix>MC.lcl</prefix></pre>	<pre><prefix>MC.r_r</prefix></pre>
Pr. George's	<pre><prefix>PG.r_a</prefix></pre>	<pre><prefix>PG.r_f</prefix></pre>	<pre><prefix>PG.ram</prefix></pre>	<pre><prefix>PG.stt</prefix></pre>	<pre><prefix>PG.lcl</prefix></pre>	<pre><prefix>PG.r_r</prefix></pre>
Pr. William	<pre><prefix>PW.r_a</prefix></pre>	<pre><prefix>PW.r_f</prefix></pre>	<pre><prefix>PW.ram</prefix></pre>	<pre><prefix>PW.stt</prefix></pre>	<pre><prefix>PW.lcl</prefix></pre>	<pre><prefix>PW.r_r</prefix></pre>
St. Mary's	<pre><pre><pre><pre><pre>a</pre></pre></pre></pre></pre>	<pre><prefix>SM.r_f</prefix></pre>	<pre><prefix>SM.ram</prefix></pre>	<pre><prefix>SM.stt</prefix></pre>	<pre><prefix>SM.lcl</prefix></pre>	<pre><prefix>SM.r_r</prefix></pre>
Sprotsylvania	<pre><pre><pre><pre>a</pre></pre></pre></pre>	<pre><prefix>SP.r_f</prefix></pre>	<pre><prefix>SP.ram</prefix></pre>	<pre><prefix>SP.stt</prefix></pre>	<pre><prefix>SP.lcl</prefix></pre>	<pre><prefix>SP.r_r</prefix></pre>
Stafford	<pre><pre><pre><pre><pre>a</pre></pre></pre></pre></pre>	<pre><prefix>ST.r_f</prefix></pre>	<pre><prefix>ST.ram</prefix></pre>	<pre><prefix>ST.stt</prefix></pre>	<pre><prefix>ST.lcl</prefix></pre>	<pre><prefix>ST.r_r</prefix></pre>
Washington Co	<pre><pre><pre><pre><pre>a</pre></pre></pre></pre></pre>	<pre><prefix>WE.r_f</prefix></pre>	<pre><prefix>WE.ram</prefix></pre>	<pre><prefix>WE.stt</prefix></pre>	<pre><prefix>WE.lcl</prefix></pre>	<pre><prefix>WE.r_r</prefix></pre>

Table 11

Table 11 Listing of Emission Rate Filenames Prepared for the Post-Processor / Three – Season Post-Processor

							1			
		Running Arterial Rates	Running Freeway Rates	Running Freeway Ramp Rates	Starting (Hot/Cold) Rates	Running Local Rates	Running Local -Rural Arterial Rates			Coornel DM 2 5
Pollutant	Jurisdiction	Seasonal Rates by speed	Seasonal Rates by speed	Seasonal Rates @ 35 mph speed	Seasonal Hot/Cold Rates	Seasonal Rates @ 12.9 mph speed	Seasonal Rates by speed	Pollutant	Jurisdiction	Seasonal PM 2.5 Network and Local Rates
	Alexandria	<pre><prefix>COAL.arC</prefix></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><prefix>COAL.rmC</prefix></pre>	<pre><prefix>COAL.stC</prefix></pre>	<pre><prefix>COAL.lcC</prefix></pre>	<pre><prefix>COAL.rrC</prefix></pre>	PM 2.5	Alexandria	<pre><prefix>pmAL.N_L</prefix></pre>
	Arlington	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre>coar.frc</pre></pre></pre>	<pre><pre><pre>coar.rmC</pre></pre></pre>	<pre><prefix>COAR.stC</prefix></pre>	<pre><prefix>COAR.lcC</prefix></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	1	Arlington	<pre><prefix>pmAR.N_L</prefix></pre>
	Calvert	<pre><prefix>COCA.arC</prefix></pre>	<pre><prefix>COCA.frC</prefix></pre>	<pre><prefix>COCA.rmC</prefix></pre>	<pre><prefix>COCA.stC</prefix></pre>	<pre><prefix>COCA.lcC</prefix></pre>	<pre><prefix>COCA.rrC</prefix></pre>	Seasonal Network /	Calvert	<pre><prefix>pmCA.N_L</prefix></pre>
	Charles	<pre><prefix>COCH.arC</prefix></pre>	<pre><prefix>COCH.frC</prefix></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre>fix>COCH.stC</pre></pre></pre>	<pre><prefix>COCH.lcC</prefix></pre>	<pre><prefix>COCH.rrC</prefix></pre>	Seasonal Local	Charles	<pre><prefix>pmCH.N_L</prefix></pre>
	Calvert	<pre><prefix>COCL.arC</prefix></pre>	<pre><prefix>COCL.frC</prefix></pre>	<pre><prefix>COCL.rmC</prefix></pre>	<pre><prefix>COCL.stC</prefix></pre>	<pre><prefix>COCL.lcC</prefix></pre>	<pre><prefix>COCL.rrC</prefix></pre>		Calvert	<pre><prefix>pmCL.N_L</prefix></pre>
	DC	<pre><prefix>CODC.arC</prefix></pre>	<pre><prefix>CODC.frC</prefix></pre>	<pre><prefix>CODC.rmC</prefix></pre>	<pre><prefix>CODC.stC</prefix></pre>	<pre><prefix>CODC.lcC</prefix></pre>	<pre><prefix>CODC.rrC</prefix></pre>		DC	<pre><prefix>pmDC.N_L</prefix></pre>
	Frederick	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre>fix>COFR.frC</pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre>fix>COFR.stC</pre></pre></pre>	<pre><prefix>COFR.lcC</prefix></pre>	<pre><prefix>COFR.rrC</prefix></pre>		Frederick	<pre><prefix>pmFR.N_L</prefix></pre>
	Fairfax	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre>fix>COFX.frC</pre></pre></pre>	<pre><prefix>COFX.rmC</prefix></pre>	<pre><pre><pre>fix>COFX.stC</pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><prefix>COFX.rrC</prefix></pre>		Fairfax	<pre><prefix>pmFX.N_L</prefix></pre>
	Loudoun	<pre><prefix>COLD.arC</prefix></pre>	<pre><prefix>COLD.frC</prefix></pre>	<pre><prefix>COLD.rmC</prefix></pre>	<pre><prefix>COLD.stC</prefix></pre>	<pre><prefix>COLD.lcC</prefix></pre>	<pre><prefix>COLD.rrC</prefix></pre>		Loudoun	<pre><prefix>pmLD.N_L</prefix></pre>
	Montgomery	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre>fix>COMC.frC</pre></pre></pre>	<pre><prefix>COMC.rmC</prefix></pre>	<pre><pre><pre>fix>COMC.stC</pre></pre></pre>	<pre><prefix>COMC.lcC</prefix></pre>	<pre><prefix>COMC.rrC</prefix></pre>		Montgomery	<pre><prefix>pmMC.N_L</prefix></pre>
	Pr. George's	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre>fix>COPG.frC</pre></pre></pre>	<pre><prefix>COPG.rmC</prefix></pre>	<pre><pre><pre>fix>COPG.stC</pre></pre></pre>	<pre><prefix>COPG.lcC</prefix></pre>	<pre><prefix>COPG.rrC</prefix></pre>		Pr. George's	<pre><prefix>pmPG.N_L</prefix></pre>
	Pr. William	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><prefix>COPW.rmC</prefix></pre>	<pre><prefix>COPW.stC</prefix></pre>	<pre><prefix>COPW.lcC</prefix></pre>	<pre><prefix>COPW.rrC</prefix></pre>		Pr. William	<pre><prefix>pmPW.N_L</prefix></pre>
	St. Mary's	<pre><prefix>COSM.arC</prefix></pre>	<pre><prefix>COSM.frC</prefix></pre>	<pre><prefix>COSM.rmC</prefix></pre>	<pre><prefix>COSM.stC</prefix></pre>	<pre><prefix>COSM.lcC</prefix></pre>	<pre><prefix>COSM.rrC</prefix></pre>	1	St. Mary's	<pre><prefix>pmSM.N_L</prefix></pre>
Ì	Sprotsylvania	<pre><prefix>COSP.arC</prefix></pre>	<pre><pre><pre>fix>COSP.frC</pre></pre></pre>	<pre><prefix>COSP.rmC</prefix></pre>	<pre><prefix>COSP.stC</prefix></pre>	<pre><prefix>COSP.lcC</prefix></pre>	<pre><prefix>COSP.rrC</prefix></pre>		Sprotsylvania	<pre><prefix>pmSP.N_L</prefix></pre>
Ì	Stafford	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><prefix>COST.frC</prefix></pre>	<pre><prefix>COST.rmC</prefix></pre>	<pre><prefix>COST.stC</prefix></pre>	<pre><prefix>COST.lcC</prefix></pre>	<pre><prefix>COST.rrC</prefix></pre>		Stafford	<pre><prefix>pmST.N_L</prefix></pre>
	Washington Co	<pre><prefix>COWE.arC</prefix></pre>	<pre><pre><pre>fix>COWE.frC</pre></pre></pre>	<pre><prefix>COWE.rmC</prefix></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><prefix>COWE.lcC</prefix></pre>	<pre><prefix>COWE.rrC</prefix></pre>		Washington Co	<pre><prefix>pmWE.N_L</prefix></pre>
VOC	Alexandria	<pre><pre><pre><pre>AL.arH</pre></pre></pre></pre>	<pre><prefix>HCAL.frH</prefix></pre>	<pre><prefix>HCAL.rmH</prefix></pre>	<pre><prefix>HCAL.stH</prefix></pre>	<pre><prefix>HCAL.lcH</prefix></pre>	<pre><prefix>HCAL.rrH</prefix></pre>			
	Arlington	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre>AR.frH</pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCAR.stH</pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCAR.rrH</pre></pre></pre></pre>			
	Calvert	<pre><pre><pre><pre><pre>A contact con</pre></pre></pre></pre></pre>	<pre><pre><pre><pre>And it is a second control of the second contr</pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre>A contact /pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCCA.lcH</pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>			
	Charles	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre>Aprefix>HCCH.frH</pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCCH.lcH</pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>			
	Calvert	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCCL.frH</pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCCL.stH</pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCCL.lcH</pre></pre></pre></pre>	<pre><prefix>HCCL.rrH</prefix></pre>			
	DC	<pre><pre><pre><pre>fix>HCDC.arH</pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCDC.frH</pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCDC.rmH</pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCDC.stH</pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCDC.lcH</pre></pre></pre></pre>	<pre><prefix>HCDC.rrH</prefix></pre>			
	Frederick	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCFR.frH</pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCFR.lcH</pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>			
	Fairfax	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCFX.stH</pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>			
Ì	Loudoun	<pre><pre><pre><pre>fix>HCLD.arH</pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCLD.frH</pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCLD.stH</pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCLD.lcH</pre></pre></pre></pre>	<pre><prefix>HCLD.rrH</prefix></pre>			
	Montgomery	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCMC.frH</pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCMC.rmH</pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCMC.stH</pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCMC.lcH</pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCMC.rrH</pre></pre></pre></pre>			
Ì	Pr. George's	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCPG.frH</pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCPG.rmH</pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCPG.stH</pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCPG.lcH</pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>			
	Pr. William	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>			
	St. Mary's	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCSM.frH</pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCSM.stH</pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCSM.lcH</pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>			
	Sprotsylvania	<pre><prefix>HCSP.arH</prefix></pre>	<pre><pre><pre>fix>HCSP.frH</pre></pre></pre>	<pre><pre><pre><pre>fix>HCSP.rmH</pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCSP.stH</pre></pre></pre></pre>	<pre><prefix>HCSP.lcH</prefix></pre>	<pre><prefix>HCSP.rrH</prefix></pre>			
	Stafford	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCST.frH</pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCST.stH</pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCST.lcH</pre></pre></pre></pre>	<pre><prefix>HCST.rrH</prefix></pre>			
	Washington Co	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCWE.frH</pre></pre></pre></pre>	<pre><pre><pre><pre>fix>HCWE.rmH</pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>			
Ì								Pollutant	Jurisdiction	Seasonal Soak Rates
NOx	Alexandria	<pre><prefix>NXAL.arN</prefix></pre>	<pre><pre><pre><pre>All.frN</pre></pre></pre></pre>	<pre><prefix>NXAL.rmN</prefix></pre>	<pre><prefix>NXAL.stN</prefix></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><prefix>NXAL.rrN</prefix></pre>		Alexandria	<pre><prefix>HCAL.SDR</prefix></pre>
	Arlington	<pre><prefix>NXAR.arN</prefix></pre>	<pre><pre><pre><pre>AR.frN</pre></pre></pre></pre>	<pre><prefix>NXAR.rmN</prefix></pre>	<pre><pre><pre><pre>ANXAR.stN</pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><prefix>NXAR.rrN</prefix></pre>	Soak, Diurnal,	Arlington	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>
	Calvert	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	Resting Loss	Calvert	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>
	Charles	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	Rates	Charles	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>
	Calvert	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><prefix>NXCL.lcN</prefix></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	1	Calvert	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>
	DC	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre>fix>NXDC.rmN</pre></pre></pre></pre>	<pre><pre><pre><pre>StN</pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	Seasonal Soak,	DC	<pre><pre><pre><pre>SDR</pre></pre></pre></pre>
	Frederick	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	Seasonal Diurnal,	Frederick	<pre><pre><pre><pre>fix>HCFR.SDR</pre></pre></pre></pre>
	Fairfax	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	Seasonal Rest Loss	Fairfax	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>
	Loudoun	<pre><pre><pre><pre>Allow of the content of the con</pre></pre></pre></pre>	<pre><pre><pre>fix>NXLD.frN</pre></pre></pre>	<pre><prefix>NXLD.rmN</prefix></pre>	<pre><prefix>NXLD.stN</prefix></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><prefix>NXLD.rrN</prefix></pre>	1	Loudoun	<pre><prefix>HCLD.SDR</prefix></pre>
	Montgomery	<pre><prefix>NXMC.arN</prefix></pre>	<pre><pre><pre>fix>NXMC.frN</pre></pre></pre>	<pre><prefix>NXMC.rmN</prefix></pre>	<pre><prefix>NXMC.stN</prefix></pre>	<pre><prefix>NXMC.lcN</prefix></pre>	<pre><prefix>NXMC.rrN</prefix></pre>	1	Montgomery	<pre><pre><pre><pre>SDR</pre></pre></pre></pre>
	Pr. George's	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre>StN</pre></pre></pre></pre>	<pre><prefix>NXPG.lcN</prefix></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	1	Pr. George's	<pre><pre><pre><pre>SDR</pre></pre></pre></pre>
	Pr. William	<pre><prefix>NXPW.arN</prefix></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><prefix>NXPW.lcN</prefix></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	1	Pr. William	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>
	St. Mary's	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre>All of the control of the contr</pre></pre></pre></pre>	<pre><prefix>NXSM.rmN</prefix></pre>	<pre><prefix>NXSM.stN</prefix></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	1	St. Mary's	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>
	Sprotsylvania	<pre><prefix>NXSP.arN</prefix></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><prefix>NXSP.lcN</prefix></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	1	Sprotsylvania	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>
	Stafford	<pre><pre><pre><pre><pre><pre>All the control of th</pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre>fix>NXST.frN</pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	1	Stafford	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>
	Washington Co	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><pre><pre><pre>fix>NXWE.rmN</pre></pre></pre></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	<pre><prefix>NXWE.lcN</prefix></pre>	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	1	Washington Co	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>

Appendix C Jurisdictional Master VMT Table

Table 12

Table 12 2007 Daily Weekday VMT by Federal Functional Class and Jurisdiction

			2.Rural Other	6.Rural	7.Rural	8.Rural			12.Urban Other	14.Urban Other	16.Urban											
Jur.		1.Rural	Principal	Minor	Major	Minor	9.Rural	11.Urban	Freeway &	Principal	Minor	17.Urban	19.Urban		Total Local	Total Non-	Total Urban	Total Rural		% Non-		
Code	Jurisdiction	Interstate	Arterial	Arterial	Collector	Collector	Local	Interstate	Expressway	Arterial	Arterial	Collector	Local	Total	VMT	Local VMT	VMT	VMT	% Local	Local	% Urban	% Rural
0	District of Columbia	0	0	0	0	0	0	1,178,100	1,110,900	2,970,450	2,134,650	877,800	2,110,500	10,382,400	2,110,500	8,271,900	10,382,400	0	20.33%	79.67%	100.00%	0.00%
1	Montgomery County	411,370	0	327,945	284,795	129,452	146,712	6,955,890	621,370	6,320,137	3,095,342	1,743,288	1,455,616	21,491,918	1,602,329	19,889,589	20,191,644	1,300,274	7.46%	92.54%	93.95%	6.05%
2	Prince George's County	112,192	489,041	112,192	258,904	117,945	140,959	8,215,890	4,542,329	4,809,863	2,888,219	1,769,178	1,726,027	25,182,740	1,866,986	23,315,753	23,951,507	1,231,233	7.41%	92.59%	95.11%	4.89%
3	Arlington County	0	0	0	0	0	0	1,495,790	1,312,709	740,883	654,119	188,016	391,612	4,783,129	391,612	4,391,518	4,783,129	0	8.19%	91.81%	100.00%	0.00%
4	City of Alexandria	0	0	0	0	0	0	789,051	38,160	430,137	595,561	104,642	160,122	2,117,674	160,122	1,957,552	2,117,674	0	7.56%	92.44%	100.00%	0.00%
5	Fairfax County	0	0	0	0	0	0	9,646,576	2,050,380	7,478,728	6,100,151	1,523,361	1,720,282	28,519,477	1,720,282	26,799,196	28,519,477	0	6.03%	93.97%	100.00%	0.00%
6	Loudoun County	0	785,989	569,362	606,292	22,844	254,593	0	116,979	1,869,657	407,639	881,145	376,986	5,891,485	631,579	5,259,907	3,652,406	2,239,079	10.72%	89.28%	61.99%	38.01%
7	Prince William County	106,410	95,440	147,671	244,332	26,686	163,398	3,048,641	0	1,499,508	1,978,079	853,500	902,455	9,066,119	1,065,853	8,000,267	8,282,183	783,937	11.76%	88.24%	91.35%	8.65%
9	Frederick County	1,498,767	998,219	385,479	670,274	379,726	512,055	1,536,164	888,904	486,164	486,164	512,055	302,055	8,656,027	814,110	7,841,918	4,211,507	4,444,521	9.41%	90.59%	48.65%	51.35%
10	Howard County	736,438	276,164	253,151	244,521	77,671	218,630	3,057,945	2,885,342	630,000	1,254,247	678,904	661,644	10,974,658	880,274	10,094,384	9,168,082	1,806,575	8.02%	91.98%	83.54%	16.46%
11	Anne Arundel County	983,836	238,767	546,575	184,110	89,178	281,918	2,643,699	4,378,356	2,712,740	2,246,712	1,306,027	1,032,740	16,644,658	1,314,658	15,330,000	14,320,274	2,324,384	7.90%	92.10%	86.04%	13.96%
12	Charles County	0	900,411	258,904	333,699	169,726	215,753	0	0	1,127,671	325,068	233,014	129,452	3,693,699	345,205	3,348,493	1,815,205	1,878,493	9.35%	90.65%	49.14%	50.86%
14	Carrol County	0	143,836	773,836	388,356	184,110	186,986	106,438	0	1,360,685	241,644	195,616	146,712	3,728,219	333,699	3,394,521	2,051,096	1,677,123	8.95%	91.05%	55.02%	44.98%
15	Calvert County	0	969,452	57,534	126,575	132,329	166,849	0	92,055	348,082	103,562	140,959	54,658	2,192,055	221,507	1,970,548	739,315	1,452,740	10.10%	89.90%	33.73%	66.27%
16	St. Mary's County	0	451,644	540,822	293,425	195,616	184,110	0	23,014	514,932	83,425	92,055	54,658	2,433,699	238,767	2,194,932	768,082	1,665,616	9.81%	90.19%	31.56%	68.44%
17	King George County	0	275,350	376,047	134,035	3,657	37,179	0	0	0	0	0	0	826,268	37,179	789,089	0	826,268	4.50%	95.50%	0.00%	100.00%
18	City of Fredericksburg	0	0	0	0	0	0	493,056	0	272,654	104,304	78,482	94,679	1,043,174	94,679	948,495	1,043,174	0	9.08%	90.92%	100.00%	0.00%
19	Stafford County	0	150,880	98,655	155,634	8,349	156,734	2,238,793	0	502,451	132,572	542,032	240,041	4,226,142	396,775	3,829,366	3,655,890	570,252	9.39%	90.61%	86.51%	13.49%
20	Spotsylvania County	933,918	0	362,162	372,546	21,192	162,064	403,896	0	723,212	167,557	315,055	250,767	3,712,368	412,831	3,299,537	1,860,487	1,851,881	11.12%	88.88%	50.12%	49.88%
21	Fauquier County	859,616	1,486,597	315,031	433,123	54,769	231,305	0	0	0	0	0	0	3,380,441	231,305	3,149,136	0	3,380,441	6.84%	93.16%	0.00%	100.00%
22	Clarke County	0	339,087	330,968	70,525	29,029	42,796	0	0	0	0	0	0	812,404	42,796	769,608	0	812,404	5.27%	94.73%	0.00%	100.00%
23	Jefferson County	0	437,189	124,257	215,450	52,689	95,928	0	0	138,432	73,983	39,764	18,218	1,195,908	114,146	1,081,763	270,396	925,512	9.54%	90.46%	22.61%	77.39%
	Total	5,642,547	8,038,065	5,580,589	5,016,594	1,694,968	3,197,969	41,809,931	18,060,498	34,936,386	23,072,998	12,074,892	11,829,223	170,954,662	15,027,192	155,927,469	141,783,929	29,170,733	8.79%	91.21%	82.94%	17.06%

Appendix D

CLRP 2011 Air Quality Work Subdirectory and Input Files

Table 13 2011 CLRP Air Quality Data Processing Subdirectories

Description of Contents	Subdirectory
Location of Post – Processor Exec	cutions/Outputs
2002 Ozone Season VOC, CO, Nx	l:\CGV2_2.3.34_Oct_11_Emiss_Conformity2011CLRP\Emissions\2002_ozone
2002 Annual Nx Precursor, PM 2.5	:\CGV2_2.3.34_Oct_11_Emiss_Conformity2011CLRP\Emissions\2002_annual
2016 Ozone Season VOC, CO, Nx	l:\CGV2_2.3.34_Oct_11_Emiss_Conformity2011CLRP\Emissions\2016_ozone
2016 Winter Season VOC, CO, Nx	I:\CGV2_2.3.34_Oct_11_Emiss_Conformity2011CLRP\Emissions\2016_w interCO
2016 Annual Nx Precursor, PM 2.5	I:\CGV2_2.3.34_Oct_11_Emiss_Conformity2011CLRP\Emissions\2016_annual
2020 Ozone Season VOC, CO, Nx	l:\CGV2_2.3.34_Oct_11_Emiss_Conformity2011CLRP\Emissions\2020_ozone
2020 Winter Season VOC, CO, Nx	I:\CGV2_2.3.34_Oct_11_Emiss_Conformity2011CLRP\Emissions\2020_w interCO
2020 Annual Nx Precursor, PM 2.5	I:\CGV2_2.3.34_Oct_11_Emiss_Conformity2011CLRP\Emissions\2020_annual
2030 Ozone Season VOC, CO, Nx	l:\CGV2_2.3.34_Oct_11_Emiss_Conformity2011CLRP\Emissions\2030_ozone
2030 Winter Season VOC, CO, Nx	I:\CGV2_2.3.34_Oct_11_Emiss_Conformity2011CLRP\Emissions\2030_w interCO
2030 Annual Nx Precursor, PM 2.5	I:\CGV2_2.3.34_Oct_11_Emiss_Conformity2011CLRP\Emissions\2030_annual
2040 Ozone Season VOC, CO, Nx	l:\CGV2_2.3.34_Oct_11_Emiss_Conformity2011CLRP\Emissions\2040_ozone
2040 Winter Season VOC, CO, Nx	I:\CGV2_2.3.34_Oct_11_Emiss_Conformity2011CLRP\Emissions\2040_w interCO
2040 Annual Nx Precursor, PM 2.5	l:\CGV2_2.3.34_Oct_11_Emiss_Conformity2011CLRP\Emissions\2040_annual

Table 14 2011 CLRP Mobile 6.2 Emission Rate File Subdirectories

Emission Rate Inputs	
2002 VOC, CO, Nx rates Ozone Season	I:\CGV2_2_Aug_07_Conformity2008\EMISSIONS\M6RATES\2002
2002 VOC, CO, Nx, PM rates – 3 Seasons	I:\CGV2_2_May_09_Conformity2010\EMISSIONS\m6rates\2002_annual
2016 VOC, CO, Nx rates Ozone Season	I:\CGV2_3_Aug_11_Emiss_Conformity2011CLRP\Emissions\M6RATES\2016_ozone
2016 VOC, CO, Nx rates- Winter Season	t:\CGV2_3_Aug_11_Emiss_Conformity2011CLRP\Emissions\M6RATES\2016_WCO
2016 VOC, CO, Nx, PM rates- 3 Seasons	I:\CGV2_3_Aug_11_Emiss_Conformity2011CLRP\Emissions\M6RATES\2016_annual
2020 VOC, CO, Nx rates Ozone Season	I:\CGV2_2_Aug_2010_AQC_2010CLRP_FY2011_2016TIP\EMISSIONS\M6RATES\2020_Ozone
2020 VOC, CO, Nx rates- Winter Season	t:\CGV2_2_Aug_2010_AQC_2010CLRP_FY2011_2016TIP\EMISSIONS\M6RATES\2020_WCO
2020 VOC, CO, Nx, PM rates- 3 Seasons	I:\CGV2_2_Aug_2010_AQC_2010CLRP_FY2011_2016TIP\EMISSIONS\M6RATES\2020_Season
2030 VOC, CO, Nx rates Ozone Season	I:\CGV2_2_Aug_2010_AQC_2010CLRP_FY2011_2016TIP\EMISSIONS\M6RATES\2030_Ozone
2030 VOC, CO, Nx rates- Winter Season	t:\CGV2_2_Aug_2010_AQC_2010CLRP_FY2011_2016TIP\EMISSIONS\M6RATES\2030_WCO
2030 VOC, CO, Nx, PM rates- 3 Seasons	I:\CGV2_2_Aug_2010_AQC_2010CLRP_FY2011_2016TIP\EMISSIONS\M6RATES\2030_Season
2040 VOC, CO, Nx rates Ozone Season	I:\CGV2_2_Aug_2010_AQC_2010CLRP_FY2011_2016TIP\EMISSIONS\M6RATES\2040_Ozone
2040 VOC, CO, Nx rates- Winter Season	t:\CGV2_2_Aug_2010_AQC_2010CLRP_FY2011_2016TIP\EMISSIONS\M6RATES\2040_WCO
2040 VOC, CO, Nx, PM rates- 3 Seasons	t:\CGV2_2_Aug_2010_AQC_2010CLRP_FY2011_2016TIP\EMISSIONS\M6RATES\2040_Season

Table 15 2011 CLRP Version 2.3 Travel Model File Subdirectories

Travel Model Inputs	
2002 Travel Model Files	N:\model_app\CGV2_3_Conformity2011CLRP_RR_SA\2002_Conf
2016 Travel Model Files	N:\model_app\CGV2_3_Conformity2011CLRP_RR_SA\2016_Conf
2020 Travel Model Files	N:\model_app\CGV2_3_Conformity2011CLRP_RR_SA\2020_Conf
2030 Travel Model Files	N:\model_app\CGV2_3_Conformity2011CLRP_RR_SA\2030_Conf
2040 Travel Model Files	N:\model_app\CGV2_3_Conformity2011CLRP_RR_SA\2040_Conf

APPENDIX F

Vehicle-related Emissions Calculations

Memo

To: Air Quality Files

From: Anant Choudhary, MWCOG/DTP

Date: September 26, 2011

Re: Vehicle Related Emissions: Diurnal and Resting Loss - 2011 CLRP

This memo illustrates the calculation of Diurnal and Resting Loss emissions associated with the 2011 CLRP. A detailed description of work regarding emissions factor updates using Mobile6 is contained in a report by Maureen Mullen of E.H. Pechan & Associates, dated January 27, 2003. Adopting the approach developed by E.H. Pechan & Associates emissions rates were developed using version 6.2 of mobile model.

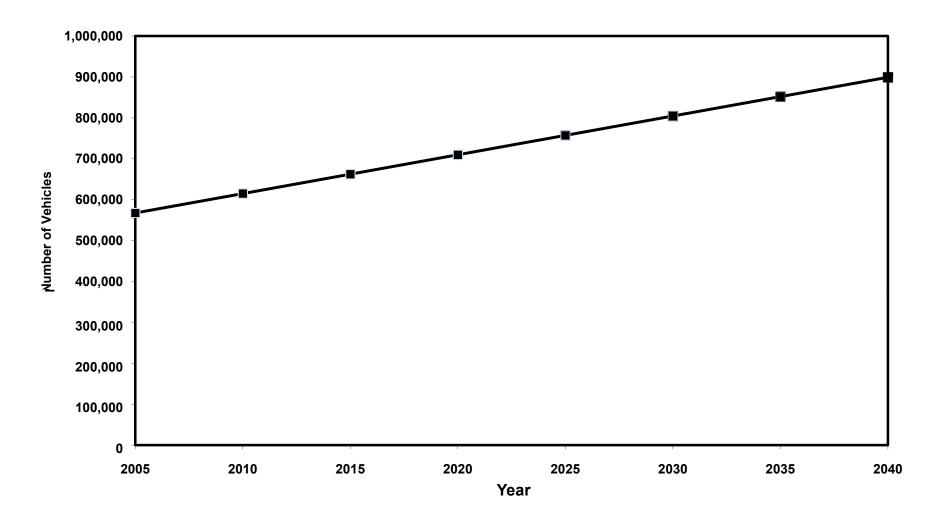
There were no updates to either the vehicle forecast component or the procedure used to calculate these emissions. Vehicle ownership forecasts reflect trends through time for each jurisdiction; using the 2008 vehicle registration data, the slope of the forecast trend line in each jurisdiction was maintained but revised to 'intercept' 2008 conditions. A detailed description of this process can be found in a June 9, 2009 memo from Daivamani Sivasailam in Appendix D. This approach is illustrated on the attached graph for Prince George's County. Table 1 shows summary of vehicle registration forecasts. Also included is a copy of a spreadsheet displaying the calculation of diurnal and resting loss emissions for year 2016 (Table 2). The vehicle population for the year 2016 is estimated by interpolating the current data points. Diurnal and Resting Loss emissions for other milestone years 2002, 2020, 2030, and 2040 are available in the Air Quality Conformity files.

The calculation of these emissions is an off-line process utilizing a spreadsheet format with a very basic calculation:

Number of vehicles by jurisdiction X jurisdiction emissions factor = Emissions

Attachments (3)

.


Table 1
VEHICLE REGISTRATION FORECASTS BY JURISDICTION (USING 2008 VIN)
REGISTRATION ADJUSTED TO YEAR 2008

Jurisdiction	2005	2008	2016	2020	2030	2040
District of Columbia	239,919	243,164	251,817	256,143	266,959	277,775
Calvert	76,827	87,093	114,468	128,155	162,374	196,592
Charles	119,186	129,719	157,806		206,959	242,068
Frederick	198,819	215,863	261,313	284,039	340,852	397,665
Montgomery	661,659	706,176	824,889	884,245	1,032,636	1,181,027
Prince George's	567,652	596,053	671,789	709,657	804,327	898,997
Alexandria	129,001	130,742	135,385	137,706	143,509	149,312
Arlington	135,070	136,888	141,735	144,159	150,218	156,278
Fairfax	788,113	831,961	948,888	1,007,352	1,153,511	1,299,669
Loudoun	222,115	243,902	302,000	331,049	403,671	476,294
Prince William	295,047	318,329	380,415	411,459	489,067	566,675
Stafford	104,053	115,721	146,835	162,392	201,285	240,178
Total	3,537,462	3,755,611	4,337,341	4,628,206	5,355,368	6,082,530

The above forecasts are based on 2008 vehicle registration data decoded from raw VIN numbers provided by District of Columbia DMV, Maryland MVA, and Virginia DMV.

2005 registration data were adjusted based on the 2008 numbers.

Vehicle Registration for Prince George's County by Year

MVA 2008 Vehicle Registration data

Table 2 DIURNAL AND RESTING LOSS EMISSIONS VOC YEAR 2016

		FACT	TORS	EMISS	SIONS
	TOTAL	DIURNAL	RESTGL	DIURNAL	RESTGL
JURISDICTION	VEHICLES	(gm/day/veh)	(gm/hr/veh)	(Tons/day)	(Tons/day)
District of Columbia	251,817	0.241	1.176	0.066	0.320
Montgomery	824,889	0.242	1.130	0.216	1.007
Prince Georges	671,789	0.282	1.382	0.205	1.003
Frederick	261,313	0.301	1.456	0.085	0.411
Charles	157,806	0.294	1.490	0.050	0.254
Calvert	114,468	0.296	1.516	0.037	0.187
Arlington	141,735	0.222	1.075	0.034	0.165
Alexandria	135,385	0.196	0.927	0.029	0.136
Fairfax	948,888	0.216	1.006	0.221	1.031
Loudoun	302,000	0.211	0.990	0.069	0.323
Prince William	380,415	0.229	1.136	0.094	0.467
Stafford	146,835			0.000	0.000
MSA - SUBTOTAL	4,337,341			1.105	5.303
MODELED AREA					
TOTAL	4,337,341			1.105	5.303

Note: 98% of vehicles, which are gas operated, are used to compute Diurnal and Resting Loss emissions Based on 2008 vehicle registration

APPENDIX G

Auto Access Emissions Calculations

Memorandum

To: Air Quality Files

From: Eulalie G. Lucas

Transportation Engineer

Date: October 11, 2011

Re: Off- Network Emissions Calculations: Auto Access to transit

Introduction:

This memo documents emission associated with auto access to transit for the following: 8-Hour Ozone season precursors VOC and NO_X, Wintertime CO, direct PM_{2.5}, and precursor NO_X. Travel data associated with these emission calculations reflect network updates as part of the air quality conformity analysis of the 2011 Constrained Long Range Plan (CLRP). Procedures used for these calculations are consistent with those used for the Severe State Implementation Plan (SIP) submittal. The following paragraphs describe these procedures and updates.

Auto Access to transit emissions:

VMT Mix percent associated with auto access to transit includes only light duty trucks (LDGT2) and not heavy duty trucks as with network VMT mix percents. The LDGT2 weight category includes Ford Navigators, which are used by some commuters to transit and park and ride lots.

Methodology:

The overall approach remains same as used in the previous analysis except for the change of base year conditions and growth factors. The following paragraphs describe the steps applied.

In the current analysis the year 2000 base conditions were replaced with year 2002 conditions consequently year 2002 transit trips from version 2.3 travel demand model and 8.0a land use data were used to come up with the revised growth factors.

The procedure used in the calculation of emissions associated with auto access to transit is an off-line process. The approach is very simple; it involves the application of an emissions rate to the various components of travel, i.e. start up, running (35 mph for arterials and 45 mph for freeways) and hot soak. For trips originating outside the MSA, only those miles within the MSA are used in the calculation. Forecasting for 'out years' is based on growth rates developed from total internal modeled transit trips. The growth rates are then applied to the MWCOG/DTP 2002 Park and Ride Utilization inventory data.

Separate emissions rates are applied by components of a trip cycle i.e. a start up rate for trip origins, a running rate for the running component and hot soak rate for trip destinations. These three rates represent an average of the twelve composite rates for jurisdictions in the non-attainment area and for seven MOBILE6 vehicle types, HDD fractions were zeroed out of the

VMT Mix. This adjustment was made based on the assumption that heavy duty vehicles such as tractor trailers are typically not used by commuters for trips to and from transit locations or to park and ride lots, however as mentioned in the above paragraph Light Duty Trucks are included in the VMT Mix percents.

As with the other components of the annual emissions inventory for fine particles, seasonal adjustments to travel data associated were applied. Totals for each of the three seasons were then added to provide an annual total for each pollutant.

Results:

This year's analysis included an update to one input: 2002 vmt base. In the previous analysis, year 2000 vmt base was used and the growth factors were derived from the transit trips for year 2000 and the year under consideration. As described earlier, in current analysis since the year 2000 base conditions were replaced with year 2002 conditions, there is as drop in autoaccess emissions for the outer years as compared to previous year's analysis. This drop is attributed to lower growth factors for the outer years.

Total Auto Access Emissions by year are listed in Exhibits 18 and 19 of the AQC report for annual emissions, Exhibits 17 for ozone season and Exhibit 20 for Winter CO. The attached exhibits show detailed results for 2016 for pollutants that are part of this analysis. Results for all other analysis years are contained in the air quality conformity files and are available upon request.

C9 auto access documentation.doc

													E M I	SSION	ı e			I	
			2002		2016	2016	AVERAGE	2002	2016	ARTERIAL	FREEWAY	ARTERIAL	FREEWAY	COLD START	• •	RUNNING		HOT SOAK	TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE	Total	INSIDE	OUTSIDE	TRIP LENGTH	2002 VMT	VMT	9		VMT	VMT		Arterial	Freeway	Total		(tons/day)
	MSA (%)	MSA	MSA	Total	Growth Rate	Growth Rate								Rate (gm/mile)	Rate (gm/mile)	Rate (gm/mile)	Running	Rate (gm/mile)	
					1.19	1.19								0.6537	0.1210	0.1077		0.38221667	
COMMUTER RAIL LOTS																			
BRUNSWICK 25%	25	305	102	407	362	121	7.5	3052.5	3,619	57	43	2,063	1,556	0.0006	0.0006	0.0004	0.0009		0.0019
PT OF ROCKS 25%	25	204	68	272		81	7.5	2040	2,419	57	43	1,379	1,040		0.0004		0.0006		0.0013
DICKERSON	0	15	0			0		112.5	133	57	43	76	57		0.0000	0.0000	0.0000		0.0001
BARNESVILLE GERMANTOWN	0	46 386	0			0		345 2895	409	57	43	233 1.956	176 1.476		0.0001	0.0000 0.0004	0.0001	0.0000 0.0004	0.0002
MET GROVE	0		0			0		2895 2640	3,432 3,130	57 57	43 43	1,956	1,476		0.0005	0.0004	0.0009	0.0004	0.0019
	0	352									43	, -			0.0005				
WAS GROVE	0	15	0			0		112.5	133	57	43	76 112	57 84			0.0000	0.0000		0.0001
GARRETT PARK BOWIE 50%	50	22 188	188	22 375		222	7.5 7.5	165 2812.5	196 3,335	57 57	43	1,901	1,434		0.0000	0.0000	0.0000		0.0001
SEABROOK 15%	15	224	40			47	7.5	1980	2,348	57	43	1,338	1,009		0.0003		0.0006		0.0018
KENSINGTON	0	45	0	45		0	7.5	337.5	400	57	43	228	172		0.0004	0.0002	0.0000	0.0002	0.0013
LAUREL 30%	30	209	90	299	248	106	7.5	2242.5	2,659	57	43	1,515	1,143	0.0001	0.0001	0.0003	0.0007		0.0002
GAITHESBURG	0	280	0	280	332	0	7.5	2100	2,659	57	43	1,515	1,143	0.0004	0.0004		0.0007		0.0014
BERWYN HEIGHTS	0	30	0	30	36	0		135	160	57	43	91	69		0.0004	0.0003	0.0000		0.0014
RIVERDALE	0	65	0	65		0		292.5	347	57	43	198	149		0.0001	0.0000	0.0001	0.0001	0.0003
TUVETONEE		- 00	Ü	00			4.0	0	0-17	01	40	100	140	0.0001	0.0001	0.0000	0.0001	0.0001	0.0000
METRO RAIL LOTS								0	0		+	+							
ADDISON ROAD 40%	40	791	527	1318	938	625	7.5	9885	11,720	57	43	6.680	5.040	0.0018	0.0018	0.0012	0.0030	0.0011	0.0058
ARCHIVES	0	12	0	12		0	4.5	54	64	57	43	36	28		0.0000	0.0000	0.0000		0.0000
ARLING	0	10	0	10	12	0		45	53	57	43	30	23		0.0000		0.0000		0.0000
BALLSTON	0	1175	0	1175	1393	0	4.5	5287.5	6,269	57	43	3,573	2,696	0.0020	0.0010	0.0006	0.0016	0.0012	0.0048
BENN.RD	0	520	0	520	617	0	4.5	2340	2,774	57	43	1,581	1,193	0.0009	0.0004	0.0003	0.0007	0.0005	0.0021
BETH	0	395	0	395	468	0	4.5	1777.5	2,107	57	43	1,201	906	0.0007	0.0003	0.0002	0.0005	0.0004	0.0016
BRADD RD	0	10	0			0	4.5	45	53	57	43	30	23		0.0000	0.0000	0.0000		0.0000
BROOKLAND	0	27	0			0	4.5	121.5	144	57	43	82	62		0.0000	0.0000	0.0000		0.0001
CHEVERLY	0	557	0	557	660	0	4.5	2506.5	2,972	57	43	1,694	1,278	0.0010	0.0005	0.0003	0.0008	0.0006	0.0023
0. 45515.01								0.100											
CLARENDON	0	554	0			0		2493	2,956	57	43	1,685	1,271	0.0009	0.0004	0.0003	0.0008	0.0006	0.0023
CLEVELAND PK COURT HOUSE	0	366 256	0			0		1647 1152	1,953	57 57	43 43	1,113 779	840 587		0.0003	0.0002 0.0001	0.0005 0.0003	0.0004 0.0003	0.0015 0.0010
CRYSTAL CITY	0	347	0		411	0		1561.5	1,366 1,851	57	43	1,055	796		0.0002	0.0001	0.0005		0.0014
DEANWOOD	0	194	0			0		873	1,035	57	43	590	445		0.0003	0.0002	0.0003	0.0003	0.00014
DUN LORING 10%	10	1220	136			161	4.5	6097.5	7,229	57	43	4,121	3,109		0.0002	0.0007	0.0018		0.0053
DUPONT CIRCLE	0	165	0	165		0		742.5	880	57	43	502	379		0.0001	0.0001	0.0002		0.0007
EASTERN MKT	0	178	0	178	211	0		801	950	57	43	541	408		0.0001	0.0001	0.0002		0.0007
EAST FALLS CH	0	442	0	442		0		1989	2.358	57	43	1.344	1.014		0.0004		0.0006		0.0018
EIS	0	352	0	352	417	0	4.5	1584	1,878	57	43	1.070	808	0.0006	0.0003	0.0002	0.0005	0.0004	0.0014
FARRAGUT NORTH	0	102	0		121	0		459	544	57	43	310	234		0.0001	0.0001	0.0001	0.0001	0.0004
FARRAGUT WEST	0	221	0	221	262	0	4.5	994.5	1,179	57	43	672	507	0.0004	0.0002	0.0001	0.0003	0.0002	0.0009
FEDERAL CENTER	0	75	0			0	4.5	337.5	400	57	43	228	172		0.0001	0.0000	0.0001	0.0001	0.0003
FEDERAL TRI	0	54	0	54	64	0	4.5	243	288	57	43	164	124		0.0000	0.0000	0.0001	0.0001	0.0002
FOGGY	0	102	0	102		0		459	544	57	43	310	234		0.0001	0.0001	0.0001	0.0001	0.0004
FORT TROTTEN	0	445	0			0		2002.5	2,374	57	43	1,353	1,021	0.0008	0.0004		0.0006		0.0018
FRH.HEIGHTS	0	679	0			0		3055.5	3,623	57	43	2,065	1,558		0.0006		0.0009		0.0028
GALLERY PLACE GROSVENOR	0	124 716	0	124	147 849	0	4.5 4.5	558 3222	3,820	57 57	43 43	377 2,177	284 1,643		0.0001 0.0006	0.0001 0.0004	0.0002 0.0010		0.0005
HUNT NORTH 40%	40	1873	0 1249	716 3122		1481	4.5 7.5	23415	27,761	57 57	43	15,824	11.937	0.0012	0.0006		0.0010	0.0007	0.0029
JUD SQUARE	40	110	1249	110	130	0	4.5	495	587	57	43	335	252		0.0042	0.0028	0.0071	0.0025	0.0130
KING ST	0	30	0	30	36	0	4.5	135	160	57	43	91	69		0.0000	0.0001	0.0001		0.0004
KING OT	0	30	· ·	30	30	0	7.0	133	0	31	70	31	- 03	0.0001	0.0000	0.0000	0.0000	0.0000	0.0001
								0	0										
LANDOVER 25%	25	1410	470	1880	1672	557	7.5	14100	16,717	57	43	9,529	7,188	0.0028	0.0025	0.0017	0.0042	0.0016	0.0087
L'ENFANT PLAZA	0	296	0	296	351	0	4.5	1332	1,579	57	43	900	679	0.0005	0.0002	0.0002	0.00042		0.0012
MCPHERSON SQ	0	52	0	52		0	4.5	234	277		43	158	119		0.0000		0.0001	0.0001	0.0002
MEDICAL CENTER	0	14	0	14		0		63	75		43	43	32		0.0000	0.0000	0.0000		0.0001
METRO CENTER	0	177	0	177	210	0	4.5	796.5	944	57	43	538	406		0.0001	0.0001	0.0002		0.0007
MINNES	0	353	0	353	419	0	4.5	1588.5	1,883	57	43	1,074	810	0.0006	0.0003	0.0002	0.0005	0.0004	0.0014
NAT AIR	0	87	0	87	103	0	4.5	391.5	464	57	43	265	200		0.0001	0.0000	0.0001	0.0001	0.0004
NEW CARROL 50%	50	1049	1049	2097	1243	1243	7.5	15727.5	18,647	57	43	10,629	8,018	0.0027	0.0028	0.0019	0.0047	0.0016	0.0090
PENTAGON	0	561	0	561	665	0	4.5	2524.5	2,993	57	43	1,706	1,287	0.0010	0.0005		0.0008	0.0006	0.0023
PENTAGON CITY		381	0	381	452	0	4.5	1714.5	2,033	57	43	1,159	874	0.0007	0.0003	0.0002	0.0005	0.0004	0.0015

													F M I	ISSION	ı s				
			2002		2016	2016	AVERAGE	2002	2016	ARTERIAL	FREEWAY	ARTERIAL	FREEWAY	COLD START		RUNNING		HOT SOAK	TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE	Total	INSIDE	OUTSIDE	TRIP LENGTH	2002 VMT	VMT		6	VMT	VMT		Arterial	Freeway	Total		(tons/day)
	MSA (%)	MSA	MSA	Total	Growth Rate	Growth Rate								Rate (gm/mile)	Rate (gm/mile)	Rate (gm/mile)	Running	Rate (gm/mile)	
					1.19	1.19								0.6537	0.1210	0.1077		0.38221667	
COMMUTER RAIL LOTS																			
POTOMAC AVE	0	533	0	533		0	4.5	2398.5	2,844	57		1,621	1,223	0.0009	0.0004	0.0003	0.0007	0.0005	0.0022
ROCKVILLE	0	667	0	667		0	4.5	3001.5	3,559	57	43	2,028	1,530		0.0005		0.0009		0.0027
ROSSLYN	0	356	0	356		0	4.5	1602	1,899	57	43		817		0.0003	0.0002	0.0005	0.0004	0.0014
SHADY GROVE 10%	10		434			514	7.5	32527.5	38,566	57	43		16,583	0.0070	0.0059	0.0039	0.0098	0.0041	0.0210
SILVER SPRING	0		0	44		0	4.5	198	235	57	43	134	101		0.0000	0.0000	0.0001	0.0000	0.0002
SMITH MALL	0		0			0	4.5	540	640				275		0.0001	0.0001	0.0002		0.0005
STADIUM ARM	0		0	976		0	4.5	4392	5,207		43		2,239		0.0008	0.0005	0.0013		0.0040
TAKOMA PK	0		0	146		0	4.5	657	779				335		0.0001	0.0001	0.0002		0.0006
TENLEYTON TWINBROOK	0		0	17 1136		0	4.5 4.5	76.5 5112	91 6.061	57 57	43 43	52 3.455	39 2.606		0.0000	0.0000	0.0000		0.0001
	0		0			0		1701											
UNION STAT VAN NESS	0	378 343	0	378 343		0	4.5 4.5	1543.5	2,017 1,830	57 57	43 43	1,150 1,043	867 787		0.0003 0.0003	0.0002 0.0002	0.0005 0.0005	0.0004 0.0003	0.0015 0.0014
VIENNA 25%	25		933	3731		1106	7.5	27982.5	33,177			18,911	14,266		0.0050	0.0002	0.0005	0.0003	0.0014
VA SQUARE	0		933	642		0	4.5	2889	3,425				1,473		0.0030		0.0009		0.0026
WEST FALLS CHURCH	0		0	2183		0	4.5	9823.5	11,647	57			5,008		0.0003		0.0009		0.0020
WHITE FLINT	n	1633	0	1633		0	4.5	7348.5	8,713	57	43	4,966	3,746		0.0013	0.0009	0.0022	0.0016	0.0066
WOODLEY	0	68	0	68		0	4.5	306	363	57	43		156		0.0013	0.0000	0.0022	0.0001	0.0003
RHODE ISLAND 30%	30		114	380		135	7.5	2850	3,379	57	43	1,926	1,453		0.0005	0.0003	0.0009	0.0003	0.0017
								0	0										
BUS & CAR POOL LOTS				_				0	0										
								0	0										
CARTER BARRON	0	798	0	798		0	4.5	3591	4,258				1,831	0.0014	0.0006	0.0004	0.0011	0.0008	0.0032
PG PLAZA	0	47	0	47		0	4.5	211.5	251	57			108		0.0000	0.0000	0.0001	0.0000	0.0002
PENN MAR SHOPP.	0		0			0	4.5	450	534	57	43	304	229		0.0001	0.0001	0.0001	0.0001	0.0004
CAP PLAZA	0		0			0	4.5	450	534	57			229		0.0001	0.0001	0.0001	0.0001	0.0004
EASTOVER	0		0			0	4.5	450	534	57	43	304	229		0.0001	0.0001	0.0001	0.0001	0.0004
FOUR MILE RUN	0	28	0	28	33	0	4.5	126	149	57	43	85	64	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001
SPRINGFIELD MALL	0	580	0	500	000	0	4.5	2010	2.004	57	40	4.704	4 224	0.0010	0.0005	0.0003	0.0000	0.0000	0.0004
SPRINGFIELD MALL SPRINGFIELD METH CH	0		0	580 48		0	4.5 4.5	2610 216	3,094 256	57	43 43	1,764 146	1,331 110		0.0000	0.0003	0.0008	0.0006 0.0000	0.0024
FRED ARMORY	0		0	33		0	7.5	247.5	293	57	43		126		0.0000	0.0000	0.0001	0.0000	0.0002
MYERSVILLE	0					0	7.5	487.5	578	57	43	329	249		0.0001	0.0001	0.0001	0.0001	0.0002
ROSEMONT	0		0			0	7.5	337.5	400	57	43		172		0.0001	0.0000	0.0001	0.0001	0.0003
URBANA	0		0			0	7.5	1447.5	1.716		43		738		0.0003	0.0002	0.0004	0.0002	0.0002
JEFFERSON	0		0	40		0	7.5	300	356	57	43	203	153		0.0001	0.0000	0.0001	0.0000	0.0002
NORBECK RD	0		0	248		0	7.5	1860	2,205		43	1,257	948		0.0003	0.0002	0.0006		0.0012
MONTROSE RD	0		0			0	7.5	4875	5,780		43		2.485		0.0009	0.0006	0.0015		0.0032
BRIGG CHENNY 50%	50	215	215	430		255	7.5	3225	3,824	57	43	2,179	1,644	0.0006	0.0006	0.0004	0.0010	0.0003	0.0018
COMUS ROAD	0		0	30		0	7.5	225	267	57	43	152	115		0.0000	0.0000	0.0001	0.0000	0.0001
LAKEFOREST MALL	0	300	0	300	356	0	7.5	2250	2,668	57	43	1,521	1,147	0.0005	0.0004	0.0003	0.0007	0.0003	0.0015
BURTONSVILLE	0	500	0	500	593	0	7.5	3750	4,446	57	43	2,534	1,912	0.0009	0.0007	0.0005	0.0011	0.0005	0.0025
FORCEY MEM.	0	200	0			0	7.5	1500	1,778	57	43		765		0.0003	0.0002	0.0005	0.0002	0.0010
TECH ROAD	0		0			0	7.5	1162.5	1,378	57	43	786	593		0.0002	0.0001	0.0004	0.0002	0.0008
BELTWAY	0		0			0	7.5	1987.5	2,356	57	43	1,343	1,013		0.0004	0.0002	0.0006	0.0003	0.0013
LAUREL VAN DUSEN	0		0	62		0	7.5	465	551	57	43	314	237		0.0001	0.0001	0.0001	0.0001	0.0003
ACCOKEEK	0		0	450		0	7.5	3375	4,001	57	43	2,281	1,721	0.0008	0.0006	0.0004	0.0010		0.0022
ABC DRIVE IN	0		0	100		0	7.5	750	889	57	43	507	382		0.0001	0.0001	0.0002		0.0005
BOWIE 20%	20		131	657		156	7.5	4927.5	5,842		43		2,512		0.0009	0.0006	0.0015		0.0031
CLINTON 50%	50		212	424		251	7.5	3180	3,770	57	43	2,149	1,621	0.0005	0.0006	0.0004	0.0010		0.0018
OXON HILL 20%	20		130	649		154	7.5	4867.5	5,771	57		3,289	2,482		0.0009	0.0006	0.0015		0.0030
EQUESTRIAN CENTER	50		150	300		178	7.5	2250	2,668	57			1,147		0.0004	0.0003	0.0007		0.0013
BOWIE MARKET PLACE	0		0	50		0	7.5 7.5	375 3090	445	57 57	43 43		191 1,575	0.0001	0.0001	0.0000	0.0001	0.0000	0.0002
FT.WASHINGTON MONTPELIER REC PARK			0	412 70		0	7.5		3,664		43	2,088	1,575		0.0006 0.0001	0.0004 0.0001	0.0009		0.0020
RESTON	. 0		0			0	7.5	525 11602.5	622 13,756	57 57	43	7,841	5,915		0.0001	0.0001	0.0002		0.0003
GREENBRIAR	0		0	154 <i>7</i> 55		0	7.5	412.5	13,756		43		210		0.0021	0.0014	0.0035	0.0015	0.0077
FAIR OAKS	0		0	150		0	7.5	112.5	1,334	57	43	760	574		0.0001		0.0001		0.0003
ROLLING VALLEY	0		0			0	7.5	4710	5,584	57	43	3,183	2,401	0.0003	0.0002	0.0001	0.0003		0.0007
SPRINGFIELD PLAZA	0		0			0	7.5	1725	2.045	57		1,166	879		0.0008	0.0008	0.0014	0.0008	0.0031
FAIRLANES BOWL	0		0			0	7.5	262.5	311	57	43	1,100	134		0.0003	0.0002	0.0003	0.0002	0.0001
NOTTOWAY PARK	0		0	14		0	7.5	105	124	57	43	71	54		0.0000	0.0000	0.0001	0.0000	0.0002
HORNER RD	0		0	2397		0	7.5	17977.5	21,315				9,165		0.0000	0.0000	0.0054		0.0001
HOMBLINIO	U	2001	U	2371	2042	U	1.5	11011.5	داری ا <u>ک</u>	31	40	12,149	9,100	0.0041	0.0032	0.0022	0.0004	0.0024	0.0118

													E M	ISSION	ı s			1	
			2002		2016	2016	AVERAGE	2002	2016	ARTERIAL	FREEWAY	ARTERIAL	FREEWAY	COLD START		RUNNING		HOT SOAK	TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE	Total	INSIDE	OUTSIDE	TRIP LENGTH	2002 VMT	VMT	711111111111	%	VMT	VMT		Arterial	Freeway	Total		(tons/day)
	MSA (%)	MSA	MSA	Total	Growth Rate	Growth Rate								Rate (gm/mile)	Rate (gm/mile)	Rate (gm/mile)	Running	Rate (gm/mile)	
					1.19	1.19								0.6537	0.1210	0.1077		0.38221667	
COMMUTER RAIL LOTS																			
LAKE RIDGE	0	555	0	555		0	7.5	4162.5	4,935	57			2,122	0.0009	0.0008		0.0013	0.0006	0.0028
MINNIEVILLE RD 40%	40	336	224	560	398	266	7.5	4200	4,980	57			2,141		0.0008		0.0013		0.0025
GORDON BLVD	0	156	0	156		0	7.5	1170	1,387	57			596		0.0002		0.0004		0.0008
HILLENDALE	0	248	0	248		0	7.5	1860	2,205	57			948		0.0003		0.0006	0.0002	0.0012
POTOMAC MILLS	0	946	0	946	1122	0	7.5	7095	8,412	57	43	4,795	3,617	0.0016	0.0013	0.0009	0.0021	0.0009	0.0047
								0	0										
DARK AND DIDE LOTO	MARNU AN							0											
PARK-AND-RIDE LOTS -	MARYLAN	עו						0											
CALVERT COUNTY	25	20	11	40	27	12	7.5	315	0 373	57	43	213	161	0.0001	0.0001	0.0000	0.0001	0.0000	0.0002
Dunkirk	25 25	32 26	9	42 35		10	7.5	262.5	3/3	57			134		0.0001		0.0001	0.0000	0.0002
Huntingtown Lord Calvert Bowling Alley	25	83	28	110		33	7.5	825	978	57			421		0.0000	0.0001	0.0001		0.0002
Lusby	25	23	8	30		9	7.5	225	267	57			115		0.0000		0.0002	0.0000	0.0001
North Beach VFD	25	53	18	70		21	7.5	525	622	57			268		0.0000	0.0001	0.0001		0.0003
Prince Frederick	25	53	18	70		21	7.5	525	622	57			268		0.0001	0.0001	0.0002		0.0003
St. Leonard	25	38	13	50		15	7.5	375	445	57			191		0.0001	0.0000	0.0001	0.0000	0.0002
Sunderland	25	80	27	106		31	7.5	795	943	57			405		0.0001	0.0001	0.0002		0.0005
PARK-AND-RIDE LOTS -								0	0										
CHARLES COUNTY								0	0				_		-				
301 Park & Ride	25	287	96	383		114	7.5	2872.5	3,406	57			1,464		0.0005		0.0009		0.0018
Charles County Governme	25	26	9	35		10	7.5	262.5	311	57			134		0.0000		0.0001	0.0000	0.0002
Food Lion Shopping Cente		38	13	50		15	7.5	375	445	57			191		0.0001		0.0001		0.0002
La Plata Armory	25	15	5	20		6	7.5	150	178	57			76		0.0000		0.0000		0.0001
Laurel Springs Regional Pa	25		13	50		15	7.5	375	445	57			191		0.0001		0.0001		0.0002
Life Wesleyan Church	25 25	38 435	13 145	50 580		15	7.5 7.5	375	445	57 57	43 43		191		0.0001		0.0001	0.0000	0.0002
Mattawoman-Beantown Ro	25	435	145	580	516	172	7.5	4350	5,157	57	43	2,940	2,218	0.0009	0.0008	0.0005	0.0013	0.0005	0.0027
Smallwood Village	25	75	25	100	89	30	7.5	750	889	57	43	507	382	0.0001	0.0001	0.0001	0.0002	0.0001	0.0005
St. Charles Towne	25	263	88	350		104	7.5	2625	3,112	57			1,338		0.0001		0.0002	0.0003	0.0016
PARK-AND-RIDE LOTS -	25	0	0	000	0	0	7.5	0	0,112	57			0		0.0000		0.0000		0.0000
FREDERICK COUNTY	25	0	0		0	0	7.5	0	0	57			0		0.0000		0.0000		0.0000
Frederick (north)	25	123	41	164	146	49	7.5	1230	1,458	57			627		0.0002		0.0004		0.0008
Frederick (south)	25	173	58	230		68	7.5	1725	2,045	57			879		0.0003		0.0005		0.0011
Monacacy Marcst	25	600	200	800	711	237	7.5	6000	7,114	57	43	4,055	3,059	0.0012	0.0011	0.0007	0.0018	0.0007	0.0037
PARK-AND-RIDE LOTS -	MARYLAN	D						0	0										
MONTGOMERY COUNTY								0	0										
Colesville	0	190	0	190		0	7.5	1425	1,690	57			726		0.0003		0.0004		0.0009
Damascus	50	0	0		0	0	7.5	0	0	57			0		0.0000		0.0000		0.0000
Gaithersburg	50	259	259	517		306	7.5	3877.5	4,597	57			1,977		0.0007		0.0012		0.0022
Gaithersburg	50 50	175 0	175	350		207	7.5 7.5	2625 0	3,112 0	57 57			1,338		0.0005		0.0008		0.0015
Germantown Town	50 50	0 75	0 75	150	0 89	0 89	7.5 7.5	1125	1,334	57 57			0 574		0.0000		0.0000		0.0000
Greencastle Milestone Shopping	50	88	75 88	175		104	7.5	1312.5	1,556	57			669		0.0002		0.0003		0.0008
PARK-AND-RIDE LOTS -			00	1/3	104	104	1.5	1312.5	1,550	57	43	007	009	0.0002	0.0002	0.0002	0.0004	0.0001	0.0000
PRINCE GEORGE'S COU								0	0									1	
Hampton Mall	0	100	0	100	119	0	4.5	450	534	57	43	304	229	0.0002	0.0001	0.0001	0.0001	0.0001	0.0004
Laurel (south)	25	513	171	684		203	7.5	5130	6,082	57			2,615		0.0009		0.0015		0.0032
PARK-AND-RIDE LOTS -		0.0	0		0	0	7.5	0	0,002	57			0		0.0000		0.0000		0.0000
ARLINGTON COUNTY		0	0		0	0	7.5	0	0	57			0		0.0000		0.0000		0.0000
Ballston Public Parking Ga	25	375	125	500	445	148	7.5	3750	4,446	57			1,912		0.0007		0.0011	0.0004	0.0023
Washington-Lee	50	178	178	356	211	211	7.5	2670	3,166	57	43	1,804	1,361	0.0005	0.0005	0.0003	0.0008	0.0003	0.0015
PARK-AND-RIDE LOTS -	VIRGINIA							0	0										
FAIRFAX COUNTY								0	0										
American Legion	50	50	50	100		59	7.5	750	889	57			382		0.0001	0.0001	0.0002		0.0004
Canterbury Woods Pk	50	17	17	34		20	7.5	255	302	57			130		0.0000		0.0001	0.0000	0.0001
Centreville	50	185	185	370		219	7.5	2775	3,290	57			1,415		0.0005		0.0008		0.0016
Centreville United Methodis	50	74	74	147		87	7.5	1102.5	1,307	57			562		0.0002		0.0003		0.0006
Fairfax County Governmen	50	85	85	170		101	7.5	1275	1,512	57			650		0.0002		0.0004		0.0007
Greenbriar Park	50	28	28	55		33	7.5	412.5	489	57			210		0.0001		0.0001	0.0000	0.0002
Herndon-Monroe Michael's	50 50	873 100	873 100	1,745		1034 119	7.5 7.5	13087.5	15,517	57 57			6,672		0.0024 0.0003		0.0039		0.0075
Michael's Parkwood Baptist	50	100	9	200 18		119	7.5	1500 135	1,778 160	57			765 69		0.0003		0.0005		0.0008
South Run District Pk	50	170	170	340		202	7.5	2550	3,023	57			1,300		0.0000		0.0000		0.000
DOULLI KULL DISUICUEK	50	170	170	340	202	202	1.5	2000	3,023	5/	43	1,123	1,300	0.0004	0.0005	0.0003	0.0008	0.0003	0.0015

													E M I	ISSIO	N 6			T	
	1		2002		2016	2016	AVERAGE	2002	2016	ARTERIAL FREE	-WAY	ΔΡΤΕΡΙΔΙ	FREEWAY	COLD START	N 5	RUNNING		HOT SOAK	TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE	T-4-1	INSIDE	OUTSIDE	TRIP LENGTH	2002 VMT	VMT	%	- ***	VMT	VMT	0025 017411	Arterial	Freeway	Total	1101 00741	(tons/day)
	MSA (%)	MSA	MSA	Total	Growth Rate	Growth Rate								Rate (gm/mile)	Rate (gm/mile)	Rate (gm/mile)	Running	Rate (gm/mile)	
					1.19	1.19								0.6537	0.1210	0.1077	ŭ	0.38221667	
COMMUTER RAIL LOTS																			
St Paul Chung Catholic Ch	n 50	50	50	100	59	59	7.5	750	889	57	43	507	382	0.0001	0.0001	0.0001	0.0002	0.0001	0.0004
Stringfellow Rd	50	181	181	361	214	214	7.5	2707.5	3,210	57	43	1,830	1,380	0.0005	0.0005	0.0003	0.0008	0.0003	0.0015
Sully Station	50	70	70	140	83	83	7.5	1050	1,245	57	43	710	535	0.0002	0.0002	0.0001	0.0003	0.0001	0.0006
Sydenstricker Rd	50	84		167		99		1252.5	1,485	57	43		639	0.0002	0.0002	0.0002	0.0004	0.0001	0.0007
Wakefield Chapel Pk	50	25	25	50	30	30	7.5	375	445	57	43	253	191	0.0001	0.0001	0.0000	0.0001	0.0000	0.0002
PARK-AND-RIDE LOTS -	VIRGINIA							0	0										<u> </u>
LOUDOUN COUNTY								0	0										
Ashburn Farm	50	10		20		12		150	178	57	43	101	76		0.0000	0.0000	0.0000	0.0000	
Ashburn Village	50	20		40		24		300	356	57	43	203	153		0.0001	0.0000	0.0001	0.0000	
Cascades	50	28		55		33		412.5		57	43	279	210		0.0001	0.0000	0.0001	0.0000	
Dulles North Transit	50	375		750		445		5625	6,669	57	43	3,801	2,868	0.0010	0.0010	0.0007	0.0017	0.0006	
Hamilton	50	25		50		30		375		57	43	253	191	0.0001	0.0001	0.0000	0.0001	0.0000	
Innovation Avenue	50	38		75		44		562.5		57	43	380	287		0.0001	0.0001	0.0002	0.0001	0.0003
Leesburg	50	25		50		30		375	445	57	43	253	191	0.0001	0.0001	0.0000	0.0001	0.0000	
Leesburg Kohls	50	600	600	1200		711		9000	10,671	57	43	6,082	4,588	0.0015	0.0016	0.0011	0.0027	0.0009	
Purcellville	50	18		35		21		262.5	311	57	43	177	134		0.0000	0.0000	0.0001	0.0000	0.0002
Sterling Park SC	50	23	23	45		27		337.5	400	57	43	228	172	0.0001	0.0001	0.0000	0.0001	0.0000	0.0002
Sterling Shaw Rd	50	24	24	48	28	28	7.5	360	427	57	43	243	184	0.0001	0.0001	0.0000	0.0001	0.0000	0.0002
PARK-AND-RIDE LOTS -								0	0										
PRINCE WILLIAM COUNT							_	0	0										
Brittany	50	48	48	95		56		712.5	845	57	43	482	363	0.0001	0.0001	0.0001	0.0002	0.0001	0.0004
Dale City	50	294	294	587		348		4402.5	5,220	57	43	2,975	2,244		0.0008	0.0005	0.0013	0.0004	
Harbor Drive	50	100	100	200		119		1500	1,778	57	43	1,014	765		0.0003	0.0002	0.0005	0.0001	0.0009
Lindendale	50	108		216		128		1620	1,921	57	43	1,095	826	0.0003	0.0003	0.0002	0.0005	0.0002	
Montclair	50	25	25	50		30		375		57	43	253	191	0.0001	0.0001	0.0000	0.0001	0.0000	
PRTC Transit Center	50	93	93	185	110	110	7.5	1387.5	1,645	57	43	938	707	0.0002	0.0003	0.0002	0.0004	0.0001	0.0008
Tackett's Mill	50	85	85	169	100	100	7.5	1267.5	1,503	57	43	857	646	0.0002	0.0002	0.0002	0.0004	0.0001	0.0007
Triangle	50	15		29		17		217.5	258	57	43	147	111	0.0002	0.0002	0.0002	0.0004	0.0000	
I-95 / Rt 123	50	282		563		334		4222.5	5,006	57	43	2,854	2,153	0.0007	0.0008	0.0005	0.0001	0.0004	
US 1 / VA 234	50	137		274		162		2055	2,436	57	43	1,389	1,048		0.0004	0.0003	0.0013	0.0002	0.0024
MARC TRAIN COMMUTE		101	101	217	102	102	7.0	2000	2,400	01	-10	1,000	1,040	0.0004	0.0004	0.0002	0.0000	0.0002	0.0012
College Park	25	431	144	574	510	170	7.5	4305	5,104	57	43	2,909	2,195	0.0009	0.0008	0.0005	0.0013	0.0005	0.0027
Frederick	0	0	0	0.1		0	7.5	0	0,101	57	43	0	2,.00	0.0000	0.0000	0.0000	0.0000	0.0000	
Greenbelt	60	1346	2018	3364		2393		25230	29.913	57	43	17,051	12,863	0.0040	0.0045	0.0031	0.0076	0.0024	
Harpers Ferry		98	0	98		0	7.5	735	871	57	43	497	375		0.0001	0.0001	0.0002	0.0001	0.0005
Muirkirk	60	260	390	650		462		4875	5,780	57	43	3,295	2,485		0.0009	0.0006	0.0015	0.0005	
Seabrook	0	264	0	264		0	4.5	1188	1,409	57	43	803	606	0.0005	0.0002	0.0001	0.0004	0.0003	0.0011
Silver Spring	0	0	0	0		0		0	0	57	43	0	0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Union Station	0	781	0	781	926	0		5857.5	6,945	57	43	3,959	2,986	0.0013	0.0011	0.0007	0.0018	0.0008	0.0039
VIRGINIA RAILWAY EXP	RESS COM		.OTS					0	0										
Backlick Road	50	110	110	220	130	130	7.5	1650	1,956	57	43	1,115	841	0.0003	0.0003	0.0002	0.0005	0.0002	0.0009
Broad Run	50	198	198	396		235		2970	3,521	57	43	2,007	1,514	0.0005	0.0005	0.0004	0.0009	0.0003	
Burke Center	50	275	275	550		326		4125	4,891	57	43	2,788	2,103	0.0007	0.0007	0.0005	0.0012	0.0004	
Franconia/Springfield (ope		1900	1900	3800	2253	2253	7.5	28500	33,790	57	43	19,261	14,530	0.0049	0.0051	0.0034	0.0086	0.0028	
Lorton	50	100	100	200		119		1500	1,778	57	43	1,014	765		0.0003	0.0002	0.0005	0.0001	
Manassas	50	187	187	374		222		2805	3,326	57	43	1,896	1,430	0.0005	0.0005	0.0003	0.0008	0.0003	
Manassas Park	50	150	150	300		178		2250	2,668	57	43	1,521	1,147		0.0004	0.0003	0.0007	0.0002	
Quantico	50	109	109	217		129		1627.5	1,930	57	43	1,100	830	0.0003	0.0003	0.0002	0.0005	0.0002	
Rippon	50	150	150	300		178		2250	2,668	57	43	1,521	1,147		0.0004	0.0003	0.0007	0.0002	
Rolling Road	50	185	185	370		219		2775	3,290	57	43	1,875	1,415	0.0005	0.0005	0.0003	0.0008	0.0003	
Woodbridge	50	294	294	588	349	349	7.5	4410	5,229	57	43	2,980	2,248	0.0008	0.0008	0.0005	0.0013	0.0004	0.0025
METRORAIL PARKING L								0	0										
Anacostia	25	861	287	1148		340		8610	10,208	57	43	5,819	4,390	0.0017	0.0016	0.0010	0.0026	0.0010	
Branch Avenue	50	1611	1611	3222		1910		24165	28,651	57	43	16,331	12,320	0.0041	0.0044	0.0029	0.0073	0.0024	
Capitol Heights	50	194	194	387		229		2902.5		57	43	1,962	1,480	0.0005	0.0005	0.0004	0.0009	0.0003	
College Park	25	465	155	620		184		4650	5,513	57	43	3,143	2,371	0.0009	0.0008	0.0006	0.0014	0.0005	
Congress Heights	0	66	0	66		0	4.5	297	352	57	43	201	151	0.0001	0.0001	0.0000	0.0001	0.0001	0.0003
Deanwood	0	194	0	194		0		1455	1,725	57	43	983	742		0.0003	0.0002	0.0004	0.0002	
East Falls Church	50	221	221	442		262		3315	3,930	57	43	2,240	1,690	0.0006	0.0006	0.0004	0.0010	0.0003	
Forest Glen	50	329	329	658		390		4935	5,851	57	43	3,335	2,516		0.0009	0.0006	0.0015	0.0005	
Franconia - Springfield	50	1987	1987	3973		2355		17878.5	21,197	57	43	12,082	9,115	0.0051	0.0032	0.0022	0.0054	0.0030	
Glenmont	50	925	925	1850	1097	1097	4.5	8325	9,870	57	43	5,626	4,244	0.0024	0.0015	0.0010	0.0025	0.0014	
Greenbelt	50	1783	1783	3565	2113	2113	7.5	26737.5	31,701	57	43	18,069	13,631	0.0046	0.0048	0.0032	0.0081	0.0027	0.0153

													E M		v 5				
			2002		2016	2016	AVERAGE	2002	2016	ARTERIAL	FREEWAY	ARTERIAL	FREEWAY	COLD START		RUNNING		HOT SOAK	TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE	Total	INSIDE	OUTSIDE	TRIP LENGTH	VMT	VMT	9	%	VMT	VMT		Arterial	Freeway	Total		(tons/day)
	MSA (%)	MSA	MSA	TOtal	Growth Rate	Growth Rate								Rate (gm/mile)	Rate (gm/mile)	Rate (gm/mile)	Running	Rate (gm/mile)	
					1.19	1.19								0.6537	0.1210	0.1077		0.38221667	
COMMUTER RAIL LOTS																			
Naylor Road	50	216	216	431	256	256	7.5	3232.5	3,833	57	43	2,185	1,648	0.0006	0.0006	0.0004	0.0010	0.0003	0.0018
Prince George's Plaza	25	927	309	1236	1099	366	7.5	9270	10,991	57	43	6,265	4,726	0.0018	0.0017	0.0011	0.0028	0.0011	0.0057
Southern Avenue	50	1090	1090	2180		1292	4.5	9810	11,631	57	43	6,630	5,001	0.0028	0.0018	0.0012	0.0030	0.0016	0.0074
Suitland	50	1033	1033	2065	1224	1224	4.5	9292.5	11,017	57	43	6,280	4,738	0.0026	0.0017	0.0011	0.0028	0.0015	0.0070
Van Dorn Street	50	204	204	407	241	241	4.5	1831.5	2,171	57	43	1,238	934	0.0005	0.0003	0.0002	0.0006	0.0003	0.0014
West Hyattsville	25	453		604	537	179	7.5	4530	5,371	57	43	3,061	2,309	0.0009	0.0008	0.0005	0.0014	0.0005	0.0028
Wheaton	25	100	253	1012		300	7.5	7590	8,999	57	43	5,129	3,870	0.0015	0.0014	0.0009	0.0023	0.0009	0.0047
		78629	29681	108.310	93224	35191		711714	843.828					0.1597	0.1283	0.0861	0.2144	0.0934	0.4675

Bold figures: New numbers taken from P & R directory Figures in bracket: Carry forward figures from conformity doc.

Park lot Growth Rate

transit trips 2016 1295286
transit trips 2002 1,092,489
Annual growth rate 0.013259172
Growth factor (2002-2016) 1.185628414

2011 CLRP/FY2012-2017 TIP AIR QUALITY CONFORMITY

	OUTSIDE INSIDE OUTSIDE INSIDE									Lanzen			E M I S	SION	S		
					20		AVERAGE		ARTERIAL	FREEWAY	ARTERIAL		COLD START		RUNNING		TOTAL
LOCATION				Total		OUTSIDE	TRIP LENGTH	VMT	9	6	VMT	VMT		Arterial	Freeway	Total	
	MSA (%)	MSA	MSA		Growth Rate	Growth Rate							Rate (gm/mile)	į	Rate (gm/mile)	Running	(tons/day)
					1.19	1.19							0.3226	0.1953	0.2036	Emission	
COMMUTER RAIL LOTS																	
BRUNSWICK 25%	25	305			362	121	7.5	3,619	57	43		1,556	0.0003	0.0009	0.0007	0.0016	0.0019
PT OF ROCKS 25%	25	204			242	81	7.5	2,419	57	43		1,040	0.0002	0.0006	0.0005	0.0011	0.0013
DICKERSON	0	15			18	0	7.5	133	57	43		57	0.0000	0.0000	0.0000	0.0001	0.0001
BARNESVILLE	0	46			55	0	7.5	409	57	43		176	0.0000	0.0001	0.0001	0.0002	0.0002
GERMANTOWN	0	386	0	000	458	0	7.5	3,432	57	43		1,476	0.0003	0.0008	0.0007	0.0015	0.0018
MET GROVE	0	352			417	0	7.5	3,130	57	43		1,346	0.0003	0.0008	0.0006	0.0014	0.0017
WAS GROVE	0	15			18	0	7.5	133	57	43			0.0000	0.0000	0.0000	0.0001	0.0001
GARRETT PARK	0	22			26	0	7.5	196	57	43		84	0.0000	0.0000	0.0000	0.0001	0.0001
BOWIE 50%	50	188			222	222	7.5	3,335	57	43		1,434	0.0002	8000.0	0.0006	0.0015	0.0017
SEABROOK 15%	15	224			266	47	7.5	2,348	57	43		1,009	0.0002	0.0006	0.0005	0.0010	0.0012
KENSINGTON	0	45			53	0	7.5	400	57	43		172	0.0000	0.0001	0.0001	0.0002	0.0002
LAUREL 30%	30	209			248	106	7.5	2,659	57	43		1,143	0.0002	0.0007	0.0005	0.0012	0.0014
GAITHESBURG	0	280	0		332	0	7.5	2,490	57	43	, .	1,071	0.0002	0.0006	0.0005	0.0011	0.0013
BERWYN HEIGHTS	0	30			36	0		160	57	43			0.0000	0.0000	0.0000	0.0001	0.0001
RIVERDALE	0	65	0	65	77	0	4.5	347	57	43	198	149	0.0001	0.0001	0.0001	0.0002	0.0002
WETDO DAW :	ļ							0									
METRO RAIL LOTS								0									
								0									
ADDISON ROAD 40%	40	791	527	1318	938	625	7.5	11,720	57	43		5,040	0.0009	0.0029	0.0023	0.0051	0.0060
ARCHIVES	0	12		12	14	0	4.5	64		43		28	0.0000	0.0000	0.0000	0.0000	0.0000
ARLING	0	10			12	0	4.5	53		43		23	0.0000	0.0000	0.0000	0.0000	0.0000
BALLSTON	0	1175			1393	0	4.5	6,269	57	43		2,696	0.0010	0.0015	0.0012	0.0027	0.0037
BENN.RD	0	520	0		617	0	4.5	2,774	57	43		1,193	0.0004	0.0007	0.0005	0.0012	0.0017
BETH	0	395			468	0	4.5	2,107	57	43		906	0.0003	0.0005	0.0004	0.0009	0.0013
BRADD RD	0	10			12	0	4.5	53	57	43			0.0000	0.0000	0.0000	0.0000	0.0000
BROOKLAND	0	27			32	0	4.5	144		43			0.0000	0.0000	0.0000	0.0001	0.0001
CHEVERLY	0	557	0		660	0	4.5	2,972	57	43		1,278	0.0005	0.0007	0.0006	0.0013	0.0018
CLARENDON	0	554			657	0	4.5	2,956	57	43	,	1,271	0.0005	0.0007	0.0006	0.0013	0.0018
CLEVELAND PK	0	366	0		434	0	4.5	1,953	57	43		840	0.0003	0.0005	0.0004	0.0009	0.0012
COURT HOUSE	0	256	0		304	0	4.5	1,366	57	43		587	0.0002	0.0003	0.0003	0.0006	0.0008
CRYSTAL CITY	0	347	0		411	0	4.5	1,851	57	43		796	0.0003	0.0005	0.0004	0.0008	0.0011
DEANWOOD	0	194			230	0	4.5	1,035	57	43		445	0.0002	0.0003	0.0002	0.0005	0.0006
DUN LORING 10%	10	1220	136		1446	161	4.5	7,229	57	43		3,109	0.0011	0.0018	0.0014	0.0032	0.0043
DUPONT CIRCLE	0	165	0		196	0	4.5	880	57	43		379	0.0001	0.0002	0.0002	0.0004	0.0005
EASTERN MKT	0	178			211	0	4.5	950	57	43			0.0002	0.0002	0.0002	0.0004	0.0006
EAST FALLS CH	0	442			524	0	4.5	2,358	57	43		1,014	0.0004	0.0006	0.0005	0.0010	0.0014
EIS	0	352	0		417	0	4.5	1,878	57	43		808	0.0003	0.0005	0.0004	0.0008	0.0011
FARRAGUT NORTH	0	102	0		121	0	4.5	544	57	43		234	0.0001	0.0001	0.0001	0.0002	0.0003
FARRAGUT WEST	0	221	0		262	0	1.0	1,179	57	43		507	0.0002	0.0003	0.0002	0.0005	0.0007
FEDERAL CENTER	0	75			89	0	4.5	400		43		172	0.0001	0.0001	0.0001	0.0002	0.0002
FEDERAL TRI	0	54			64	0	4.5	288	57	43		124	0.0000	0.0001	0.0001	0.0001	0.0002
FOGGY	0	102			121	0	1.0	544	57	43		234	0.0001	0.0001	0.0001	0.0002	0.0003
FORT TROTTEN	0	445			528	0	4.5	2,374	57	43		1,021	0.0004	0.0006	0.0005	0.0010	0.0014
FRH.HEIGHTS	0	679	0		805	0	1.0	3,623	57	43		1,558	0.0006	0.0009	0.0007	0.0016	0.0022
GALLERY PLACE	0	124			147	0	4.5	662	57	43		284	0.0001	0.0002	0.0001	0.0003	0.0004
GROSVENOR	0	716			849	0	4.5	3,820	57	43		1,643	0.0006	0.0009	0.0007	0.0017	0.0023
HUNT NORTH 40%	40	1873	1249		2221	1481	7.5	27,761	57	43		11,937	0.0021	0.0068	0.0054	0.0122	0.0143
JUD SQUARE	0	110		110	130	0	4.5	587	57	43		252	0.0001	0.0001	0.0001	0.0003	0.0004
KING ST	0	30	0	30	36	0	4.5	160	57	43	91	69	0.0000	0.0000	0.0000	0.0001	0.0001
								0									
								0									
LANDOVER 25%	25	1410			1672	557	7.5	16,717	57	43		7,188	0.0014	0.0041	0.0032	0.0073	0.0087
L'ENFANT PLAZA	0	296		296	351	0	4.5	1,579	57	43		679	0.0002	0.0004	0.0003	0.0007	0.0009
MCPHERSON SQ	0	52	0		62	0	4.5	277	57	43		119	0.0000	0.0001	0.0001	0.0001	0.0002
MEDICAL CENTER	0	14			17	0	4.5	75		43			0.0000	0.0000	0.0000	0.0000	0.0000
METRO CENTER	0	177			210	0	4.5	944	57	43		406	0.0001	0.0002	0.0002	0.0004	0.0006
MINNES	0	353	0		419	0	4.5	1,883	57	43		810	0.0003	0.0005	0.0004	0.0008	0.0011
NAT AIR	0	87	0	87	103	0	4.5	464	57	43		200	0.0001	0.0001	0.0001	0.0002	0.0003
NEW CARROL 50%	50	1049	1049		1243	1243	7.5	18,647	57	43		8,018	0.0013	0.0046	0.0036	0.0082	0.0095
PRNTAGON	0	561	0	561	665	0	4.5	2,993	57	43	1,706	1,287	0.0005	0.0007	0.0006	0.0013	0.0018

2011 CLRP/FY2012	2047 TID AID	OLIALITY.	CONFORMITY
ZU 1 1 GLRP/F 1 ZU 1 Z·	-ZUT/ TIP AIR	GUALIT	CONFURINITY

						40	A)/EDAGE		ADTEDIAL	EDEE/M/AS/	ADTEDIA	EDEE/M/AN/		E M I S	S I O N	s	TOTAL
LOCATION	OUTOISS	INOIDE	2002		20		AVERAGE	VAAT	ARTERIAL	FREEWAY	ARTERIAL VMT	FREEWAY VMT	COLD START	A stanial	RUNNING	Tetal	TOTAL
LOCATION	OUTSIDE MSA (%)	INSIDE MSA	OUTSIDE MSA	Total	INSIDE Growth Rate	OUTSIDE	TRIP LENGTH	VMT	9	6	VMT	VMI	Data (am/mila)	Arterial	Freeway Rate (gm/mile)	Total Running	(4(4)
	IVISA (70)	IVIOA	IVIOA		1.19	Growth Rate 1.19	-						Rate (gm/mile) 0.3226	Rate (gm/mile) 0.1953	0.2036	Emission	(tons/day)
COMMUTER RAIL LOTS					1.19	1.15							0.3220	0.1933	0.2030		
PENTAGON CITY	0	381	0	381	452	0	4.5	2.033	57	43	1.159	874	0.0003	0.0005	0.0004	0.0009	0.0012
POTOMAC AVE	0	533	0	533	632	0	4.5	2,844	57	43	1,621	1,223	0.0004	0.0007	0.0005	0.0012	0.0017
ROCKVILLE	0	667	0	667	791	0	4.5	3,559	57	43	2,028	1,530	0.0006	0.0009	0.0007	0.0016	0.0021
ROSSLYN	0	356	0	356	422	0	4.5	1,899	57	43	1,083	817	0.0003	0.0005	0.0004	0.0008	0.0011
SHADY GROVE 10%	10	3903	434	4337	4628	514	7.5	38,566	57	43	21,982	16,583	0.0035	0.0095	0.0074	0.0169	0.0204
SILVER SPRING	0	44	0	44	52	0	4.5	235	57	43	134	101	0.0000	0.0001	0.0000	0.0001	0.0001
SMITH MALL	0	120	0	120	142	0	4.5	640	57	43	365	275	0.0001	0.0002	0.0001	0.0003	0.0004
STADIUM ARM	0		0	976	1157	0	4.5	5,207	57	43	2,968	2,239	0.0008	0.0013	0.0010	0.0023	0.0031
TAKOMA PK	0	146	0	146	173	0	4.5	779	57	43	444	335	0.0001	0.0002	0.0002	0.0003	0.0005
TENLEYTON	0	17	0	17	20	0	4.5	91	57		52	39	0.0000	0.0000	0.0000	0.0000	0.0001
TWINBROOK	0	1136	0	1136	1347	0	4.5	6,061	57	43	3,455	2,606	0.0010	0.0015	0.0012	0.0027	0.0036
UNION STAT	0	378	0	378	448	0	4.5	2,017	57	43	1,150	867	0.0003	0.0005	0.0004	0.0009	0.0012
VAN NESS VIENNA 25%	0 25	343 2798	0	343 3731	407 3318	0 1106	4.5 7.5	1,830	57	43 43	1,043	787	0.0003 0.0028	0.0004	0.0004 0.0064	0.0008 0.0145	0.0011 0.0173
VIENNA 25% VA SQUARE	25	2798 642	933	3/31 642	761	1106	4.5	33,177 3,425	57 57	43	18,911 1,952	14,266 1,473	0.0028	0.0081	0.0064	0.0145	0.0173
WEST FALLS CHURCH	0	2183	0	2183	2588	0	4.5	11.647	57	43	6,639	5.008	0.0005	0.0008	0.0007	0.0015	0.0020
WHITE FLINT	0	1633	0	1633	1936	0	4.5	8,713	57	43	4,966	3,746	0.0018	0.0029	0.0022	0.0031	0.0069
WOODLEY	0		0	68	81	0	4.5	363	57	43	207	156	0.0014	0.0021	0.0017	0.0038	0.0032
RHODE ISLAND 30%	30	266	114	380	315	135	7.5	3,379	57	43	1,926	1,453	0.0003	0.0008	0.0007	0.0015	0.0018
	30				270	.30		0,0.0			.,0	.,.50	2.2230		2.2201		,,,,,,,,
BUS & CAR POOL LOTS								0									
								0									
CARTER BARRON	0	798	0	798	946	0	4.5	4,258	57	43	2,427	1,831	0.0007	0.0010	0.0008	0.0019	0.0025
PG PLAZA	0	47	0	47	56	0	4.5	251	57	43	143	108	0.0000	0.0001	0.0000	0.0001	0.0001
PENN MAR SHOPP.	0	100	0	100	119	0	4.5	534	57	43	304	229	0.0001	0.0001	0.0001	0.0002	0.0003
CAP PLAZA	0	100	0	100	119	0	4.5	534	57	43	304	229	0.0001	0.0001	0.0001	0.0002	0.0003
EASTOVER	0	100	0	100	119	0	4.5	534	57	43	304	229	0.0001	0.0001	0.0001	0.0002	0.0003
FOUR MILE RUN	0	28	0	28	33	0	4.5	149	57	43	85	64	0.0000	0.0000	0.0000	0.0001	0.0001
SPRINGFIELD MALL	0	580	0	580	688	0	4.5	3,094	57	43	1,764	1,331	0.0005	0.0008	0.0006	0.0014	0.0018
SPRINGFIELD METH CH FRED ARMORY	0	48 33	0	48 33	57 39	0	4.5 7.5	256 293	57 57	43 43	146 167	110 126	0.0000	0.0001	0.0000 0.0001	0.0001	0.0002 0.0002
MYERSVILLE	0	65	,	55 65	77	0	7.5	578	57	43	329	249	0.0001	0.0001	0.0001	0.0001	0.0002
ROSEMONT	0			45	53	0	7.5	400	57	43	228	172	0.0000	0.0001	0.0001	0.0003	0.0003
URBANA	0	193	0	193	229	0	7.5	1,716	57	43	978	738	0.0002	0.0004	0.0003	0.0002	0.0002
JEFFERSON	0	40	0	40	47	0	7.5	356	57	43	203	153	0.0000	0.0001	0.0001	0.0002	0.0002
NORBECK RD	0	248	0	248	294	0	7.5	2,205	57	43	1,257	948	0.0002	0.0005	0.0004	0.0010	0.0012
MONTROSE RD	0	650	0	650	771	0	7.5	5,780	57	43	3,295	2,485	0.0005	0.0014	0.0011	0.0025	0.0031
BRIGG CHENNY 50%	50	215	215	430	255	255	7.5	3,824	57	43	2,179	1,644	0.0003	0.0009	0.0007	0.0017	0.0019
COMUS ROAD	0	30	0	30	36	0	7.5	267	57	43	152	115	0.0000	0.0001	0.0001	0.0001	0.0001
LAKEFOREST MALL	0		0	300	356	0	7.5	2,668	57	43	1,521	1,147	0.0003	0.0007	0.0005	0.0012	0.0014
BURTONSVILLE	0	500	0	500	593	0	7.5	4,446	57	43	2,534	1,912	0.0004	0.0011	0.0009	0.0019	0.0024
FORCEY MEM.	0		0	200	237	0	7.5	1,778	57	43	1,014	765	0.0002	0.0004	0.0003	0.0008	0.0009
TECH ROAD	0		0	155	184	0	7.5	1,378	57	43	786	593	0.0001	0.0003	0.0003	0.0006	0.0007
BELTWAY	0	265	0	265	314	0	7.5	2,356	57	43	1,343	1,013	0.0002	0.0006	0.0005	0.0010	0.0013
LAUREL VAN DUSEN	0		0	62	74	0	7.5	551	57	43	314	237	0.0001	0.0001	0.0001	0.0002	0.0003
ACCOKEEK	0	450	0	450 100	534	0	7.5	4,001	57 57	43 43	2,281	1,721	0.0004	0.0010	0.0008	0.0018	0.0021
ABC DRIVE IN BOWIE 20%	20	100 526	131	100 657	119 623	156	7.5 7.5	889 5.842	57	43	507 3,330	382 2.512	0.0001 0.0005	0.0002 0.0014	0.0002 0.0011	0.0004 0.0026	0.0005 0.0031
CLINTON 50%	50	212	212	424	251	251	7.5	3,770	57	43	2,149	1,621	0.0003	0.0014	0.0011	0.0026	0.0031
OXON HILL 20%	20	519	130	649	616	154	7.5	5,771	57	43	3,289	2,482	0.0005	0.0009	0.0007	0.0017	0.0019
EQUESTRIAN CENTER 50	50	150	150	300	178	178	7.5	2,668	57	43	1,521	1.147	0.0003	0.0007	0.0005	0.0023	0.0030
BOWIE MARKET PLACE	0	50		50	59	0	7.5	445	57	43	253	191	0.0002	0.0001	0.0001	0.0002	0.0002
FT.WASHINGTON	0	412	0	412	488	0	7.5	3,664	57	43	2,088	1,575	0.0003	0.0009	0.0007	0.0016	0.0020
MONTPELIER REC PARK	0	70	0	70	83	0	7.5	622	57	43	355	268	0.0001	0.0002	0.0001	0.0003	0.0003
RESTON	0	1547	0	1547	1834	0	7.5	13,756	57	43	7,841	5,915	0.0013	0.0034	0.0027	0.0060	0.0073
GREENBRIAR	0	55	0	55	65	0	7.5	489	57	43	279	210	0.0000	0.0001	0.0001	0.0002	0.0003
FAIR OAKS	0	150	0	150	178	0	7.5	1,334	57	43	760	574	0.0001	0.0003	0.0003	0.0006	0.0007
ROLLING VALLEY	0	628	0	628	745	0	7.5	5,584	57	43	3,183	2,401	0.0005	0.0014	0.0011	0.0024	0.0030
SPRINGFIELD PLAZA	0	230	0	230	273	0	7.5	2,045	57	43	1,166	879	0.0002	0.0005	0.0004	0.0009	0.0011
FAIRLANES BOWL	0	35		35	41	0	7.5	311	57	43	177	134	0.0000	0.0001	0.0001	0.0001	0.0002
NOTTOWAY PARK	0	14	0	14	17	0	7.5	124	57	43	71	54	0.0000	0.0000	0.0000	0.0001	0.0001

2011 CLRP/FY2012	2047 TID AID	OLIALITY.	CONFORMITY
ZU 1 1 GLRP/F 1 ZU 1 Z·	-ZUT/ TIP AIR	GUALIT	CONFURINITY

		E M S O N S															
			2002				AVERAGE		ARTERIAL	FREEWAY	ARTERIAL	FREEWAY	COLD START		RUNNING		TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE	Total	INSIDE	OUTSIDE	TRIP LENGTH	VMT	9	6	VMT	VMT		Arterial	Freeway	Total	
	MSA (%)	MSA	MSA	Total	Growth Rate	Growth Rate							Rate (gm/mile)	Rate (gm/mile)	Rate (gm/mile)	Running	(tons/day)
					1.19	1.19							0.3226	0.1953	0.2036	Emission	
COMMUTER RAIL LOTS																	
HORNER RD	0	2397	0	2397	2842	0	7.5	21,315	57	43	12,149	9,165	0.0020	0.0052	0.0041	0.0093	0.0114
LAKE RIDGE	0	555	0	555	658	0	7.5	4,935	57	43	2,813	2,122	0.0005	0.0012	0.0010	0.0022	0.0026
MINNIEVILLE RD 40%	40		224	560	398	266	7.5	4,980	57	43	2,838	2,141	0.0004	0.0012	0.0010	0.0022	0.0026
GORDON BLVD	0	156	0	156	185	0	7.5	1,387	57	43	791	596	0.0001	0.0003	0.0003	0.0006	0.0007
HILLENDALE	0	248	0	248	294	0	7.5	2,205	57	43	1,257	948	0.0002	0.0005	0.0004	0.0010	0.0012
POTOMAC MILLS	0	946	0	946	1122	0	7.5	8,412	57	43	4,795	3,617	0.0008	0.0021	0.0016	0.0037	0.0045
								0									
PARK-AND-RIDE LOTS - MA	DVI AND							0									
CALVERT COUNTY	ARTLAND						-	0		-							
Dunkirk	25	32	11	42	37	12	7.5	373	57	43	213	161	0.0000	0.0001	0.0001	0.0002	0.0002
Huntingtown	25	26		35	31	10	7.5	311	57	43	177	134	0.0000	0.0001	0.0001	0.0002	0.0002
Lord Calvert Bowling Alley	25	83		110	98	33	7.5	978	57		558	421	0.0001	0.0001	0.0001	0.0001	0.0002
	25	23	8	30	27	9	7.5	267	57	43	152	115	0.0000	0.0002	0.0002	0.0004	0.0003
Lusby	25 25	53	٥	70	62	21	7.5	622	57	43	355	268	0.0000	0.0001	0.0001	0.0001	0.0001
North Beach VFD	25 25	53	18	70	62	21	7.5	622	57	43	355	268	0.0001	0.0002	0.0001	0.0003	0.0003
Prince Frederick	25 25	38		70 50	44	15	7.5	445	57	43	253	191	0.0001	0.0002	0.0001	0.0003	0.0003
St. Leonard Sunderland	25	80		106	94	31	7.5	943	57	43	253 537	191 405	0.0000	0.0001	0.0001	0.0002	0.0002
		80	21	106	94	31	7.5	943	5/	43	537	405	0.0001	0.0002	0.0002	0.0004	0.0005
PARK-AND-RIDE LOTS - MA	AR I LAND						-	0		-							
301 Park & Ride	25	287	96	383	341	114	7.5	3,406	57	43	1,941	1.464	0.0003	0.0008	0.0007	0.0015	0.0018
	25	267			341	114	7.5	3,406	57	43	1,941	1,464	0.0003	0.0008	0.0007	0.0015	0.0018
Charles County Government		38		35 50	44	15	7.5	445	57	43	253	191	0.0000	0.0001	0.0001	0.0001	0.0002
Food Lion Shopping Center La Plata Armory	25 25	15		20	18	6	7.5	178	57	43	101	76	0.0000	0.0001	0.0001	0.0002	0.0002
Laurel Springs Regional Park	25	38		50	44	15	7.5	445	57	43	253	191	0.0000	0.0000	0.0001	0.0001	0.0001
Life Wesleyan Church	25	38		50	44	15	7.5	445	57	43	253	191	0.0000	0.0001	0.0001	0.0002	0.0002
	25	435	145	580	516	172	7.5	5,157	57	43	2,940	2,218	0.0000	0.0001	0.001	0.0002	0.0002
Mattawoman-Beantown Rd Smallwood Village	25	75		100	89	30	7.5	889	57	43	507	382	0.0004	0.0013	0.0010	0.0023	0.0027
St. Charles Towne	25	263	88	350	311	104	7.5	3,112	57	43	1,774	1,338	0.0001	0.0002	0.0002	0.0004	0.0005
PARK-AND-RIDE LOTS - MA		203	00	330	311	104	7.5	3,112	57	43	1,774	1,330	0.0003	0.0006	0.0006	0.0014	0.0016
FREDERICK COUNTY	ANTLAND							0									
Frederick (north)	25	123	41	164	146	49	7.5	1,458	57	43	831	627	0.0001	0.0004	0.0003	0.0006	0.0008
Frederick (south)	25	173	58	230	205	68	7.5	2,045	57	43	1,166	879	0.0001	0.0005	0.0003	0.0009	0.0011
Monacacy Marcst	25	600	200	800	711	237	7.5	7,114	57	43	4,055	3,059	0.0002	0.0003	0.0004	0.0031	0.0037
PARK-AND-RIDE LOTS - MA		000	200	000	711	257	7.5	7,114	31	73	4,000	3,039	0.0000	0.0017	0.0014	0.0031	0.0037
MONTGOMERY COUNTY	AITILAITE							0									
Colesville	0	190	0	190	225	0	7.5	1,690	57	43	963	726	0.0002	0.0004	0.0003	0.0007	0.0009
Damascus	50	0	0	130	0	0	7.5	1,030	57	43	000	720	0.0002	0.0000	0.0000	0.0007	0.0003
Gaithersburg	50	259	259	517	306	306	7.5	4,597	57	43	2,620	1,977	0.0003	0.0000	0.0009	0.0020	0.0023
Gaithersburg	50	175	175	350	207	207	7.5	3,112	57	43	1,774	1,338	0.0003	0.0008	0.0006	0.0020	0.0025
Germantown Town	50	0	0	330	0	207	7.5	J, 11Z	57	43	1,774	1,336	0.0002	0.0008	0.0000	0.0014	0.0000
Greencastle	50	75	-	150	89	89	7.5	1,334	57	43	760	574	0.0001	0.0003	0.0003	0.0006	0.0007
Milestone Shopping	50	88		175	104	104	7.5	1,556	57	43	887	669	0.0001	0.0003	0.0003	0.0007	0.0007
PARK-AND-RIDE LOTS - MA		30	30	173	1.54	1.04	7.5	1,550	37	70	507	000	0.0001	0.0004	0.0000	5.0007	3.0000
PRINCE GEORGE'S COUNT								0									
Hampton Mall	. 0	100	0	100	119	0	4.5	534	57	43	304	229	0.0001	0.0001	0.0001	0.0002	0.0003
Laurel (south)	25	513	171	684	608	203	7.5	6,082	57	43	3,467	2,615	0.0001	0.0001	0.0001	0.0002	0.0003
PARK-AND-RIDE LOTS - VII		313	171	004	000	203	7.5	0,002	31	73	5,707	2,010	0.0003	0.0013	0.0012	0.0021	3.0032
ARLINGTON COUNTY	JIIIA							n									
Ballston Public Parking Garac	25	375	125	500	445	148	7.5	4,446	57	43	2,534	1,912	0.0004	0.0011	0.0009	0.0019	0.0023
Washington-Lee	50	178	178	356	211	211	7.5	3,166	57	43	1,804	1,361	0.0004	0.0008	0.0006	0.0013	0.0023
PARK-AND-RIDE LOTS - VII		170	170	330	211	211	7.5	J, 100	31	73	1,004	1,001	0.0002	0.0000	0.0000	0.0014	3.0010
FAIRFAX COUNTY							 	0									
American Legion	50	50	50	100	59	59	7.5	889	57	43	507	382	0.0001	0.0002	0.0002	0.0004	0.0005
Canterbury Woods Pk	50	17		34	20	20	7.5	302	57	43	172	130	0.0000	0.0002	0.0002	0.0004	0.0003
Centreville	50	185	185	370	219	219	7.5	3,290	57	43	1,875	1,415	0.0000	0.0001	0.0001	0.0001	0.0002
Centreville United Methodist (50	74		147	87	87	7.5	1,307	57	43	745	562	0.0002	0.0003	0.0003	0.0004	0.0017
Fairfax County Government C	50	85		170	101	101	7.5	1,512	57	43	862	650	0.0001	0.0003	0.0003	0.0007	0.0007
Greenbriar Park	50	28	28	55	33	33	7.5	489	57	43	279	210	0.0000	0.0004	0.0003	0.0007	0.0008
Herndon-Monroe	50	873	873	1,745	1034	1034	7.5	15,517	57	43	8.845	6,672	0.0000	0.0001	0.0001	0.0002	0.0002
Michael's	50	100	100	200	119	119	7.5	1,778	57	43	1,014	765	0.0011	0.0038	0.0030	0.0068	0.0079
IVIICI Iacl S	50	100	100	∠00	119	119	7.5	1,778	5/	43	1,014	700	0.0001	0.0004	0.0003	0.0008	0.0009

	E M I S S I O N S																
			2002		20	16	AVERAGE		ARTERIAL	FREEWAY	ARTERIAL	FREEWAY	COLD START		RUNNING		TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE	Total	INSIDE	OUTSIDE	TRIP LENGTH	VMT	9	6	VMT	VMT	COLD START	Arterial	Freeway	Total	
	MSA (%)	MSA	MSA	lotai	Growth Rate	Growth Rate							Rate (gm/mile)	Rate (gm/mile)	Rate (gm/mile)	Running	(tons/day)
					1.19	1.19							0.3226	0.1953	0.2036	Emission	` ,
COMMUTER RAIL LOTS																	
Parkwood Baptist	50	9	9	18	11	11	7.5	160	57	43	91	69	0.0000	0.0000	0.0000	0.0001	0.0001
South Run District Pk	50	170	170	340	202	202	7.5	3,023	57	43	1,723	1,300	0.0002	0.0007	0.0006	0.0013	0.0015
St Paul Chung Catholic Churc	50		50	100	59	59	7.5	889	57	43	507	382	0.0001	0.0002	0.0002	0.0004	0.0005
Stringfellow Rd	50	181	181	361	214	214	7.5	3,210	57	43	1,830	1,380	0.0002	0.0008	0.0006	0.0014	0.0016
Sully Station	50	70	70	140	83	83	7.5	1,245	57	43	710	535	0.0001	0.0003	0.0002	0.0005	0.0006
Sydenstricker Rd	50	84	84	167	99	99	7.5	1,485	57	43	846	639	0.0001	0.0004	0.0003	0.0007	0.0008
Wakefield Chapel Pk	50	25		50	30	30	7.5	445	57	43	253	191	0.0000	0.0001	0.0001	0.0002	0.0002
PARK-AND-RIDE LOTS - VII	RGINIA							0									
LOUDOUN COUNTY								0									
Ashburn Farm	50	10	10	20	12	12	7.5	178	57	43	101	76	0.0000	0.0000	0.0000	0.0001	0.0001
Ashburn Village	50	20	20	40	24	24	7.5	356	57	43	203	153	0.0000	0.0001	0.0001	0.0002	0.0002
Cascades	50	28	28	55	33	33	7.5	489	57	43	279	210	0.0000	0.0001	0.0001	0.0002	0.0002
Dulles North Transit	50		375	750	445	445	7.5	6,669	57	43	3,801	2,868	0.0005	0.0016	0.0013	0.0029	0.0034
Hamilton	50	25	25	50	30	30	7.5	445	57	43	253	191	0.0000	0.0001	0.0001	0.0002	0.0002
Innovation Avenue	50	38		75	44	44	7.5	667	57	43	380	287	0.0000	0.0002	0.0001	0.0003	0.0003
Leesburg	50	25		50	30	30	7.5	445	57	43	253	191	0.0000	0.0001	0.0001	0.0002	0.0002
Leesburg Kohls	50		600	1200	711	711	7.5	10,671	57	43	6,082	4,588	0.0008	0.0026	0.0021	0.0047	0.0054
Purcellville	50			35	21	21	7.5	311	57	43	177	134	0.0000	0.0001	0.0001	0.0001	0.0002
Sterling Park SC	50	23	23	45	27	27	7.5	400	57	43	228	172	0.0000	0.0001	0.0001	0.0002	0.0002
Sterling Shaw Rd	50	24	24	48	28	28	7.5	427	57	43	243	184	0.0000	0.0001	0.0001	0.0002	0.0002
PARK-AND-RIDE LOTS - VII	RGINIA							0									
PRINCE WILLIAM COUNTY								0									
Brittany	50	48	48	95	56	56	7.5	845	57	43	482	363	0.0001	0.0002	0.0002	0.0004	0.0004
Dale City	50	294	294	587	348	348	7.5	5,220	57	43	2,975	2,244	0.0004	0.0013	0.0010	0.0023	0.0027
Harbor Drive	50	100	100	200	119	119	7.5	1,778	57	43	1,014	765	0.0001	0.0004	0.0003	0.0008	0.0009
Lindendale	50	108	108	216	128	128	7.5	1,921	57	43	1,095	826	0.0001	0.0005	0.0004	0.0008	0.0010
Montclair	50	25	25	50	30	30	7.5	445	57	43	253	191	0.0000	0.0001	0.0001	0.0002	0.0002
PRTC Transit Center	50	93	93	185	110	110	7.5	1,645	57	43	938	707	0.0001	0.0004	0.0003	0.0007	0.0008
Tackett's Mill	50	85	85	169	100	100	7.5	1,503	57	43	857	646	0.0001	0.0004	0.0003	0.0007	0.0008
Triangle	50	15	15	29	17	17	7.5	258	57	43	147	111	0.0000	0.0001	0.0000	0.0001	0.0001
I-95 / Rt 123	50	282	282	563	334	334	7.5	5,006	57	43	2,854	2,153	0.0004	0.0012	0.0010	0.0022	0.0026
US 1 / VA 234	50	137	137	274	162	162	7.5	2,436	57	43	1,389	1,048	0.0002	0.0006	0.0005	0.0011	0.0012
MARC TRAIN COMMUTER I	OTS							0									
College Park	25	431	144	574	510	170	7.5	5,104	57	43	2,909	2,195	0.0004	0.0013	0.0010	0.0022	0.0027
Frederick	0	0	0	0	0	0	7.5	0	57	43	0	0	0.0000	0.0000	0.0000	0.0000	0.0000
Greenbelt	60	1346	2018	3364	1595	2393	7.5	29,913	57	43	17,051	12,863	0.0020	0.0073	0.0058	0.0131	0.0151
Harpers Ferry		98	0	98	116	0	7.5	871	57	43	497	375	0.0001	0.0002	0.0002	0.0004	0.0005
Muirkirk	60	260	390	650	308	462	7.5	5,780	57	43	3,295	2,485	0.0004	0.0014	0.0011	0.0025	0.0029
Seabrook	0	264	0	264	313	0	4.5	1,409	57	43	803	606	0.0002	0.0003	0.0003	0.0006	0.0008
Silver Spring	0	0	0	0	0	0	4.5	0	57	43	0	0	0.0000	0.0000	0.0000	0.0000	0.0000
Union Station	0	781	0	781	926	0	7.5	6,945	57	43	3,959	2,986	0.0007	0.0017	0.0013	0.0030	0.0037
VIRGINIA RAILWAY EXPRE								0						-			
Backlick Road	50		110	220	130	130	7.5	1,956	57	43	1,115	841	0.0001	0.0005	0.0004	0.0009	0.0010
Broad Run	50	198	198	396	235	235	7.5	3,521	57	43	2,007	1,514	0.0003	0.0009	0.0007	0.0015	0.0018
Burke Center	50	275	275	550	326	326	7.5	4,891	57	43	2,788	2,103	0.0003	0.0012	0.0009	0.0021	0.0025
Franconia/Springfield (operate	50	1900	1900	3800	2253	2253	7.5	33,790	57	43	19,261	14,530	0.0024	0.0083	0.0065	0.0148	0.0172
Lorton	50	100	100	200	119	119	7.5	1,778	57	43	1,014	765	0.0001	0.0004	0.0003	0.0008	0.0009
Manassas	50	187	187	374	222	222	7.5	3,326	57	43	1,896	1,430	0.0002	0.0008	0.0006	0.0015	0.0017
Manassas Park	50	150	150	300	178	178	7.5	2,668	57	43	1,521	1,147	0.0002	0.0007	0.0005	0.0012	0.0014
Quantico	50	109	109	217	129	129	7.5	1,930	57	43	1,100	830	0.0001	0.0005	0.0004	0.0008	0.0010
Rippon	50	150	150	300	178	178	7.5	2,668	57	43	1,521	1,147	0.0002	0.0007	0.0005	0.0012	0.0014
Rolling Road	50	185	185	370	219	219	7.5	3,290	57	43	1,875	1,415	0.0002	0.0008	0.0006	0.0014	0.0017
Woodbridge	50	294	294	588	349	349	7.5	5,229	57	43	2,980	2,248	0.0004	0.0013	0.0010	0.0023	0.0027
METRORAIL PARKING LOT		0	0		0	0	7.5	0	57	43	0	0	0.0000	0.0000	0.0000	0.0000	0.0000
Anacostia	25	861	287	1148	1021	340	7.5	10,208	57	43	5,819	4,390	0.0008	0.0025	0.0020	0.0045	0.0053
Branch Avenue	50	1611	1611	3222	1910	1910	7.5	28,651	57	43	16,331	12,320	0.0020	0.0070	0.0055	0.0126	0.0146
Capitol Heights	50		194	387	229	229	7.5	3,441	57	43	1,962	1,480	0.0002	0.0008	0.0007	0.0015	0.0018
College Park	25		155	620	551	184	7.5	5,513	57	43	3,143	2,371	0.0005	0.0014	0.0011	0.0024	0.0029
Congress Heights	0	66	0	66	78	0	4.5	352	57	43	201	151	0.0001	0.0001	0.0001	0.0002	0.0002
Deanwood	0	194	0	194	230	0	7.5	1,725	57	43	983	742	0.0002	0.0004	0.0003	0.0008	0.0009
East Falls Church	50	221	221	442	262	262	7.5	3,930	57	43	2,240	1,690	0.0003	0.0010	0.0008	0.0017	0.0020

2011 CLRP/FY2012-2017 TIP AIR QUALITY CONFORMITY

		2002 2016 AVERAGE ARTERIAL FREEWAY ARTERIAL FREEWAY												E M I S	SION	S	
			2002		20	16	AVERAGE		ARTERIAL	FREEWAY	ARTERIAL	FREEWAY	COLD START		RUNNING		TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE	Total	INSIDE	OUTSIDE	TRIP LENGTH	VMT	(%	VMT	VMT	COLDSTART	Arterial	Freeway	Total	
	MSA (%)	MSA	MSA	Total	Growth Rate	Growth Rate							Rate (gm/mile)	Rate (gm/mile)	Rate (gm/mile)	Running	(tons/day)
					1.19	1.19							0.3226	0.1953	0.2036	Emission	
COMMUTER RAIL LOTS																	
Forest Glen	50	329	329	658	390	390	7.5	5,851	57	43	3,335	2,516	0.0004	0.0014	0.0011	0.0026	0.003
Franconia - Springfield	50	1987	1987	3973	2355	2355	4.5	21,197	57	43	12,082	9,115	0.0025	0.0052	0.0041	0.0093	0.011
Glenmont	50	925	925	1850	1097	1097	4.5	9,870	57	43	5,626	4,244	0.0012	0.0024	0.0019	0.0043	0.005
Greenbelt	50	1783	1783	3565	2113	2113	7.5	31,701	57	43	18,069	13,631	0.0023	0.0078	0.0061	0.0139	0.016
Naylor Road	50	216	216	431	256	256	7.5	3,833	57	43	2,185	1,648	0.0003	0.0009	0.0007	0.0017	0.002
Prince George's Plaza	25	927	309	1236	1099	366	7.5	10,991	57	43	6,265	4,726	0.0009	0.0027	0.0021	0.0048	0.005
Southern Avenue	50	1090	1090	2180	1292	1292	4.5	11,631	57	43	6,630	5,001	0.0014	0.0029	0.0022	0.0051	0.006
Suitland	50	1033	1033	2065	1224	1224	4.5	11,017	57	43	6,280	4,738	0.0013	0.0027	0.0021	0.0048	0.006
Van Dorn Street	50	204	204	407	241	241	4.5	2,171	57	43	1,238	934	0.0003	0.0005	0.0004	0.0010	0.0012
West Hyattsville	25	453	151	604	537	179	7.5	5,371	57	43	3,061	2,309	0.0004	0.0013	0.0010	0.0024	0.002
Wheaton	25	759	253	1012	900	300	7.5	8,999	57	43	5,129	3,870	0.0007	0.0022	0.0017	0.0039	0.004
				108,310				843,828					0.0788	0.2071	0.1629	0.3700	0.4488

Bold figures: New numbers taken from P & R directory Figures in bracket: Carry forward figures from conformity doc.

Park lot Growth Rate	
transit trips 2016	1295286
transit trips 2000	1092489
Annual growth rate	0.013259172
Growth factor (2002-2016)	1.185628414

2011 CLRP / FY2012-2017 TIP AIR QUALITY CONFORMITY

			2002		20	16	AVERAGE	2016	ARTERIAL	FREEWAY	ARTERIAL	Adj.Art	FREEWAY	Adj.Fwy	COLD CTART		RUNNING		TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE		INSIDE	OUTSIDE	TRIP LENGTH	VMT		%	VMT	VMT	VMT	VMT	COLD START	Arterial	Freeway	Total Running	
	MSA (%)	MSA	MSA	Total	Growth Rate	Growth Rate					1				Rate (gm/mile)	Rate (gm/mile)	Rate (gm/mile)	Emission	(tons/day)
					1.19	1.19						Wk Days =	83		0.2985	0.1642	0.1726	(tones/day)	
COMMUTER RAIL LOTS												Seasonal adj =	0.9216						
												-							
BRUNSWICK 25%	25	305	102	407	362	121	7.5	3,619	57	43	2,063	1,901	1,556	1,434	0.0002	0.0007	0.0005	0.0012	0.0015
PT OF ROCKS 25%	25	204	68	272	242	81	7.5	2,419	57	43	1,379	1,271	1,040	958	0.0002	0.0005	0.0004	0.0008	0.0010
DICKERSON	0	15	0	15	18	0	7.5	133	57	43	76	70	57	53	0.0000	0.0000	0.0000	0.0000	0.0001
BARNESVILLE	0	46	0	46	55	0	7.5	409	57	43	233	215	176	162	0.0000	0.0001	0.0001	0.0001	0.0002
GERMANTOWN	0	386	0	386	458	0	7.5	3,432	57		1,956	1,803	1,476	1,360	0.0003	0.0007	0.0005	0.0012	0.0014
MET GROVE	0	352	0	352	417	0	7.5	3,130	57	43	1,784	1,644	1,346	1,240	0.0002	0.0006	0.0005	0.0011	0.0013
WAS GROVE	0	15	0	15	18	0	7.5	133	57	43	76	70		53	0.0000	0.0000	0.0000	0.0000	0.0001
GARRETT PARK	0	22	0	22	26	0	7.5	196				103	84	78	0.0000	0.0000	0.0000	0.0001	0.0001
BOWIE 50%	50	188	188	375	222	222	7.5	3,335	57			1,752	1,434	1,321	0.0002	0.0006	0.0005	0.0011	0.0013
SEABROOK 15%	15	224	40	264	266	47	7.5	2,348	57	43	1,338	1,233	1,009	930	0.0002	0.0004	0.0004	0.0008	0.0010
KENSINGTON	0	45	0	45	53	0	7.5	400	57	43	228	210	172	159	0.0000	0.0001	0.0001	0.0001	0.0002
LAUREL 30%	30	209	90	299	248	106	7.5	2,659	57		1,515	1,397	1,143	1,054	0.0002	0.0005	0.0004	0.0009	0.0011
GAITHESBURG	0	280	0	280	332	0	7.5	2,490	57	43		1,308	1,071	987	0.0002	0.0005	0.0004	0.0008	0.0010
BERWYN HEIGHTS	0	30	0	30	36	0		160	57		91	84	69	63	0.0000	0.0000	0.0000	0.0001	0.0001
RIVERDALE	0	65	0	65	77	0	4.5	347	57	43	198	182	149	137	0.0000	0.0001	0.0001	0.0001	0.0002
METRO RAIL LOTS																			
ADDISON ROAD 40%	40	791	527	1318	938	625	7.5	11,720	57	43	6,680	6,157	5.040	4,644	0.0007	0.0022	0.0018	0.0040	0.0047
ARCHIVES	0	12	0	12	14	0	4.5	64			36	34	28	25	0.0000	0.0000	0.0000	0.0000	0.0000
ARLING	0	10	0	10	12	0	4.5	53		43	30	28	23	21	0.0000	0.0000	0.0000	0.0000	0.0000
BALLSTON	0	1175	0	1175	1393	0	4.5	6,269	57	43	3,573	3,293	2,696	2,484	0.0008	0.0012	0.0009	0.0021	0.0029
BENN.RD	0	520	0	520	617	0	4.5	2,774	57			1,457	1,193	1.099	0.0003	0.0005	0.0004	0.0009	0.0013
BETH	0	395	0	395	468	0	4.5	2,107			1,201	1,107	906	835	0.0003	0.0004	0.0003	0.0007	0.0010
BRADD RD	0	10	0	10	12	0	4.5	53		43	30	28		21	0.0000	0.0000	0.0000	0.0000	0.0000
BROOKLAND	0	27	0	27	32	0	4.5	144	57	43	82	76		57	0.0000	0.0000	0.0000	0.0000	0.0001
CHEVERLY	0	557	0	557	660	0	4.5	2,972	57	43	1,694	1,561	1,278	1,178	0.0004	0.0006	0.0004	0.0010	0.0014
CLARENDON	0	554	0	554	657	0	4.5	2,956	57	43	1,685	1,553	1,271	1,171	0.0004	0.0006	0.0004	0.0010	0.0014
CLEVELAND PK	0	366	0	366	434	0	4.5	1,953	57	43	1,113	1,026	840	774	0.0002	0.0004	0.0003	0.0007	0.0009
COURT HOUSE	0	256	0	256	304	0	4.5	1,366	57	43	779	717	587	541	0.0002	0.0003	0.0002	0.0005	0.0006
CRYSTAL CITY	0	347	0	347	411	0	4.5	1,851	57	43	1,055	973	796	734	0.0002	0.0004	0.0003	0.0006	0.0009
DEANWOOD	0	194	0	194	230	0	4.5	1,035	57	43	590	544	445	410	0.0001	0.0002	0.0002	0.0004	0.0005
DUN LORING 10%	10	1220	136	1355	1446	161	4.5	7,229	57	43		3,798	3,109		0.0008	0.0014	0.0011	0.0025	0.0033
DUPONT CIRCLE	0	165	0	165	196	0	4.5	880			502	462	379	349	0.0001	0.0002	0.0001	0.0003	0.0004
EASTERN MKT	0	178	0	178	211	0	4.5	950	57	43	541	499	408	376	0.0001	0.0002	0.0001	0.0003	0.0004
EAST FALLS CH	0	442	0	442	524	0	4.5	2,358	57	43	1,344	1,239	1,014	935	0.0003	0.0004	0.0004	0.0008	0.0011
EIS	0	352	0	352	417	0	4.5	1,878		43	1,070	987	808	744	0.0002	0.0004	0.0003	0.0006	0.0009
FARRAGUT NORTH	0	102	0	102	121	0	4.5	544		43		286	234	216	0.0001	0.0001	0.0001	0.0002	0.0003
FARRAGUT WEST	0	221	0	221	262	0	4.5	1,179		43		619	507	467	0.0001	0.0002	0.0002	0.0004	0.0005
FEDERAL CENTER	0	75 54	0	75 54	89	0	4.5	400	57	43	228	210	172	159	0.0000	0.0001	0.0001	0.0001	0.0002
FEDERAL TRI	0	54	0	54	64	0		288		43	164	151	124	114	0.0000	0.0001	0.0000	0.0001	0.0001
FOGGY	0	102	0	102	121	0	4.5	544	57	43	310	286	234	216	0.0001	0.0001	0.0001	0.0002	0.0003
FORT TROTTEN	0	445	0	445	528	0	4.5	2,374	57			1,247	1,021	941	0.0003		0.0004	0.0008	0.0011
FRH.HEIGHTS GALLERY PLACE	0	679 124	0	679 124	805 147	0	4.5 4.5	3,623	57 57	43 43	2,065 377	1,903 348	1,558 284	1,436 262	0.0004 0.0001	0.0007	0.0005 0.0001	0.0012 0.0002	0.0017 0.0003
GROSVENOR	0	716	0	716	849	0	4.5	662 3,820	57	43	2,177	2,007	1,643	1,514	0.0001	0.0001	0.0001	0.0002	0.0003
HUNT NORTH 40%	40	1873	1249	3122	2221	1481	7.5	27.761	57	43	15,824	14,583	11,937	11,002	0.0005	0.0007	0.0006	0.0013	0.0018
JUD SQUARE	40	110	1249	110	130	1481	4.5	587	57	43		308	252	233	0.0016	0.0053	0.0042	0.0095	0.0003
KING ST	0	30	0	30	36	0	4.5	160				84	69	63	0.0000	0.0001	0.0001	0.0002	0.0003
INIVO 01	U	30	U	30	30	U	4.5	100	37	43	91	04	09	03	0.0000	0.0000	0.0000	0.0001	0.0001
LANDOVER 25%	25	1410	470	1880	1672	557	7.5	16,717	57	43	9,529	8,782	7,188	6,625	0.0011	0.0032	0.0025	0.0057	0.0068
L'ENFANT PLAZA	0	296	0	296	351	0	4.5	1,579	57	43		830	679	626	0.0002	0.0003	0.0002	0.0005	0.0007
MCPHERSON SQ	0	52	0	52	62	0	4.5	277		43		146	119	110	0.0000	0.0001	0.0000	0.0001	0.0001
MEDICAL CENTER	0	14	0	14	17	0	4.5	75		43	43	39	32	30	0.0000	0.0000	0.0000	0.0000	0.0000
METRO CENTER	0	177	0	177	210	0	4.5	944	57	43	538	496	406	374	0.0001	0.0002	0.0001	0.0003	0.0004
MINNES	0	353	0	353	419	0	4.5	1,883	57			989	810	746	0.0002	0.0004	0.0003	0.0006	0.0009
NAT AIR	0	87	0	87	103	0	4.5	464	57		265	244	200	184	0.0001	0.0001	0.0001	0.0002	0.0002
NEW CARROL 50%	50	1049	1049	2097	1243	1243	7.5	18,647	57		10,629	9,795	8,018	7,390	0.0010	0.0035	0.0028	0.0064	0.0074
PRNTAGON	0	561	0	561	665	0	4.5	2,993	57	43	1,706	1,572	1,287	1,186	0.0004	0.0006	0.0005	0.0010	0.0014

2011 CLRP / FY2012-2017 TIP AIR QUALITY CONFORMITY

									MISSIO	N S									
			2002		20		AVERAGE	2016	ARTERIAL	FREEWAY	ARTERIAL	Adj.Art	FREEWAY	Adj.Fwy	COLD START		RUNNING		TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE	Total	INSIDE	OUTSIDE	TRIP LENGTH	VMT		%	VMT	VMT	VMT	VMT		Arterial	Freeway	Total Running	
	MSA (%)	MSA	MSA	Total	Growth Rate	Growth Rate									Rate (gm/mile)	Rate (gm/mile)	Rate (gm/mile)	Emission	(tons/day)
					1.19	1.19						Wk Days =	83		0.2985	0.1642	0.1726	(tones/day)	
COMMUTER RAIL LOTS												Seasonal adj =	0.9216						
PENTAGON CITY	0	204	0	381	450	0	4.5	2.022		42	4.450	4.000	874	000	0.0003	0.0004	0.0003	0.0007	0.0009
POTOMAC AVE	0	381 533	0	533	452 632	0	4.5 4.5	2,033 2,844	57 57			1,068 1,494	1,223	806 1,127	0.0003	0.0004	0.0003	0.0007 0.0010	0.0009
ROCKVILLE	0	667	0	667	791	0	4.5	3,559	57			1,494	1,530	1,410	0.0004	0.0003	0.0004	0.0010	0.0013
ROSSLYN	0	356	0	356	422	0	4.5	1,899	57			998	817	753	0.0004	0.0007	0.0003	0.0006	0.0009
SHADY GROVE 10%	10	3903	434	4337	4628	514	7.5	38,566	57			20,259	16,583	15,283	0.0027	0.0073	0.0058	0.0131	0.0159
SILVER SPRING	0	44	0	44	52	0	4.5	235	57				101	93	0.0000	0.0000	0.0000	0.0001	0.0001
SMITH MALL	0	120	0	120	142	0	4.5	640				336	275	254	0.0001	0.0001	0.0001	0.0002	0.0003
STADIUM ARM	0	976	0	976	1157	0	4.5	5,207	57	43	2,968	2,735	2,239	2,064	0.0006	0.0010	0.0008	0.0018	0.0024
TAKOMA PK	0	146	0	146	173	0	4.5	779					335	309	0.0001	0.0001	0.0001	0.0003	0.0004
TENLEYTON	0	17	0	17	20	0	4.5	91	57			48	39	36	0.0000	0.0000	0.0000	0.0000	0.0000
TWINBROOK	0	1136	0	1136	1347	0	4.5	6,061	57			3,184	2,606	2,402	0.0007		0.0009	0.0021	0.0028
UNION STAT	0	378	0	378	448	0	4.5	2,017				1,059	867	799	0.0002		0.0003	0.0007	0.0009
VAN NESS VIENNA 25%	0 25	343 2798	933	343 3731	407 3318	0 1106	4.5 7.5	1,830 33,177	57 57			961 17,428	787 14,266	725 13,148	0.0002	0.0003 0.0063	0.0003 0.0050	0.0006 0.0113	0.0008 0.0135
VA SQUARE		642	933	642	761	1106	4.5	3,425	57			1,799	1,473	1,357	0.0021	0.0003	0.0050	0.0113	0.0135
WEST FALLS CHURCH	0	2183	0	2183	2588	0	4.5	11,647	57		6,639	6,118	5,008	4,616	0.0004	0.0007	0.0003	0.0012	0.0010
WHITE FLINT	0	1633	0	1633	1936	0	4.5	8,713				4,577	3,746	3,453	0.0011	0.0017	0.0013	0.0030	0.0040
WOODLEY	0	68	0	68	81	0	4.5	363	57			191	156	144	0.0000	0.0001	0.0001	0.0001	0.0002
RHODE ISLAND 30%	30	266	114	380	315	135	7.5	3,379	57		1,926	1,775	1,453	1,339	0.0002	0.0006	0.0005	0.0012	0.0014
BUS & CAR POOL LOTS																			
CARTER BARRON	0	798	0	798	946	0	4.5	4,258	57		,	2,237	1,831	1,687	0.0005	0.0008	0.0006	0.0015	0.0020
PG PLAZA	0	47	0	47	56	0	4.5	251	57			132	108	99	0.0000	0.0000	0.0000	0.0001	0.0001
PENN MAR SHOPP. CAP PLAZA	0	100 100	0	100 100	119 119	0	4.5 4.5	534 534	57 57	43		280 280	229 229	211 211	0.0001 0.0001	0.0001 0.0001	0.0001 0.0001	0.0002 0.0002	0.0002 0.0002
EASTOVER	0	100	0	100	119	0	4.5	534	57				229	211	0.0001	0.0001	0.0001	0.0002	0.0002
FOUR MILE RUN	0	28	0	28	33	0	4.5	149				78	64	59	0.0001	0.0000	0.0000	0.0002	0.0002
SPRINGFIELD MALL	0	580	0	580	688	0	4.5	3,094	57				1,331	1,226	0.0004	0.0006	0.0005	0.0011	0.0014
SPRINGFIELD METH CH	0	48	0	48	57	0	4.5	256	57			135	110	101	0.0000	0.0000	0.0000	0.0001	0.0001
FRED ARMORY	0	33	0	33	39	0	7.5	293	57	43	167	154	126	116	0.0000	0.0001	0.0000	0.0001	0.0001
MYERSVILLE	0	65	0	65	77	0	7.5	578	57	43	329	304	249	229	0.0000	0.0001	0.0001	0.0002	0.0002
ROSEMONT	0	45	0	45	53	0	7.5	400	57	43		210	172	159	0.0000	0.0001	0.0001	0.0001	0.0002
URBANA	0	193	0	193	229	0	7.5	1,716				902	738	680	0.0001	0.0003	0.0003	0.0006	0.0007
JEFFERSON	0	40	0	40	47	0	7.5	356				187	153	141	0.0000	0.0001	0.0001	0.0001	0.0001
NORBECK RD MONTROSE RD	0	248 650	0	248 650	294 771	0	7.5 7.5	2,205 5,780	57 57			1,158 3,036	948 2,485	874 2,291	0.0002 0.0004	0.0004 0.0011	0.0003 0.0009	0.0008 0.0020	0.0009
BRIGG CHENNY 50%	50	215	215	430	255	255	7.5	3,824	57		2,179	2,009	1,644	1,515	0.0004	0.0011	0.0009	0.0020	0.0024
COMUS ROAD	0	30	0	30	36	233	7.5	267	57			140	115	106	0.0002	0.0007	0.0000	0.0013	0.0013
LAKEFOREST MALL	0	300	0	300	356	0	7.5	2,668				1,401	1,147	1,057	0.0002	0.0005	0.0004	0.0009	0.0011
BURTONSVILLE	0	500	0	500	593	0	7.5	4,446				2,336	1,912	1,762	0.0003	0.0008	0.0007	0.0015	0.0018
FORCEY MEM.	0	200	0	200	237	0	7.5	1,778	57	43		934	765	705	0.0001	0.0003	0.0003	0.0006	0.0007
TECH ROAD	0	155	0	155	184	0	7.5	1,378	57		786	724	593	546	0.0001	0.0003	0.0002	0.0005	0.0006
BELTWAY	0	265	0	265	314	0	7.5	2,356	57	43		1,238	1,013	934	0.0002	0.0004	0.0004	0.0008	0.0010
LAUREL VAN DUSEN	0	62	0	62	74	0	7.5	551	57				237	218	0.0000		0.0001	0.0002	0.0002
ACCOKEEK	0	450	0	450	534	0	7.5	4,001	57			2,102	1,721	1,586	0.0003	0.0008	0.0006	0.0014	0.0017
ABC DRIVE IN BOWIE 20%	0 20	100 526	131	100 657	119 623	156	7.5 7.5	889 5,842	57 57			467 3,069	382 2,512	352 2,315	0.0001 0.0004	0.0002 0.0011	0.0001 0.0009	0.0003	0.0004 0.0024
CLINTON 50%	50	212	212	424	251	251	7.5	3,770	57	43	- 7	1,981	1,621	1,494	0.0004	0.0011	0.0009	0.0020 0.0013	0.0024
OXON HILL 20%	20	519	130	649	616	154	7.5	5,771	57			3,032	2,482	2,287	0.0002	0.0007	0.0009	0.0013	0.0013
EQUESTRIAN CENTER 50	50	150	150	300	178	178	7.5	2,668	57			1,401	1,147	1,057	0.0004	0.0001	0.0009	0.0020	0.0024
BOWIE MARKET PLACE	0	50	0	50	59	0	7.5	445				234	191	176	0.0000	0.0001	0.0001	0.0002	0.0002
FT.WASHINGTON	0	412	0	412	488	0	7.5	3,664	57			1,925	1,575	1,452	0.0003	0.0007	0.0006	0.0012	0.0015
MONTPELIER REC PARK	0	70	0	70	83	0	7.5	622	57	43	355	327	268	247	0.0000	0.0001	0.0001	0.0002	0.0003
RESTON	0	1547	0	1547	1834	0	7.5	13,756	57	43		7,226	5,915	5,451	0.0010	0.0026	0.0021	0.0047	0.0057
GREENBRIAR	0	55	0	55	65	0	7.5	489					210	194	0.0000		0.0001	0.0002	0.0002
FAIR OAKS	0	150	0	150	178	0	7.5	1,334	57			701	574	529	0.0001	0.0003	0.0002	0.0005	0.0006
ROLLING VALLEY	0	628	0	628	745	0	7.5	5,584	57		-,	2,934	2,401	2,213	0.0004		0.0008	0.0019	0.0023
SPRINGFIELD PLAZA	0	230	0	230	273	0	7.5	2,045	57		1,166	1,074	879	810	0.0002	0.0004	0.0003	0.0007	0.0008
FAIRLANES BOWL	0	35	0	35	41	0	7.5	311	57	43	177	163	134	123	0.0000	0.0001	0.0000	0.0001	0.0001

																E	MISSIO	N S	
			2002		20	16	AVERAGE	2016	ARTERIAL	FREEWAY	ARTERIAL	Adj.Art	FREEWAY	Adj.Fwy	COLD START		RUNNING		TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE	Total	INSIDE	OUTSIDE	TRIP LENGTH	VMT		%	VMT	VMT	VMT	VMT	COLD START	Arterial	Freeway	Total Running	
	MSA (%)	MSA	MSA	Total	Growth Rate	Growth Rate									Rate (gm/mile)	Rate (gm/mile)	Rate (gm/mile)	Emission	(tons/day)
					1.19	1.19						Wk Days =	83		0.2985	0.1642	0.1726	(tones/day)	
COMMUTER RAIL LOTS												Seasonal adj =	0.9216						
NOTTOWAY PARK	0	14	0	14			7.5	124	57		71	65		49	0.0000	0.0000	0.0000	0.0000	0.0001
HORNER RD	0	2397	0	2397	2842	0	7.5	21,315			12,149	11,197	9,165	8,447	0.0016	0.0041	0.0032	0.0073	0.0088
LAKE RIDGE	0	555	004	555	658	0	7.5 7.5	4,935	57	43	2,813	2,593	2,122	1,956	0.0004	0.0009	0.0007	0.0017	0.0020
MINNIEVILLE RD 40% GORDON BLVD	40	336 156	224	560 156	398 185	266 0	7.5	4,980 1,387	57 57		2,838 791	2,616 729	2,141 596	1,973 550	0.0003 0.0001	0.0009	0.0008 0.0002	0.0017 0.0005	0.0020 0.0006
HILLENDALE	0	248	0	248	294	0	7.5	2,205	57	43	1,257	1,158	948	874	0.0001	0.0003	0.0002	0.0008	0.0008
POTOMAC MILLS	0	946	0	946	1122	0	7.5	8,412	57	43	4.795	4,419	3,617	3,334	0.0002	0.0004	0.0003	0.0029	0.0009
1 OTOMAKO MILEO	Ŭ	0-10		010	1122	, and the second	7.0	0,412	0,	70	4,700	4,410	0,011	0,004	0.0000	0.0010	0.0010	0.0020	0.0000
List of new lots to be add	led in Co	nformity	Documen	t list															
PARK-AND-RIDE LOTS -	MARYLA	AND																	
PARK-AND-RIDE LOTS -																			
CHARLES COUNTY																			
301 Park & Ride	25	287	96	383	341	114	7.5	3,406	57		1,941	1,789	1,464	1,350	0.0002	0.0006	0.0005	0.0012	0.0014
Charles County Government	25	26	9	35	31	10	7.5	311	57	43	177	163	134	123	0.0000	0.0001	0.0000	0.0001	0.0001
Food Lion Shopping Center	25	38	13	50		15		445		43	253	234	191	176	0.0000	0.0001	0.0001	0.0002	0.0002
La Plata Armory	25	15	5	20	18	6	7.5	178	57	43	101	93		70	0.0000	0.0000	0.0000	0.0001	0.0001
Laurel Springs Regional Park	25	38	13	50	44		7.5	445		43	253	234	191	176	0.0000	0.0001	0.0001	0.0002	0.0002
Life Wesleyan Church	25	38	13	50	44			445			253	234	191	176	0.0000	0.0001	0.0001	0.0002	0.0002
Mattawoman-Beantown Rd	25 25	435	145 25	580 100	516 89	172	7.5 7.5	5,157		43	2,940	2,709	2,218	2,044	0.0003	0.0010	0.0008	0.0018	0.0021
Smallwood Village St. Charles Towne	25	75 263	25 88	350	311	30 104	7.5	889 3,112		43	507 1,774	467 1,635	382 1,338	352 1,233	0.0001 0.0002	0.0002 0.0006	0.0001 0.0005	0.0003 0.0011	0.0004 0.0013
PARK-AND-RIDE LOTS -			00	330	311	104	7.5	3,112	31	43	1,774	1,033	1,330	1,233	0.0002	0.0006	0.0005	0.0011	0.0013
FREDERICK COUNTY	WARTLA	AND			0	0		0											
Frederick (north)	25	123	41	164	146	49	7.5	1.458	57	43	831	766	627	578	0.0001	0.0003	0.0002	0.0005	0.0006
Frederick (south)	25	173	58	230	205	68	7.5	2.045		43	1.166	1.074	879	810	0.0001	0.0003	0.0002	0.0003	0.0008
Monacacy Marcst	25	600	200	800	711	237	7.5	7,114			4,055	3,737	3,059	2,819	0.0005		0.0011	0.0024	0.0029
PARK-AND-RIDE LOTS -					0	0		0			.,	5,	-,		2,332		0.00	J.00	
MONTGOMERY COUNTY	,				0	0		0								1			
Colesville	0	190	0	190	225	0	7.5	1,690	57	43	963	888	726	670	0.0001	0.0003	0.0003	0.0006	0.0007
Damascus	50	0	0		0	0	7.5	0	57	43	0	0	0	0	0.0000	0.0000	0.0000	0.0000	0.0000
Gaithersburg	50	259	259	517	306	306	7.5	4,597	57	43	2,620	2,415	1,977	1,822	0.0003	0.0009	0.0007	0.0016	0.0018
Gaithersburg	50	175	175	350	207	207	7.5	3,112	57		1,774	1,635	1,338	1,233	0.0002	0.0006	0.0005	0.0011	0.0012
Germantown Town	50	0	0		0	0	7.5	0	57	43	0	0	0	0	0.0000	0.0000	0.0000	0.0000	0.0000
Greencastle	50	75	75	150	89	89	7.5	1,334	57	43	760	701	574	529	0.0001	0.0003	0.0002	0.0005	0.0005
Milestone Shopping	50	88	88	175	104	104	7.5	1,556	57	43	887	817	669	617	0.0001	0.0003	0.0002	0.0005	0.0006
PARK-AND-RIDE LOTS -		ND			0	0		0											
PRINCE GEORGE'S COU	NTY				0	0		0											
Hampton Mall	0	100	0	100	119	0	4.5	534			304	280	229	211	0.0001	0.0001	0.0001	0.0002	0.0002
Laurel (south)	25	513	171	684	608	203	7.5	6,082	57	43	3,467	3,195	2,615	2,410	0.0004	0.0012	0.0009	0.0021	0.0025
PARK-AND-RIDE LOTS -	VIRGINIA	H			0	0		0				0		0	0.0000	0.0000	0.0000		
ARLINGTON COUNTY Ballston Public Parking Gara	25	375	125	500	445	148	7.5	4,446	57	43	2,534	2,336	1,912	1,762	0.0003	0.0008	0.0007	0.0015	0.0018
Washington-Lee	50	178	178	356	211	211	7.5	3,166			1,804	1,663	1,361	1,762	0.0003		0.0007	0.0015	0.0018
PARK-AND-RIDE LOTS -			.70	550	0	0	7.5	0,100		40	1,004	1,003	1,501	1,200	0.0002	0.0000	0.0003	0.0011	3.3013
FAIRFAX COUNTY	1.1101111				0			0				0				-			
American Legion	50	50	50	100	59	·	7.5	889		43	507	467	382	352	0.0000	0.0002	0.0001	0.0003	0.0004
Canterbury Woods Pk	50	17	17	34		20	7.5	302		43	172	159		120	0.0000	0.0001	0.0000	0.0001	0.0001
Centreville	50	185	185	370	219	219	7.5	3,290	57		1,875	1,728	1,415	1,304	0.0002	0.0006	0.0005	0.0011	0.0013
Centreville United Methodist	50	74	74	147	87	87	7.5	1,307	57		745	687	562	518	0.0001	0.0002	0.0002	0.0004	0.0005
Fairfax County Government	50	85	85	170	101	101	7.5	1,512	57	43	862	794	650	599	0.0001	0.0003	0.0002	0.0005	0.0006
Greenbriar Park	50	28	28	55	33	33	7.5	489		43	279	257	210	194	0.0000	0.0001	0.0001	0.0002	0.0002
Herndon-Monroe	50	873	873	1,745	1034	1034	7.5	15,517	57	43	8,845	8,151	6,672	6,149	0.0009		0.0023	0.0053	0.0062
Michael's	50	100	100	200	119		7.5	1,778			1,014	934	765	705	0.0001		0.0003	0.0006	0.0007
Parkwood Baptist	50	9	9	18			7.5	160			91	84		63	0.0000	0.0000	0.0000	0.0001	0.0001
South Run District Pk	50	170	170	340	202	202	7.5	3,023	57		1,723	1,588	1,300	1,198	0.0002		0.0005	0.0010	0.0012
St Paul Chung Catholic Chur	50	50	50	100	59	59	7.5	889	57	43	507	467	382	352	0.0000	0.0002	0.0001	0.0003	0.0004
Stringfellow Rd	50 50	181	181	361 140	214	214	7.5	3,210			1,830	1,686	1,380	1,272	0.0002	0.0006	0.0005	0.0011	0.0013 0.0005
Sully Station	50	70	70	140	83	83	7.5	1,245	57	43	710	654	535	493	0.0001	0.0002	0.0002	0.0004	0.0005

2011 CLRP / FY2012-2017 TIP AIR QUALITY CONFORMITY

																E	MISSIO	N S	
			2002		20	16	AVERAGE	2016	ARTERIAL	FREEWAY	ARTERIAL	Adj.Art	FREEWAY	Adj.Fwy			RUNNING		TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE		INSIDE	OUTSIDE	TRIP LENGTH	VMT		%	VMT	VMT	VMT	VMT	COLD START	Arterial	Freeway	Total Running	
	MSA (%)	MSA	MSA	Total	Growth Rate	Growth Rate	22.10111	*		Ť T	1	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		Rate (gm/mile)	Rate (gm/mile)	Rate (gm/mile)	Emission	(tons/day)
					1.19	1.19						Wk Days =	83		0.2985	0.1642	0.1726	(tones/day)	(,,
COMMUTER RAIL LOTS												Seasonal adj =	0.9216			0.20.2		(** **, **, //	
												oodoona. daj	0.02.10						
Sydenstricker Rd	50	84	84	167	99	99	7.5	1,485	57	43	846	780	639	588	0.0001	0.0003	0.0002	0.0005	0.0006
Wakefield Chapel Pk	50	25		50	30	30	7.5	445				234	191	176	0.0000	0.0001	0.0001	0.0002	0.0002
PARK-AND-RIDE LOTS -	VIRGINIA	1																	
LOUDOUN COUNTY																			
Ashburn Farm	50	10	10	20	12	12	7.5	178	57	43	101	93	76	70	0.0000	0.0000	0.0000	0.0001	0.0001
Ashburn Village	50	20	20	40	24	24	7.5	356			203	187	153	141	0.0000	0.0001	0.0001	0.0001	0.0001
Cascades	50	28	28	55	33	33	7.5	489	57	43	279	257	210	194	0.0000	0.0001	0.0001	0.0002	0.0002
Dulles North Transit	50	375	375	750	445	445	7.5	6,669	57	43	3,801	3,503	2,868	2,643	0.0004	0.0013	0.0010	0.0023	0.0026
Hamilton	50	25	25	50	30	30	7.5	445	57	43	253	234	191	176	0.0000	0.0001	0.0001	0.0002	0.0002
Innovation Avenue	50	38	38	75	44	44	7.5	667	57	43	380	350	287	264	0.0000	0.0001	0.0001	0.0002	0.0003
Leesburg	50	25	25	50	30	30	7.5	445	57	43	253	234	191	176	0.0000	0.0001	0.0001	0.0002	0.0002
Leesburg Kohls	50	600	600	1200	711	711	7.5	10,671				5,605	4,588	4,229	0.0006	0.0020	0.0016	0.0036	0.0042
Purcellville	50	18		35	21	21	7.5	311			177	163	134	123	0.0000	0.0001	0.0000	0.0001	0.0001
Sterling Park SC	50	23	23	45	27	27	7.5	400	57		228	210	172	159	0.0000	0.0001	0.0001	0.0001	0.0002
Sterling Shaw Rd	50	24	24	48	28	28	7.5	427	57	43	243	224	184	169	0.0000	0.0001	0.0001	0.0001	0.0002
PARK-AND-RIDE LOTS -		•							1	ļ									
PRINCE WILLIAM COUNT										ļ									
Brittany	50	48	48	95	56	56	7.5	845	57		482	444	363	335	0.0000	0.0002	0.0001	0.0003	0.0003
Dale City	50	294	294	587	348	348	7.5	5,220	57		2,975	2,742	2,244	2,069	0.0003	0.0010	0.0008	0.0018	0.0021
Harbor Drive	50	100	100	200	119	119	7.5	1,778	57		1,014	934	765	705	0.0001	0.0003	0.0003	0.0006	0.0007
Lindendale	50	108	108	216	128	128	7.5	1,921	57			1,009	826	761	0.0001	0.0004	0.0003	0.0007	0.0008
Montclair	50	25	25	50	30	30	7.5	445			253	234	191	176	0.0000	0.0001	0.0001	0.0002	0.0002
PRTC Transit Center	50	93	93 85	185	110	110	7.5	1,645			938	864	707	652	0.0001	0.0003	0.0002	0.0006	0.0007
Tackett's Mill	50 50	85	15	169 29	100 17	100 17	7.5 7.5	1,503	57 57		857 147	789 135	646 111	596 102	0.0001	0.0003	0.0002	0.0005 0.0001	0.0006 0.0001
Triangle I-95 / Rt 123	50	15 282	282	563	334	334	7.5	258 5,006	57			2,630	2,153	1,984	0.0000	0.0000	0.0008	0.0001	0.0001
US 1 / VA 234	50	137	137	274	162	162	7.5	2,436	57			1,280	1.048	966	0.0003	0.0010	0.0008	0.0017	0.0020
MARC TRAIN COMMUTE		137	137	2/4	102	102	7.5	2,430	37	43	1,309	1,200	1,040	900	0.0001	0.0005	0.0004	0.0006	0.0010
College Park	25	431	144	574	510	170	7.5	5,104	57	43	2,909	2,681	2,195	2,023	0.0003	0.0010	0.0008	0.0017	0.0021
Frederick	0	731	0	0	0.0	0	7.5	0,104	57		2,303	2,001	2,133	2,020	0.0000	0.0000	0.0000	0.0000	0.0021
Greenbelt	60	1346	2018	3364	1595	2393	7.5	29,913			17,051	15,714	12,863	11,854	0.0005	0.0057	0.0045	0.0102	0.0000
Harpers Ferry	00	98	0	98	116	0	7.5	871			497	458	375	345	0.0001	0.0007	0.0001	0.0003	0.0004
Muirkirk	60	260	390	650	308	462	7.5	5,780	57		3,295	3.036	2,485	2,291	0.0003	0.0011	0.0009	0.0020	0.0023
Seabrook	0	264	0	264	313	0	4.5	1,409	57		803	740	606	558	0.0002	0.0003	0.0002	0.0005	0.0007
Silver Spring	0	0	0	0	0	0	4.5	0	57		0	0	0	0	0.0000	0.0000	0.0000	0.0000	0.0000
Union Station	0	781	0	781	926	0	7.5	6,945	57	43	3,959	3,648	2,986	2,752	0.0005	0.0013	0.0010	0.0024	0.0029
VIRGINIA RAILWAY EXPI	RESS CC	MMUTER	RLOTS																
Backlick Road	50	110	110	220	130	130	7.5	1,956	57	43	1,115	1,028	841	775	0.0001	0.0004	0.0003	0.0007	0.0008
Broad Run	50	198	198	396	235	235	7.5	3,521	57		2,007	1,850	1,514	1,395	0.0002	0.0007	0.0005	0.0012	0.0014
Brooke	50	150	150	300	178	178	7.5	2,668	57		1,521	1,401	1,147	1,057	0.0001	0.0005	0.0004	0.0009	0.0011
Burke Center	50	275	275	550	326	326	7.5	4,891	57		2,788	2,569	2,103	1,938	0.0003	0.0009	0.0007	0.0017	0.0019
Franconia/Springfield (operat	50	1900	1900	3800	2253	2253	7.5	33,790	57		19,261	17,751	14,530	13,391	0.0019	0.0064	0.0051	0.0115	0.0134
Leeland Road	50	326	326	652	387	387	7.5	5,798	57		3,305	3,046	2,493	2,298	0.0003	0.0011	0.0009	0.0020	0.0023
Lorton	50	100	100	200	119	119	7.5	1,778	57		1,014	934	765	705	0.0001	0.0003	0.0003	0.0006	0.0007
Manassas	50	187	187	374	222	222	7.5	3,326	57		1,896	1,747	1,430	1,318	0.0002	0.0006	0.0005	0.0011	0.0013
Manassas Park	50	150	150	300	178	178	7.5	2,668	57		1,521	1,401	1,147	1,057	0.0001	0.0005	0.0004	0.0009	0.0011
Quantico	50	109	109	217	129	129	7.5	1,930	57			1,014	830	765	0.0001	0.0004	0.0003	0.0007	0.0008
Rippon	50	150	150	300	178	178	7.5	2,668	57		1,521	1,401	1,147	1,057	0.0001	0.0005	0.0004	0.0009	0.0011
Rolling Road	50	185	185	370	219	219	7.5	3,290	57		1,875	1,728	1,415	1,304	0.0002	0.0006	0.0005	0.0011	0.0013
Woodbridge	50	294	294	588	349	349	7.5	5,229	57	43	2,980	2,747	2,248	2,072	0.0003	0.0010	0.0008	0.0018	0.0021
METRORAIL PARKING L		001	007	4440	4004	0.10		40.000			F 0.10	F 000	4.000	40:-	0.000=	0.0010	0.001=	0.000=	0.0011
Anacostia	25	861	287	1148	1021	340	7.5	10,208	57		5,819	5,363	4,390	4,045	0.0007	0.0019	0.0015	0.0035	0.0041
Branch Avenue	50	1611	1611	3222	1910	1910	7.5 7.5	28,651	57		16,331	15,051	12,320	11,354	0.0016	0.0054	0.0043	0.0098	0.0114
Capitol Heights	50 25	194 465	194 155	387 620	229 551	229 184	7.5 7.5	3,441 5,513	57 57		1,962 3,143	1,808 2,896	1,480 2,371	1,364 2,185	0.0002 0.0004	0.0007 0.0010	0.0005	0.0012 0.0019	0.0014 0.0022
College Park	25	465 66	105	66	78	184	7.5 4.5	5,513	57		3,143	2,896	2,371 151	2,185	0.0004	0.0010	0.0008	0.0019	0.0022
Congress Heights	0	194	0	194	230	0		1,725	57		983	906	742	140 684	0.0000	0.0001	0.0001	0.0001	0.0002
Deanwood East Falls Church	50	221	221	194 442	230	262	7.5	3,930	57		2,240	2.065	1.690	1.558	0.0001	0.0003	0.0003	0.0006	0.0007
Forest Glen	50	329	329	658	390	390	7.5	5,851	57		3,335	3.074	2,516	2.319	0.0002	0.0007	0.0008	0.0013	0.0018
Franconia - Springfield	50	1987	1987	3973	2355	2355	4.5	21,197	57			3,074 11,135	9,115	8,400	0.0003	0.0011	0.0009	0.0020	0.0023
ranconia - opringileiu	50	190/	1907	১৪/১	2000	2333	4.5	41,197	57	43	12,002	11,130	9,115	0,400	0.0020	0.0040	0.0032	0.0072	0.0092

2011 CLRP / FY2012-2017 TIP AIR QUALITY CONFORMITY

																E	MISSIO	N S	
			2002		20	16	AVERAGE	2016	ARTERIAL	FREEWAY	ARTERIAL	Adj.Art	FREEWAY	Adj.Fwy	COLD START		RUNNING		TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE	Total	INSIDE	OUTSIDE	TRIP LENGTH	VMT		%	VMT	VMT	VMT	VMT	COLD START	Arterial	Freeway	Total Running	
	MSA (%)	MSA	MSA	TOTAL	Growth Rate	Growth Rate									Rate (gm/mile)	Rate (gm/mile)	Rate (gm/mile)	Emission	(tons/day)
					1.19	1.19						Wk Days =	83		0.2985	0.1642	0.1726	(tones/day)	
COMMUTER RAIL LOTS												Seasonal adj =	0.9216						
Glenmont	50	925	925	1850	1097	1097	4.5	9,870	57	43	5,626	5,185	4,244	3,912	0.0009	0.0019	0.0015	0.0034	0.004
Greenbelt	50	1783	1783	3565	2113	2113	7.5	31,701	57	43	18,069	16,653	13,631	12,563	0.0018	0.0060	0.0048	0.0108	0.012
Naylor Road	50	216	216	431	256	256	7.5	3,833	57	43	2,185	2,013	1,648	1,519	0.0002	0.0007	0.0006	0.0013	0.001
Prince George's Plaza	25	927	309	1236	1099	366	7.5	10,991	57	43	6,265	5,774	4,726	4,356	0.0007	0.0021	0.0017	0.0037	0.004
Southern Avenue	50	1090	1090	2180	1292	1292	4.5	11,631	57	43	6,630	6,110	5,001	4,609	0.0011	0.0022	0.0018	0.0040	0.005
Suitland	50	1033	1033	2065	1224	1224	4.5	11,017	57	43	6,280	5,788	4,738	4,366	0.0010	0.0021	0.0017	0.0038	0.004
/an Dorn Street	50	204	204	407	241	241	4.5	2,171	57	43	1,238	1,141	934	861	0.0002	0.0004	0.0003	0.0007	0.000
Vest Hyattsville	25	453	151	604	537	179	7.5	5,371	57	43	3,061	2,821	2,309	2,128	0.0003	0.0010	0.0008	0.0018	0.002
Vheaton	25	759	253	1012	900	300	7.5	8,999	57	43	5,129	4,727	3,870	3,566	0.0006	0.0017	0.0014	0.0031	0.003
				108,749				847,732				•			0.0617	0.1612	0.1278	0.2890	0.35069
																	Seasonal Total	(tons/season) =	29.1

Bold figures: New numbers taken from P & R directory Figures in bracket: Carry forward figures from conformity doc.

Park lot Growth Rate

Transit trips 2016 1295286 transit trips 2002 1,092,489 Annual growth rate 0.013259172 Growth factor (2002-2016) 1.185628414

SEASON 2 (May-Sep) 2016 Precursor NOx AUTO ACCESS TO TRANSIT 2011 CLRP / FY2012-2017 TIP AIR QUALITY CONFORMITY

																E M I :	SSIONS		
			2002		20	16	AVERAGE	2016	ARTERIAL	FREEWAY	ARTERIAL	Adj.Art	FREEWAY	Adj.Fwy	COLD CTART	1	RUNNING		TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE		INSIDE	OUTSIDE	TRIP LENGTH	VMT		%	VMT	VMT	VMT	VMT	COLD START	Arterial	Freeway	Total Running	
	MSA (%)	MSA	MSA	Total	Growth Rate	Growth Rate									Rate (gm/mile)	Rate (gm/mile)	Rate (gm/mile)	Emission	(tons/day)
					1.19	1.19						Wk Days =	107		0.2137	0.1211	0.1272	(tones/day)	
COMMUTER RAIL LOTS												Seasonal adj =	0.9873						
BRUNSWICK 25%	25		102	407		121	7.5		57		,	2,037	1,556	1,536	0.0002	0.0005	0.0004	0.0010	
PT OF ROCKS 25%	25			272		81	7.5	2,419	57			1,361	1,040	1,027	0.0001	0.0004	0.0003	0.0007	
DICKERSON	0			15		0	7.5		57			75		57	0.0000	0.0000	0.0000	0.0000	
BARNESVILLE	0			46		0	7.5					230		174	0.0000	0.0001	0.0000	0.0001	0.0001
GERMANTOWN	0	386	0	386		0	7.5	-, -	57		,	1,932	1,476	1,457	0.0002	0.0005	0.0004	0.0009	0.0011
MET GROVE	0	002	0	352		0	7.5		57			1,761	1,346	1,329	0.0002	0.0005	0.0004	0.0008	0.0010
WAS GROVE	0	10		15		0	7.5		57			75		57	0.0000	0.0000	0.0000	0.0000	
GARRETT PARK	0	22		22		0			57			110		83	0.0000	0.0000	0.0000	0.0001	0.0001
BOWIE 50%	50			375		222	7.5		57		.,	1,877		1,416	0.0001	0.0005	0.0004	0.0009	
SEABROOK 15% KENSINGTON	15			264 45		47	7.5 7.5	2,348 400	57			1,321	1,009 172	997 170	0.0001 0.0000	0.0004 0.0001	0.0003	0.0006	0.0007
	30			299		106	7.5	2,659	57 57			225 1,496	1,143	1,129	0.0000		0.0003	0.0001	
LAUREL 30% GAITHESBURG	30	280		299		0			57			1,496	1,143	1,129	0.0001	0.0004 0.0004	0.0003	0.0007	
BERWYN HEIGHTS	0	30		30		0	4.5					90		1,037	0.0001	0.0004	0.0003	0.0007	0.0001
RIVERDALE	0	65		65		0	4.5		57			195		147	0.0000	0.0001	0.0000	0.0001	0.0001
	"	- 55	-	- 55	''	0	7.5	347	31	+3	130	193	1+3	1+7	0.0000	0.0001	0.0000	0.0001	0.0001
METRO RAIL LOTS																			
					1														
ADDISON ROAD 40%	40	791	527	1318	938	625	7.5	11,720	57	43	6,680	6,596	5,040	4,976	0.0005	0.0018	0.0014	0.0032	0.0037
ARCHIVES	0	12	0	12	14	0	4.5	64	57	43	36	36	28	27	0.0000	0.0000	0.0000	0.0000	0.0000
ARLING	0	10	0	10	12	0	4.5	53	57	43	30	30	23	23	0.0000	0.0000	0.0000	0.0000	0.0000
BALLSTON	0	1175	0	1175	1393	0	4.5	6,269	57	43	3,573	3,528	2,696	2,661	0.0006	0.0009	0.0007	0.0017	0.0022
BENN.RD	0	520	0	520	617	0	4.5	2,774	57	43	1,581	1,561	1,193	1,178	0.0002	0.0004	0.0003	0.0007	0.0010
BETH	0	395	0	395	468	0	4.5	2,107	57	43	1,201	1,186	906	895	0.0002	0.0003	0.0003	0.0006	0.0008
BRADD RD	0			10		0	4.5					30		23	0.0000	0.0000	0.0000	0.0000	
BROOKLAND	0		0	27		0	4.5					81		61	0.0000	0.0000	0.0000	0.0000	
CHEVERLY	0	557	0	557		0	4.5		57			1,672	1,278	1,262	0.0003	0.0004	0.0004	0.0008	
CLARENDON	0	004		554		0	4.5		57			1,663	1,271	1,255	0.0003	0.0004	0.0004	0.0008	
CLEVELAND PK	0	366	0	366		0	4.5		57		, .	1,099		829	0.0002	0.0003	0.0002	0.0005	0.0007
COURT HOUSE	0	200	0	256		0	4.5		57			769		580	0.0001	0.0002	0.0002	0.0004	
CRYSTAL CITY	0		0	347		0		1,851	57			1,042		786	0.0002	0.0003	0.0002	0.0005	
DEANWOOD DUN LORING 10%	10		136	194 1355		0 161	4.5 4.5		57			582 4,068	445 3,109	439	0.0001 0.0006	0.0002 0.0011	0.0001 0.0009	0.0003 0.0019	0.0004
DUN LORING 10% DUPONT CIRCLE	10	165		165		0	4.5		57 57			4,066		3,069 374	0.0001	0.0011	0.0009	0.0019	0.0020
EASTERN MKT	0	178		178		0	4.5		57			534		403	0.0001	0.0001	0.0001	0.0002	0.0003
EAST FALLS CH	0	442		442		0	4.5		57			1,327		1,001	0.0001	0.0001	0.0001	0.0003	0.0008
EIS	0	352	0	352		0	4.5	,	57			1,057	808	797	0.0002	0.0003	0.0003	0.0005	0.0007
FARRAGUT NORTH	0	102	0	102		0	4.5		57			306	234	231	0.0002	0.0001	0.0001	0.0001	0.0007
FARRAGUT WEST	0	221	0	221		0	4.5		57			664		501	0.0001	0.0002	0.0001	0.0003	0.0004
FEDERAL CENTER	0	75	0	75		0	4.5		57			225		170	0.0000	0.0001	0.0000	0.0001	0.0001
FEDERAL TRI	0			54		0	4.5		57			162		122	0.0000	0.0000	0.0000	0.0001	0.0001
FOGGY	0			102		0	4.5		57			306	234	231	0.0000	0.0001	0.0001	0.0001	0.0002
FORT TROTTEN	0		0	445		0	4.5		57			1,336	1,021	1,008	0.0002	0.0004	0.0003	0.0006	0.0008
FRH.HEIGHTS	0	679	0	679		0	4.5	3,623	57			2,039	1,558	1,538	0.0003	0.0005	0.0004	0.0010	0.0013
GALLERY PLACE	0	124		124		0	4.5		57			372		281	0.0001	0.0001	0.0001	0.0002	0.0002
GROSVENOR	0	716		716		0	4.5	-,	57			2,150	1,643	1,622	0.0003	0.0006	0.0005	0.0010	0.0014
HUNT NORTH 40%	40		1249	3122		1481	7.5	27,761	57			15,623	11,937	11,786	0.0012	0.0042	0.0033	0.0075	0.0087
JUD SQUARE	0	110	0	110		0	4.5		57			330	252	249	0.0001	0.0001	0.0001	0.0002	0.0002
KING ST	0	30	0	30	36	0	4.5	160	57	43	91	90	69	68	0.0000	0.0000	0.0000	0.0000	0.0001
ļ	<u> </u>				1				-		-								
LANDOVED 0507		4470	4=-	1880	10=0			40.7/-			0.500	0.400	7.100	7.00-	0.0000	0.000=	0.0000	0.00:-	0.00=
LANDOVER 25%	25		470			557 0	7.5	16,717	57			9,408		7,097	0.0008	0.0025	0.0020	0.0045	
L'ENFANT PLAZA MCPHERSON SQ	0			296 52		0	4.5 4.5		57 57			889 156		670 118	0.0001 0.0000	0.0002 0.0000	0.0002 0.0000	0.0004	0.0006
	0			14		0									0.0000	0.0000	0.0000		
MEDICAL CENTER METRO CENTER	0	14 177		177		0	4.5 4.5		57			42 531		32 401	0.0000	0.0000	0.0000	0.0000	0.0000
MINNES	0			353		0	4.5		57			1,060	810	800	0.0001	0.0001	0.0001	0.0005	
NAT AIR	0	87		87		0	4.5		57		, -	261	200	197	0.0002	0.0003	0.0002	0.0003	0.0007
NEW CARROL 50%	50		1049	2097		1243	7.5		57			10,494		7,916	0.0007	0.0028	0.0001	0.0050	0.0002
PRNTAGON	n	561		561		0	4.5		57			1,684		1,271	0.0007	0.0026	0.0022	0.0008	0.0030
		551			500	U	7.5	2,000	J1	-10	1,700	1,007	1,201	1,41	0.0000	0.0004	0.0004	0.0000	3.0011

																E M I	SSIONS		
			2002		201	6	AVERAGE	2016	ARTERIAL	FREEWAY	ARTERIAL	Adj.Art	FREEWAY	Adj.Fwy	COLD START		RUNNING		TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE		INSIDE	OUTSIDE	TRIP LENGTH	VMT		%	VMT	VMT	VMT	VMT	COLD START	Arterial	Freeway	Total Running	
	MSA (%)	MSA	MSA	Total		Growth Rate									Rate (gm/mile)	Rate (gm/mile)	Rate (gm/mile)	Emission	(tons/day)
					1.19	1.19						Wk Days =	107		0.2137	0.1211	0.1272	(tones/day)	` ' '
COMMUTER RAIL LOTS												Seasonal adi =	0.9873						
												,							
PENTAGON CITY	0	381	0	381	452	0	4.5	2,033	57	43	1,159	1,144	874	863	0.0002	0.0003	0.0002	0.0005	0.0007
POTOMAC AVE	0	533	0	533	632	0	4.5	2,844	57	43	1,621	1,600	1,223	1,207	0.0003	0.0004	0.0003	0.0008	0.0010
ROCKVILLE	0	667	0	667	791	0	4.5	3,559	57	43	2,028	2,003	1,530	1,511	0.0003	0.0005	0.0004	0.0010	0.0013
ROSSLYN	0	356	0	356	422	0	4.5	1,899	57	43	1,083	1,069	817	806	0.0002	0.0003	0.0002	0.0005	0.0007
SHADY GROVE 10%	10	3903	434	4337	4628	514	7.5	38,566	57	43	21,982	21,703	16,583	16,373	0.0019	0.0058	0.0046	0.0104	0.0123
SILVER SPRING	0	44	0	44	52	0	4.5	235	57	43	134	132	101	100	0.0000	0.0000	0.0000	0.0001	0.0001
SMITH MALL	0	120	0	120	142	0	4.5	640	57	43	365	360	275	272	0.0001	0.0001	0.0001	0.0002	0.0002
STADIUM ARM	0	976	0	976	1157	0	4.5	5,207	57	43	2,968	2,930	2,239	2,211	0.0005	0.0008	0.0006	0.0014	0.0019
TAKOMA PK	0	146	0	146	173	0	4.5	779	57	43	444	438	335	331	0.0001	0.0001	0.0001	0.0002	0.0003
TENLEYTON	0	17	0	17	20	0	4.5	91	57	43	52	51	39	39	0.0000	0.0000	0.0000	0.0000	0.0000
TWINBROOK	0	1136	0	1136	1347	0	4.5	6,061	57	43	3,455	3,411	2,606	2,573	0.0005	0.0009	0.0007	0.0016	0.0022
UNION STAT	0	378	0	378	448	0	4.5	2,017	57	43	1,150	1,135	867	856	0.0002	0.0003	0.0002	0.0005	0.0007
VAN NESS	0	343	0	343	407	0	4.5	1,830		43	1,043	1,030	787	777	0.0002	0.0003	0.0002	0.0005	0.0007
VIENNA 25%	25	2798	933	3731	3318	1106	7.5	33,177		43	18,911	18,671	14,266	14,085	0.0015	0.0050	0.0039	0.0089	0.0105
VA SQUARE	0	642	0	642	761	0	4.5	3,425	57	43	1,952	1,928	1,473	1,454	0.0003	0.0005	0.0004	0.0009	0.0012
WEST FALLS CHURCH	0	2183	0	2183	2588	0	4.5	11,647	57	43	6,639	6,554	5,008	4,945	0.0010	0.0018	0.0014	0.0031	0.0042
WHITE FLINT	0	1633	0	1633	1936	0	4.5	8,713	57	43	4,966	4,903	3,746	3,699	0.0008	0.0013	0.0010	0.0023	0.0031
WOODLEY	0	68	0	68	81	0	4.5	363	57	43	207	204	156	154	0.0000	0.0001	0.0000	0.0001	0.0001
RHODE ISLAND 30%	30	266	114	380	315	135	7.5	3,379	57	43	1,926	1,902	1,453	1,435	0.0002	0.0005	0.0004	0.0009	0.0011
BUS & CAR POOL LOTS																			
CARTER BARRON	0	798	0	798	946	0	4.5	4,258	57	43	2,427	2,396	1,831	1,808	0.0004	0.0006	0.0005	0.0011	0.0015
PG PLAZA	0	47	0	47	56	0	4.5	251	57	43	143	141	108	106	0.0000	0.0000	0.0000	0.0001	0.0001
PENN MAR SHOPP.	0	100	0	100	119	0	4.5	534	. 57	43	304	300	229	227	0.0000	0.0001	0.0001	0.0001	0.0002
CAP PLAZA	0	100	0	100	119	0	4.5	534	57	43	304	300	229	227	0.0000	0.0001	0.0001	0.0001	0.0002
EASTOVER	0	100	0		119	0	4.5	534		43				227	0.0000	0.0001	0.0001	0.0001	0.0002
FOUR MILE RUN	0	28	0	28	33	0	4.5	149	57	43	85	84	64	63	0.0000	0.0000	0.0000	0.0000	0.0001
SPRINGFIELD MALL	0	580	0	580	688	0	4.5	3,094	. 57	43	1,764	1,741	1,331	1,314	0.0003	0.0005	0.0004	0.0008	0.0011
SPRINGFIELD METH CH	0	48	0	48	57	0	4.5	256	57	43	146	144	110	109	0.0000	0.0000	0.0000	0.0001	0.0001
FRED ARMORY	0	33	0	33	39	0	7.5	293	57	43	167	165	126	125	0.0000	0.0000	0.0000	0.0001	0.0001
MYERSVILLE	0	65	0	65	77	0	7.5	578	57	43	329	325	249	245	0.0000	0.0001	0.0001	0.0002	0.0002
ROSEMONT	0	45	0	45	53	0	7.5	400	57	43	228	225	172	170	0.0000	0.0001	0.0000	0.0001	0.0001
URBANA	0	193	0	193	229	0	7.5	1,716		43		966	738	729	0.0001	0.0003	0.0002	0.0005	0.0006
JEFFERSON	0	40	0	40	47	0	7.5	356		43	203	200	153	151	0.0000	0.0001	0.0000	0.0001	0.0001
NORBECK RD	0	248	0	248	294	0	7.5	2,205		43	1,257	1,241	948	936	0.0001	0.0003	0.0003	0.0006	0.0007
MONTROSE RD	0	650	0	650	771	0	7.5	5,780	57	43	3,295	3,253	2,485	2,454	0.0003	0.0009	0.0007	0.0016	0.0019
BRIGG CHENNY 50%	50	215	215	430	255	255	7.5	3,824		43	2,179	2,152	1,644	1,623	0.0002	0.0006	0.0005	0.0010	0.0012
COMUS ROAD	0	30	0	30	36	0	7.5	267		43		150	115	113	0.0000	0.0000	0.0000	0.0001	0.0001
LAKEFOREST MALL	0	300	0	300	356	0	7.5	2,668		43	1,521	1,501	1,147	1,133	0.0001	0.0004	0.0003	0.0007	0.0009
BURTONSVILLE	0	500	0		593	0	7.5	4,446		43		2,502	1,912	1,888	0.0002	0.0007	0.0005	0.0012	0.0014
FORCEY MEM.	0	200	0	200	237	0	7.5	1,778		43		1,001	765	755	0.0001	0.0003	0.0002	0.0005	0.0006
TECH ROAD	0	155	0		184	0	7.5	1,378		43		776	593	585	0.0001	0.0002	0.0002	0.0004	0.0004
BELTWAY	0	265	0	265	314	0	7.5	2,356		43		1,326	1,013	1,000	0.0001	0.0004	0.0003	0.0006	0.0008
LAUREL VAN DUSEN	0	62			74	0	7.5	551		43			237	234	0.0000	0.0001	0.0001	0.0001	0.0002
ACCOKEEK	0	450	0		534	0	7.5	4,001		43		2,252	1,721	1,699	0.0002	0.0006	0.0005	0.0011	0.0013
ABC DRIVE IN	0	100	0	100	119	0	7.5	889	57	43		500	382	378	0.0000	0.0001	0.0001	0.0002	0.0003
BOWIE 20%	20	526	131	657	623	156	7.5	5,842		43		3,288	2,512	2,480	0.0003	0.0009	0.0007	0.0016	0.0019
CLINTON 50%	50	212	212	424	251	251	7.5	3,770		43		2,122	1,621	1,601	0.0001	0.0006	0.0004	0.0010	0.0012
OXON HILL 20%	20	519	130		616	154	7.5	5,771	57	43		3,248	2,482	2,450	0.0003	0.0009	0.0007	0.0016	0.0018
EQUESTRIAN CENTER 50	50	150	150	300	178	178	7.5	2,668		43	- 7	1,501	1,147	1,133	0.0001	0.0004	0.0003	0.0007	0.0008
BOWIE MARKET PLACE	0	50		50	59	0	7.5	445		43		250	191	189	0.0000	0.0001	0.0001	0.0001	0.0001
FT.WASHINGTON	0	412	0	412	488	0	7.5	3,664		43		2,062	1,575	1,555	0.0002	0.0006	0.0004	0.0010	0.0012
MONTPELIER REC PARK	n	70	n	70	83	0	7.5	622		43		350	268	264	0.0000	0.0001	0.0001	0.0002	0.0002
RESTON	0	1547	n	1547	1834	0	7.5	13,756		43		7,741	5,915	5,840	0.0007	0.0021	0.0016	0.0037	0.0002
GREENBRIAR	1 0	55	n	55	65	0	7.5	489		43		275	210	208	0.0007	0.0021	0.0010	0.0001	0.0004
FAIR OAKS	0	150	n	150	178	0	7.5	1,334		43		751	574	566	0.0001	0.0001	0.0001	0.0001	0.0002
ROLLING VALLEY	0	628	0	628	745	0	7.5	5.584	57	43		3.143	2,401	2,371	0.0001	0.0002	0.0002	0.0004	0.0004
SPRINGFIELD PLAZA	0	230	n	230	273	0	7.5	2.045		43	-,	1,151	879	868	0.0003	0.0008	0.0007	0.0013	0.0018
FAIRLANES BOWL	1 0	35	0		41	0	7.5	311		43		1,131		132	0.0001	0.0003	0.0002	0.0000	0.0007
I / III AL/AINLO DONNE	U	33	U	33	41	U	7.5	311	37	43	1//	175	134	132	0.0000	0.0000	0.0000	0.0001	0.0001

2011 CLRP / FY2012-2017 TIP AIR QUALITY CONFORMITY

																E M I	SSIONS		
			2002		20	16	AVERAGE	2016	ARTERIAL	FREEWAY	ARTERIAL	Adj.Art	FREEWAY	Adj.Fwy	COLD START		RUNNING		TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE		INSIDE	OUTSIDE	TRIP LENGTH	VMT		%	VMT	VMT	VMT	VMT	COLD START	Arterial	Freeway	Total Running	
	MSA (%)	MSA	MSA	Total	Growth Rate	Growth Rate					1				Rate (gm/mile)	Rate (gm/mile)	Rate (gm/mile)	Emission	(tons/day)
					1.19	1.19						Wk Days =	107		0.2137	0.1211	0.1272	(tones/day)	
COMMUTER RAIL LOTS												Seasonal adj =	0.9873						
NOTTOWAY PARK	0	14	0	14	17	0	7.5	124	57	43	71	70	54	53	0.0000	0.0000	0.0000	0.0000	0.0000
HORNER RD	0	2397	0	2397	2842	0	7.5	21,315	57	43	12,149	11,995	9,165	9,049	0.0011	0.0032	0.0025	0.0057	0.0069
LAKE RIDGE	0	555	0	555	658	0	7.5	4,935	57	43	2,813	2,777	2,122	2,095	0.0003	0.0007	0.0006	0.0013	0.0016
MINNIEVILLE RD 40%	40	336	224	560	398	266	7.5	4,980	57	43	2,838	2,802	2,141	2,114	0.0002	0.0007	0.0006	0.0013	0.0016
GORDON BLVD	0	156	0	156	185	0	7.5	1,387	57	43	791	781	596	589	0.0001	0.0002	0.0002	0.0004	0.0004
HILLENDALE	0	248	0	248	294	0	7.5	2,205	57	43	1,257	1,241	948	936	0.0001	0.0003	0.0003	0.0006	0.0007
POTOMAC MILLS	0	946	0	946	1122	0	7.5	8,412	57	43	4,795	4,734	3,617	3,571	0.0004	0.0013	0.0010	0.0023	0.0027
List of new lots to be add	led in Con	formity Do	cument l	ist															
PARK-AND-RIDE LOTS -	MARYLAN	ID																	
PARK-AND-RIDE LOTS -	MARYLAN	ID																	
CHARLES COUNTY																			
301 Park & Ride	25	287	96	383	341	114	7.5	3,406	57	43	1,941	1,917	1,464	1,446	0.0002	0.0005	0.0004	0.0009	0.0011
Charles County Government	25		9	35	31	10	7.5	311	57	43	177	175	134	132	0.0000	0.0000	0.0000	0.0001	0.0001
Food Lion Shopping Center	25		13	50				445	57	43		250	191	189	0.0000	0.0001	0.0001	0.0001	0.0001
La Plata Armory	25	15	5	20			7.5	178	57	43		100	76	76	0.0000	0.0000	0.0000	0.0000	0.0001
Laurel Springs Regional Park	25	38	13	50	44	15	7.5	445	57	43	253	250	191	189	0.0000	0.0001	0.0001	0.0001	0.0001
Life Wesleyan Church	25	38	13	50			7.5	445	57	43		250	191	189	0.0000	0.0001	0.0001	0.0001	0.0001
Mattawoman-Beantown Rd	25	435	145	580	516	172	7.5	5,157	57	43	2,940	2,902	2,218	2,190	0.0002	0.0008	0.0006	0.0014	0.0016
Smallwood Village	25	75	25	100	89		7.5	889	57	43		500	382	378	0.0000	0.0001	0.0001	0.0002	0.0003
St. Charles Towne	25	263	88	350	311	104	7.5	3,112	57	43	1,774	1,751	1,338	1,321	0.0001	0.0005	0.0004	0.0008	0.0010
PARK-AND-RIDE LOTS -	MARYLAN	ID			0	0		0											
FREDERICK COUNTY					0	0		0											
Frederick (north)	25	123	41	164				1,458	57	43	831	821	627	619	0.0001	0.0002	0.0002	0.0004	0.0005
Frederick (south)	25	173	58	230	205		7.5	2,045	57	43	1,166	1,151	879	868	0.0001	0.0003	0.0002	0.0006	0.0006
Monacacy Marcst	25	600	200	800	711	237	7.5	7,114	57	43	4,055	4,003	3,059	3,020	0.0003	0.0011	0.0008	0.0019	0.0022
PARK-AND-RIDE LOTS - MAR	YLAND				0	0		0											
MONTGOMERY COUNTY					0			0											
Colesville	0	190	0	190	225	0	7.5	1,690	57	43		951	726	717	0.0001	0.0003	0.0002	0.0005	0.0005
Damascus	50		0		0	•	7.5	0	57	43		0	0	0	0.0000	0.0000	0.0000	0.0000	0.0000
Gaithersburg	50		259	517			7.5	4,597	57	43		2,587	1,977	1,952	0.0002	0.0007	0.0005	0.0012	0.0014
Gaithersburg	50	175	175	350			7.5	3,112	57	43	,	1,751	1,338	1,321	0.0001	0.0005	0.0004	0.0008	0.0010
Germantown Town	50	0	0		0		7.5	0	57	43		0	0	0	0.0000	0.0000	0.0000	0.0000	0.0000
Greencastle	50	75	75	150			7.5	1,334	57	43		751	574	566	0.0001	0.0002	0.0002	0.0004	0.0004
Milestone Shopping	50	88	88	175			7.5	1,556	57	43	887	876	669	661	0.0001	0.0002	0.0002	0.0004	0.0005
PARK-AND-RIDE LOTS -		J		ļ	0			0											
PRINCE GEORGE'S COU	NTY		_		0	0		0											0.000-
Hampton Mall	0	100	0	100			4.5	534	57	43		300	229	227	0.0000	0.0001	0.0001	0.0001	0.0002
Laurel (south)	25	513	171	684			7.5	6,082	57	43	3,467	3,423	2,615	2,582	0.0003	0.0009	0.0007	0.0016	0.0019
PARK-AND-RIDE LOTS -	VIRGINIA			ļ	0	-		0				0		0	0.0000	0.0000	0.0000		ļl
ARLINGTON COUNTY		0==	40-	F00	0	0		0			0.50	0 ====	1010	0	0.0000	0.0000	0.0000	0.0010	0.0011
Ballston Public Parking Garag	25	375	125	500			7.5	4,446	57	43	,	2,502	1,912	1,888	0.0002	0.0007	0.0005	0.0012	0.0014
Washington-Lee	50	178	178	356	211	211	7.5	3,166	57	43	1,804	1,781	1,361	1,344	0.0001	0.0005	0.0004	0.0009	0.0010
PARK-AND-RIDE LOTS -	VIRGINIA				0			0				0							
FAIRFAX COUNTY				ļ	0			0				0							0.000-
American Legion	50		50				7.5	889	57	43		500		378	0.0000	0.0001	0.0001	0.0002	0.0003
Canterbury Woods Pk	50		17					302	57	43		170		128	0.0000	0.0000	0.0000	0.0001	0.0001
Centreville	50	185	185	370			7.5	3,290	57	43		1,852	1,415	1,397	0.0001	0.0005	0.0004	0.0009	0.0010
Centreville United Methodist	50	74	74	147			7.5 7.5	1,307	57 57	43 43		736	562 650	555 642	0.0001	0.0002 0.0002	0.0002 0.0002	0.0004 0.0004	0.0004 0.0005
Fairfax County Government (50 50	85 28	85	170			7.5 7.5	1,512 489	57	43		851 275	650 210		0.0001	0.0002	0.0002	0.0004	0.0005
Greenbriar Park	50	873	28 873	55 1.745	33 1034		7.5	15,517	57	43		8,732	6,672	208 6,588	0.0000	0.0001	0.0001		0.0002
Herndon-Monroe	50	100	100	, .			7.5	15,517	57	43		1,001	765	6,588 755	0.0006 0.0001	0.0023	0.0018	0.0042 0.0005	0.0048
Michael's Parkwood Baptist	50	100	100	200 18			7.5	1,778	57	43		1,001			0.0001	0.0003	0.0002	0.0005	0.0005
South Run District Pk	50	170	170	340			7.5	3,023	57	43		1,701	1,300	1,284	0.0000	0.0000	0.0000	0.0008	0.0000
St Paul Chung Catholic Chun	50	50	50	100			7.5	3,023	57	43		1,701	1,300	1,284	0.0001	0.0005	0.0004	0.0008	0.0009
	50	181	181	100 361	214		7.5	3,210	57	43		1,807	1,380	1,363	0.0000	0.0001	0.0001	0.0002	0.0003
Stringfellow Rd	50							1,245	57	43			1,380	1,363 529	0.0001	0.0005		0.0009	0.0010
Sully Station	50	70	70	140	83	83	7.5	1,245	5/	43	710	701	535	529	0.0000	0.0002	0.0001	0.0003	0.0004

2011 CLRP / FY2012-2017	TIP AIR QUALITY	CONFORMITY

COCATION OUTSIGN SSS OUTSIGN Total OUTSIGN																	E M I	SSIONS		
COMMUTER RAIL LOTS See Communication C				2002		20	16	AVERAGE	2016	ARTERIAL	FREEWAY	ARTERIAL	Adj.Art	FREEWAY	Adj.Fwy	COLD CTART		RUNNING		TOTAL
COMMUTER RAIL LOTS 1.19	LOCATION	OUTSIDE	INSIDE	OUTSIDE		INSIDE	OUTSIDE	TRIP LENGTH	VMT		%	VMT	VMT	VMT	VMT	COLD START	Arterial	Freeway	Total Running	
Communication		MSA (%)			Total	Growth Rate	Growth Rate									Rate (gm/mile)	Rate (gm/mile)	Rate (gm/mile)	Emission	(tons/day)
Committee No.		1115/1 (70)	1115/1	1115/1									Wk Days =	107			10 , ,			(** *, ** *,
Separationary Ref. Pt	COMMUTER RAIL LOTS					1.10	1.10									0.2137	0.1211	0.12/2	(,, ,	
Washed Chapter No.	JOHNHOTEK KALE 2010												Ocasoriai auj –	0.5075						
Washed Chapter No.	Sydonetricker Pd	50	9.4	9.4	167	00	00	7.5	1 / 05	57	12	946	926	630	630	0.0001	0.0003	0.0003	0.0004	0.0005
PARK-AND-RIDE LOTS - VIRIGINA																				0.0003
Amburn Ferm 50			23	23	50	30	30	1.5	440	51	43	200	230	191	109	0.0000	0.0001	0.0001	0.0001	0.0001
Applicate Fame Fa		VIRGINIA																		
Application Section																				
Description Control				.0																0.0001
Dules North Transist 50 376 375 475 448 448 448 7.75 6.669 57 4.8 3.861 3.758 2.868 2.831 0.0003 0.0010 0.0001 0.0001 0.0001 10.0001 10.0001 0.0001 0.0001 0.0001 10.0001 0.0001																				0.0001
Familton																				0.0002
Embary No.																				0.0021
Leesburg 50 28 25 50 30 30 7.5 446 57 43 255 250 191 180 0.0000 0.0001 0.0001 0.0001				25		30	30	7.5								0.0000				0.0001
Emericany Koriba 50 600 600 1200 711 711 7.5 10.671 57 43 6.082 6.095 4.588 4.530 0.0004 0.0016 0.0013 0.0026	nnovation Avenue			38										287	283	0.0000		0.0001		0.0002
Function	_eesburg	50	25	25	50	30	30	7.5	445	57	43	253	250	191	189	0.0000	0.0001	0.0001	0.0001	0.0001
Sterling Plans SC 50 23 23 46 27 27 7.5 400 57 43 228 228 172 170 0.0000 0.0001 0.0001 0.0001 PARK AND-RIDE LOTS - VIRGINIA	_eesburg Kohls	50	600	600	1200	711	711	7.5	10,671	57	43	6,082	6,005	4,588	4,530	0.0004	0.0016	0.0013	0.0029	0.0033
Stering Shaw Rd	Purcellville	50	18	18				7.5	311		43	177		134	132	0.0000	0.0000	0.0000	0.0001	0.0001
Selfmap Shaw Ref 50 24 24 48 28 28 7.5 427 57 43 243 240 184 181 0.0000 0.0001 0.0001 0.0001	Sterling Park SC	50	23	23	45	27	27	7.5	400	57	43	228	225	172	170	0.0000	0.0001	0.0000	0.0001	0.0001
PARKA-AND-RIDE LOTS - VIRGINIA PRINCE WILLIAM COUNTY STITLING COUNTY STITLIN		50	24	24	48	28	28	7.5	427	57	43	243	240	184	181	0.0000	0.0001	0.0001	0.0001	0.0001
PRINCE WILLIAM COUNTY	•		Ì	Ì									-							
Brittany 50																		1		İ
Dele City 50 294 294 597 348 348 7.5 5.220 577 43 2.975 2.937 2.244 2.216 0.0002 0.0008 0.0006 0.00014			48	48	95	56	56	7.5	845	57	13	482	475	363	350	0 0000	0 0001	0.0001	0 0003	0.0003
Harbor Drive 65 100 100 200 119 119 7.5 1.778 57 43 1.014 1.001 7.65 755 0.0001 0.0003 0.0002 0.0005 Montalair 65 108 108 216 128 128 7.5 1.721 57 43 1.019 1.018 826 815 0.0001 0.0003 0.0002 0.0005 Montalair 65 25 25 50 30 30 7.5 445 57 43 253 250 191 189 0.0000 0.0001 0.0001 0.0001 Tackett Nill 60 85 85 169 100 100 7.5 1.503 57 43 857 846 646 638 0.0001 0.0002 0.0002 0.0002 1.0004 Harbor No.																				
Lindendale 50 108 108 128 128 128 128 7.5 1921 57 43 1.095 1.081 826 815 0.0001 0.0003 0.0002 0.0005																				
Noncisir 50 25 25 50 30 30 7.5 446 57 43 253 250 191 188 0.0000 0.0001 0.0001 0.0001																				0.0006
PRTC Transit Center																				0.0000
Tacketts Mill 50 85 85 169 100 100 7.5 1,503 57 43 887 846 646 638 0,0001 0,0002 0,0002 0,0004 195 / R1 123 50 282 282 563 334 334 7.5 5,006 57 43 2,854 2,817 2,153 2,125 0,0002 0,0008 0,0006 0,0001 195 / R1 123 50 282 282 563 334 334 7.5 5,006 57 43 2,854 2,817 2,153 2,125 0,0002 0,0008 0,0006 0,0001 195 / R1 123 50 137 137 274 162 162 7.5 2,436 57 43 1,389 1,371 1,048 1,034 0,001 0,0004 0,0003 0,0007 MARC TRAIN COMMUTER LOTS																				0.0001
Final Fina																				0.0005
199 / FR 123																				
US 1 / VA 234 50 137 139 274 162 162 7.5 2.436 57 43 1,389 1,371 1,048 1,034 0,0001 0,0004 0,0003 0,0007																				0.0001 0.0015
MARC TRAIN COMMUTER LOTS																				
College Park 25 431 144 574 510 170 7.5 5.104 57 43 2.909 2.872 2.195 2.167 0.0002 0.0008 0.0006 0.0014			137	137	274	162	162	7.5	2,436	57	43	1,389	1,3/1	1,048	1,034	0.0001	0.0004		0.0007	0.0008
Frederick 0																				
Greenbelt Go		25	431	144					5,104				2,872	2,195	2,167					
Harpers Ferry 98 0 98 116 0 7.5 871 57 43 497 490 375 370 0.0000 0.0001 0.0001 0.0002 Mulrikirk 60 260 390 650 308 462 7.5 5.780 57 43 3.295 3.253 2.485 2.454 0.0002 0.0009 0.0007 0.0016 Seabrook 0 264 0 264 313 0 0 4.5 1,409 57 43 803 793 606 598 0.0001 0.0002 0.0002 0.0004 Sliver Spring 0 0 0 0 0 0 0 0 0 0 0 4.5 1,409 57 43 803 793 606 598 0.0001 0.0002 0.0002 0.0004 Sliver Spring 0 0 781 0 781 926 0 7.5 6,945 57 43 0 0 0 0 0 0 0 0 0.000		0	0	0	ŭ				0				0	0	0					0.0000
Muirkink 60 260 390 650 308 462 7.5 5.780 57 43 3.295 3.253 2.485 2.454 0.0002 0.0009 0.0007 0.0016		60		2018			2393													0.0092
Seabrook 0 264 0 264 313 0 4.5 1,409 57 43 803 793 606 598 0.0001 0.0002 0.0002 0.0004	Harpers Ferry			0			0													0.0003
Silver Spring 0 0 0 0 0 0 0 0 0		60		390			462													0.0018
Union Station 0 781 0 781 926 0 7.5 6,945 57 43 3,959 3,908 2,986 2,948 0.0004 0.0010 0.0008 0.0019 VIGINIA RAILWAY EXPRESS COMMUTER LOTS Backlick Road 50 110 220 130 130 7.5 1,956 57 43 1,115 1,101 841 831 0.0001 0.0003 0.0002 0.0005 Broad Run 50 198 198 396 235 235 7.5 3,521 57 43 2,007 1,982 1,514 1,495 0.0001 0.0003 0.0004 0.0003 Brooke 50 150 150 300 178 178 7.5 2,668 57 43 1,521 1,501 1,147 1,133 0.0001 0.0004 0.0003 0.0007 Burke Center 50 275 275 550 326 326 326 7.5 4,891 57 43 2,788 2,782 2,103 2,076 0.0002 0.0007 0.0006 0.0013 Franconia/Springfield (operat 50 1900 1900 3800 2253 2253 7.5 33,790 57 43 19,261 19,016 14,530 14,345 0.0013 0.0051 0.0040 0.0018 Lealand Road 50 326 326 652 387 387 7.5 5,798 57 43 1,014 1,001 765 755 0.0001 0.0002 0.0009 0.0007 0.0006 Manassas 50 187 187 374 222 222 7.5 3,326 57 43 1,896 1,872 1,430 1,412 0.0001 0.0003 0.0002 0.0009 Manassas Park 50 150 150 300 178 178 7.5 2,668 57 43 1,521 1,501 1,147 1,133 0.0001 0.0004 0.0003 0.0002 0.0009 Rippon 50 150 150 300 178 178 7.5 2,668 57 43 1,521 1,501 1,147 1,133 0.0001 0.0004 0.0003 0.0002 0.0005 0.0004 0.0003 0.0002 0.0009 0.0007 0.0006 0.0004 0.0003 0.0002 0.0009 0.0007 0.0006 0.0004 0.0003 0.0002 0.0005 0.0004 0.0003 0		0	264	0	264		0		1,409				793	606	598					
Name Name	Silver Spring	0	0	0	v		0	4.5	0			0	0	0	0	0.0000	0.0000	0.0000	0.0000	0.0000
Backlick Road 50 110 110 220 130 130 7.5 1.956 57 43 1.115 1.101 841 831 0.0001 0.0003 0.0002 0.0005	Union Station	0	781	0	781	926	0	7.5	6,945	57	43	3,959	3,908	2,986	2,948	0.0004	0.0010	0.0008	0.0019	0.0022
Broad Run 50 198 198 396 235 235 7.5 3.521 57 43 2.007 1.982 1.514 1.495 0.0001 0.0005 0.0004 0.0009	VIRGINIA RAILWAY EXPR	RESS COM	MUTER L	OTS																
Brooke 50 150 150 300 178 178 7.5 2,668 57 43 1,521 1,501 1,147 1,133 0.0001 0.0004 0.0003 0.0007	Backlick Road	50	110	110	220	130	130	7.5	1,956	57	43	1,115	1,101	841	831	0.0001	0.0003	0.0002	0.0005	0.0006
Burke Center 50 275 275 550 326 326 7.5 4,891 57 43 2,788 2,752 2,103 2,076 0.0002 0.0007 0.0006 0.0013 Franconia/Springfield (operat 50 1900 1900 3800 2253 2253 7.5 33,790 57 43 19,261 19,016 14,530 14,345 0.0013 0.0051 0.0040 0.0091 Leeland Road 50 326 326 652 387 387 7.5 5,798 57 43 3,305 3,263 2,493 2,461 0.0002 0.0009 0.0007 0.0016 Lorton 50 100 100 200 119 119 7.5 1,778 57 43 1,014 1,001 765 755 0.0001 0.0003 0.0002 0.0009 Manassas 50 187 187 374 222 222 7.5 3,326 57 43 1,896 1,872 1,430 1,412 0.0001 0.0005 0.0004 0.0009 Manassas Park 50 150 150 300 178 178 7.5 2,668 57 43 1,521 1,501 1,147 1,133 0.0001 0.0004 0.0003 0.0002 Rippon 50 150 150 300 178 178 7.5 2,668 57 43 1,521 1,501 1,147 1,133 0.0001 0.0004 0.0003 0.0000 Rippon 50 150 150 300 178 178 7.5 2,668 57 43 1,521 1,501 1,147 1,133 0.0001 0.0004 0.0003 0.0000 Rippon 50 150 150 300 178 178 7.5 2,668 57 43 1,521 1,501 1,147 1,133 0.0001 0.0004 0.0003 0.0000 Rippon 50 150 150 300 178 178 7.5 2,668 57 43 1,521 1,501 1,147 1,133 0.0001 0.0004 0.0003 0.0000 Rippon 50 150 150 300 178 178 7.5 2,668 57 43 1,521 1,501 1,147 1,133 0.0001 0.0004 0.0003 0.0000 Rippon 50 150 150 300 178 178 7.5 2,668 57 43 1,521 1,501 1,147 1,133 0.0001 0.0004 0.0003 0.0000 Rippon 50 150 150 300 178 178 7.5 2,668 57 43 1,521 1,501 1,147 1,133 0.0001 0.0004 0.0003 0.0000 Rippon 50 150 150 300 178 178 7.5 2,668 57 43 1,521 1,501 1,147 1,133 0.0001 0.0004 0.0003 0.0000 Rippon 50 150 150 150 300 178 178 7.5 2,668 57 43 1,521 1,501 1,147 1,133 0.0001 0.0004 0.0003 0.0000 Rippon 50 150 150 150 300 178 178 7.5 2,668 57 43 1,521 1,501 1,147 1,133 0.0001 0.0004 0.0003 0.0000 Rippon 50 150 150 150 150 150 150 150 150 150	Broad Run		198	198				7.5	3,521		43	2,007	1,982	1,514	1,495	0.0001	0.0005	0.0004	0.0009	0.0011
Franconia/Springfield (operat 50 1900 1900 3800 2253 2253 7.5 33,790 57 43 19,261 19,016 14,530 14,345 0.0013 0.0051 0.0040 0.0091	Brooke	50	150	150	300	178	178	7.5	2,668	57	43	1,521	1,501	1,147	1,133	0.0001	0.0004	0.0003	0.0007	0.0008
Leeland Road 50 326 326 652 387 387 7.5 5,798 57 43 3,305 3,263 2,493 2,461 0.0002 0.0009 0.0007 0.0016 Lorton 50 100 100 200 119 119 7.5 1,778 57 43 1,014 1,001 765 755 0.0001 0.0003 0.0002 0.0005 Manassas 50 187 187 374 222 222 7.5 3,326 57 43 1,896 1,872 1,430 1,412 0.0001 0.0005 0.0004 0.0009 Manassas Park 50 150 150 300 178 178 7.5 2,668 57 43 1,521 1,501 1,147 1,133 0.0001 0.0003 0.0002 0.0005 Quantico 50 109 109 217 129 129 7.5 1,930 57 43 1,521	Burke Center	50	275	275	550	326	326	7.5	4,891	57	43	2,788	2,752	2,103	2,076	0.0002	0.0007	0.0006	0.0013	0.0015
Leeland Road 50 326 326 652 387 387 7.5 5,798 57 43 3,305 3,263 2,493 2,461 0.0002 0.0009 0.0007 0.0016 Lorton 50 100 100 200 119 119 7.5 1,778 57 43 1,014 1,001 765 755 0.0001 0.0003 0.0002 0.0005 Manassas 50 187 187 374 222 222 7.5 3,326 57 43 1,896 1,872 1,430 1,412 0.0001 0.0005 0.0004 0.0009 Manassas Park 50 150 150 300 178 178 7.5 2,668 57 43 1,521 1,501 1,147 1,133 0.0001 0.0003 0.0002 0.0005 Quantico 50 109 109 217 129 129 7.5 1,930 57 43 1,521	Franconia/Springfield (operat	50	1900	1900	3800	2253	2253	7.5	33,790		43	19,261	19,016	14,530	14,345	0.0013	0.0051	0.0040	0.0091	0.0104
Lorton 50 100 100 200 119 119 7.5 1,778 57 43 1,014 1,001 765 755 0.0001 0.0003 0.0002 0.0005 Manassas 50 187 187 374 222 222 7.5 3,326 57 43 1,896 1,872 1,430 1,412 0.0001 0.0005 0.0004 0.0009 Manassas Park 50 150 150 300 178 178 7.5 2,668 57 43 1,521 1,521 1,514 1,133 0.0001 0.0003 0.0002 0.0005 Quantico 50 109 109 217 129 129 7.5 1,930 57 43 1,100 1,086 830 819 0.0001 0.0003 0.0002 0.0005 Rippon 50 150 300 178 178 7.5 2,668 57 43 1,521 1,501 1,		50	326	326	652		387	7.5	5,798		43	3,305	3,263	2,493	2,461	0.0002	0.0009	0.0007	0.0016	0.0018
Manassas 50 187 187 374 222 222 7.5 3,326 57 43 1,896 1,872 1,430 1,412 0.0001 0.0005 0.0004 0.0009 Manassas Park 50 150 150 300 178 178 7.5 2,668 57 43 1,521 1,501 1,147 1,133 0.0001 0.0004 0.0003 0.0007 Quantico 50 109 109 217 129 129 7.5 1,930 57 43 1,100 1,086 830 819 0.0001 0.0003 0.0002 Rippon 50 150 150 300 178 178 7.5 2,668 57 43 1,521 1,501 1,147 1,133 0.0001 0.0003 0.0002 Rippon 50 150 300 178 178 7.5 2,668 57 43 1,521 1,501 1,417 1,133									1,778		43						0.0003	0.0002	0.0005	0.0005
Manassas Park 50 150 150 300 178 178 7.5 2,668 57 43 1,521 1,501 1,147 1,133 0.0001 0.0004 0.0003 0.0007 Quantico 50 109 109 217 129 129 7.5 1,930 57 43 1,100 1,086 830 819 0.0001 0.0003 0.0002 0.0005 Rippon 50 150 150 300 178 178 7.5 2,668 57 43 1,521 1,501 1,147 1,133 0.0001 0.0003 0.0002 0.0005 Rippon 50 150 300 178 178 7.5 2,668 57 43 1,521 1,501 1,147 1,133 0.0001 0.0003 0.0002 Rippon 50 150 300 178 178 7.5 2,668 57 43 1,521 1,501 1,147 1,133 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>43</td><td></td><td></td><td></td><td></td><td></td><td>0.0005</td><td></td><td></td><td></td></th<>											43						0.0005			
Quantico 50 109 109 217 129 129 7.5 1,930 57 43 1,100 1,086 830 819 0.0001 0.0003 0.0002 0.0005 Rippon 50 150 150 300 178 178 7.5 2,668 57 43 1,521 1,501 1,147 1,133 0.0001 0.0004 0.0003 0.0007												,			,					0.0008
Rippon 50 150 150 300 178 178 7.5 2,668 57 43 1,521 1,501 1,147 1,133 0.0001 0.0004 0.0003 0.0007														,						
																				0.0008
		50	185	185	370	219		7.5	3,290	57			1.852	1,415	1,397	0.0001	0.0005	0.0004	0.0007	
Noming Notes 35 103 103 103 103 103 103 103 103 103 103																				
METRORAIL PARKING LOTS			204	204	550	343	549	7.5	0,220	31	70	2,500	2,342	2,240	2,220	3.0002	3.0000	3.3000	0.0014	0.0010
			961	207	11/10	1001	340	7.5	10 200	E7	40	5 010	E 71E	4 200	1 334	0.0005	0.0045	0.0012	0.0027	0.0032
	Pranch Avenue																			0.0032
	Dianun Avenue								- 7											
Capitol Heights 50 194 194 387 229 229 7.5 3,441 57 43 1,962 1,937 1,480 1,461 0,0001 0,0005 0,0004 0,0009														,						0.0011
College Park 25 465 155 620 551 184 7.5 5.513 57 43 3,143 3,103 2,371 2,341 0,0003 0,0008 0,0007 0,0015		25		155																0.0017
Congress Heights 0 66 78 0 4.5 352 57 43 201 198 151 149 0.0000 0.0001 0.0000 0.0001		0		0																0.0001
Deanwood 0 194 0 194 230 0 7.5 1,725 57 43 983 971 742 732 0.0001 0.0003 0.0002 0.0005		0		0			V													0.0006
East Falls Church 50 221 221 442 262 262 7.5 3,930 57 43 2,240 2,212 1,690 1,669 0.0002 0.0006 0.0005 0.0011																				0.0012
Forest Glen 50 329 329 658 390 390 7.5 5,851 57 43 3,335 3,293 2,516 2,484 0.0002 0.0009 0.0007 0.0016																				0.0018
Franconia - Springfield 50 1987 1987 3973 2355 2355 4.5 21,197 57 43 12,082 11,929 9,115 8,999 0.0014 0.0032 0.0025 0.0057	Franconia - Springfield	50	1987	1987	3973	2355	2355	4.5	21,197	57	43	12,082	11,929	9,115	8,999	0.0014	0.0032	0.0025	0.0057	0.0071

29.15

Seasonal Total (tons/season) =

SEASON 2 (May-Sep) 2016 Precursor NOx AUTO ACCESS TO TRANSIT

2011 CLRP / FY2012-2017 TIP AIR QUALITY CONFORMITY

																E M I	SSIONS		
			2002		20	116	AVERAGE	2016	ARTERIAL	FREEWAY	ARTERIAL	Adj.Art	FREEWAY	Adj.Fwy	COLD START		RUNNING		TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE	Total	INSIDE	OUTSIDE	TRIP LENGTH	VMT	9	%	VMT	VMT	VMT	VMT	COLD START	Arterial	Freeway	Total Running	
	MSA (%)	MSA	MSA	TOLAI	Growth Rate	Growth Rate									Rate (gm/mile)	Rate (gm/mile)	Rate (gm/mile)	Emission	(tons/day)
1					1.19	1.19						Wk Days =	107		0.2137	0.1211	0.1272	(tones/day)	1
COMMUTER RAIL LOTS												Seasonal adj =	0.9873						i
																			ĺ
Glenmont	50	925	925	1850			4.5	9,870	57	43	5,626	5,555	4,244	4,190	0.0007	0.0015	0.0012	0.0027	
Greenbelt	50	1783	1783	3565			7.5	31,701	57	43	18,069	17,840	13,631	13,458	0.0013	0.0048	0.0038	0.0085	
Naylor Road	50	216	216	431		256	7.5	3,833	57	43	2,185	2,157	1,648	1,627	0.0002	0.0006	0.0005	0.0010	
Prince George's Plaza	25	927	309	1236	1099	366	7.5	10,991	57	43	6,265	6,185	4,726	4,666	0.0005	0.0017	0.0013	0.0030	0.0035
Southern Avenue	50	1090	1090	2180	1292	1292	4.5	11,631	57	43	6,630	6,545	5,001	4,938	0.0008	0.0017	0.0014	0.0031	0.0039
Suitland	50	1033	1033	2065	1224	1224	4.5	11,017	57	43	6,280	6,200	4,738	4,677	0.0007	0.0017	0.0013	0.0030	0.0037
Van Dorn Street	50	204	204	407	241	241	4.5	2,171	57	43	1,238	1,222	934	922	0.0001	0.0003	0.0003	0.0006	
West Hyattsville	25	453	151	604		179	7.5	5,371	57	43	3,061	3,023	2,309	2,280	0.0002	0.0008	0.0006	0.0014	
Wheaton	25	759	253	1012	900	300	7.5	8,999	57	43	5,129	5,064	3,870	3,820	0.0004	0.0014	0.0011	0.0024	0.0028
				108,749	1			847,732							0.0442	0.1274	0.1009	0.2283	0.2725

Bold figures: New numbers taken from P & R directory

Figures in bracket: Carry forward figures from conformity doc.

Park lot Growth Rate	
Transit trips 2016	1295286
Transit trips 2002	1092489
Annual growth rate	0.013259
Growth factor (2002-2011)	1.185628

SEASON 3 (Oct-Dec) 2016 Precursor NOx AUTO ACCESS TO TRANSIT 2011 CLRP / FY2012-2017 TIP AIR QUALITY CONFORMITY

																E M I	SSIONS		
			2002		20	16	AVERAGE	2016	ARTERIAL	FREEWAY	ARTERIAL	Adj.Art	FREEWAY	Adj.Fwy	COLD START		RUNNING		TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE	T-4-1	INSIDE	OUTSIDE	TRIP LENGTH	VMT		%	VMT	VMT	VMT	VMT	COLD START	Arterial	Freeway	Total Running	
	MSA (%)	MSA	MSA	Total	Growth Rate	Growth Rate									Rate (gm/mile)	Rate (gm/mile)	Rate (gm/mile)	Emission	(tons/day)
					1.19	1.19						Wk Days =	61		0.2604	0.1429	0.1505	(tones/day)	
COMMUTER RAIL LOTS												Seasonal adj =	0.9282						
BRUNSWICK 25%	25	305	102	407	362	121	7.5	3,619	57	43	2,063	1,915	1,556	1,444	0.0002	0.0006	0.0005	0.0011	0.0013
PT OF ROCKS 25%	25	204	68	272	242	81	7.5	2,419	57	43	1,379	1,280	1,040	965	0.0001	0.0004	0.0003	0.0007	0.0009
DICKERSON	0	15	0	15	18	0	7.5	133	57	43	76	71	57	53	0.0000	0.0000	0.0000	0.0000	0.000
BARNESVILLE	0	46	0	46	55	0	7.5	409	57	43	233	216	176	163	0.0000	0.0001	0.0001	0.0001	0.000
GERMANTOWN	0	386	0	386	458	0	7.5	3,432	57	43	1,956	1,816	1,476	1,370	0.0002	0.0006	0.0005	0.0010	0.001
MET GROVE	0	352	0	352	417	0	7.5	3,130	57	43	1,784	1,656	1,346	1,249	0.0002	0.0005	0.0004	0.0009	0.001
WAS GROVE	0		0	15	18	0	7.5	133		43	76		57	53		0.0000	0.0000	0.0000	0.000
GARRETT PARK	0		0	22	26	0	7.5	196		43	112	104	84	78		0.0000	0.0000	0.0001	0.000
BOWIE 50%	50	188	188	375	222	222	7.5	3,335	57	43	1,901	1,764	1,434	1,331	0.0002	0.0006	0.0004	0.0010	0.001
SEABROOK 15%	15		40	264	266	47	7.5	2,348		43	1,338	1,242	1.009	937	0.0001	0.0004	0.0003	0.0007	0.0008
KENSINGTON	0	45	0	45	53	0	7.5	400		43	228	212	172	160	0.0000	0.0001	0.0001	0.0001	0.000
LAUREL 30%	30		90	299	248	106	7.5	2.659	57	43	1,515		1.143	1.061	0.0001	0.0004	0.0004	0.0008	0.000
GAITHESBURG	0	280	0	280	332	0	7.5	2,490	57	43	1,419		1,071	994	0.0002	0.0004	0.0003	0.0007	0.000
BERWYN HEIGHTS	0		0	30	36	0	4.5	160		43	91		69	64	0.0000	0.0000	0.0000	0.0000	0.000
RIVERDALE	0	65	0	65	77	0	4.5	347		43	198		149	138	0.0000	0.0001	0.0000	0.0001	0.000
	Ť			<u> </u>	7.					,,,	.50	.50		. 30	2.2200	2.2201			
METRO RAIL LOTS												1							
												1							
ADDISON ROAD 40%	40	791	527	1318	938	625	7.5	11,720	57	43	6,680	6,201	5,040	4,678	0.0006	0.0020	0.0016	0.0035	0.004
ARCHIVES	0		0_1	12	14	0	4.5	64		43	36		28	26	0.0000	0.0000	0.0000	0.0000	0.000
ARLING	0		0	10	12	0	4.5	53		43	30		23	21	0.0000	0.0000	0.0000	0.0000	0.000
BALLSTON	0	1175	0	1175	1393	0	4.5	6,269		43	3,573	3,317	2,696	2,502	0.0007	0.0010	0.0008	0.0019	0.002
BENN.RD	0		0	520	617	0	4.5	2,774		43	1,581	1,468	1,193	1,107	0.0003	0.0005	0.0004	0.0008	0.001
BETH	0	395	0	395	468	0	4.5	2,107		43	1,201		906	841	0.0002	0.0004	0.0003	0.0006	0.000
BRADD RD	0		0	10	12	0	4.5	53		43	30		23	21	0.0000	0.0000	0.0000	0.0000	0.000
BROOKLAND	0		0	27	32	0	4.5	144		43	82		62	57		0.0000	0.0000	0.0000	0.000
CHEVERLY	0	557	0	557	660	0	4.5	2,972	57	43	1,694	1,572	1,278	1,186	0.0003	0.0005	0.0004	0.0009	0.0012
CLARENDON	0		0	554	657	0	4.5	2,956	57	43	1,685	1,564	1,271	1,180	0.0003	0.0005	0.0004	0.0009	0.0012
CLEVELAND PK	0	366	0	366	434	0	4.5	1,953	57	43	1,113	1,033	840	779	0.0002	0.0003	0.0003	0.0006	0.0008
COURT HOUSE	0	256	0	256	304	0	4.5	1,366		43	779		587	545	0.0001	0.0002	0.0002	0.0004	0.0006
CRYSTAL CITY	0	347	0	347	411	0	4.5	1,851	57	43	1,055	980	796	739	0.0001	0.0002	0.0002	0.0004	0.0008
DEANWOOD	0	194	0	194	230	0	4.5	1,035	57	43	590		445	413	0.0001	0.0002	0.0001	0.0003	0.0004
DUN LORING 10%	10		136	1355	1446	161	4.5	7.229		43	4.121	3.825	3.109	2.885	0.0007	0.0012	0.0010	0.0022	0.0029
DUPONT CIRCLE	0		.00	165	196		4.5	880		43	502	466	379	351	0.0001	0.0001	0.0001	0.0003	0.0004
EASTERN MKT	0		0	178	211	0	4.5	950		43	541	502	408	379	0.0001	0.0002	0.0001	0.0003	0.000
EAST FALLS CH	0	442	0	442	524	0	4.5	2,358	57	43	1,344	1,248	1,014	941	0.0003	0.0004	0.0003	0.0007	0.001
EIS	0		0	352	417	0	4.5	1,878		43	1,070		808	750	0.0002	0.0003	0.0002	0.0006	0.000
FARRAGUT NORTH	0	102	0	102	121	0	4.5	544		43	310		234	217	0.0001	0.0001	0.0001	0.0002	0.000
FARRAGUT WEST	0		0		262	0	4.5	1,179		43	672		507	471	0.0001	0.0001	0.0001	0.0002	0.000
FEDERAL CENTER	0	75		75	89	0	4.5	400		43	228	212	172	160	0.0000	0.0002	0.0002	0.0004	0.000
FEDERAL TRI	0		0	54	64	0	4.5	288		43	164		124	115	0.0000	0.0000	0.0000	0.0001	0.000
FOGGY	0		0	102	121	0	4.5	544		43	310		234	217	0.0001	0.0001	0.0001	0.0001	0.000
FORT TROTTEN	0		0	445	528	0	4.5	2,374		43	1,353	1,256	1,021	948	0.0003	0.0001	0.0003	0.0002	0.000
FRH.HEIGHTS	0		0	679	805	0	4.5	3,623	57	43	2,065	1,917	1,558	1,446	0.0003	0.0004	0.0005	0.0007	0.001
GALLERY PLACE	0	124	0	124	147	0	4.5	662	57	43	377	350	284	264	0.0004	0.0000	0.0003	0.0001	0.000
GROSVENOR	0		0	716	849	0	4.5	3,820	57	43	2,177	2,021	1,643	1,525	0.0001	0.0001	0.0001	0.0002	0.000
HUNT NORTH 40%	40		1249	3122	2221	1481	7.5	27.761	57	43	15.824	14.688	11.937	11.080	0.0004	0.0046	0.0037	0.0083	0.001
JUD SQUARE	0	110	1243	110	130	n-1-101	4.5	587	57	43	335	,	252	234	0.0001	0.0040	0.0001	0.0003	0.000
KING ST	0	30	n	30	36	0	4.5	160		43	91		69	64	0.0000	0.0000	0.0001	0.0002	0.000
		30	0	30	30	0	7.3	100	31	73	31	85	09	04	0.0000	0.0000	0.0000	0.0000	0.000
				 															
LANDOVER 25%	25	1410	470	1880	1672	557	7.5	16.717	57	43	9,529	8.845	7.188	6,672	0.0009	0.0028	0.0022	0.0050	0.005
L'ENFANT PLAZA	0		7,0	296	351	007 0	4.5	1,579		43	900		679	630	0.0009	0.0028	0.0022	0.0030	0.000
MCPHERSON SQ	0		0	52	62	0	4.5	277		43	158	147	119	111	0.0002	0.0003	0.0002	0.0003	0.000
MEDICAL CENTER	0	14	0	14	17	0	4.5	75		43	43		32	30		0.0000	0.0000	0.0001	0.000
METRO CENTER	0		0	177	210	0	4.5	944		43	538		406	377	0.0000	0.0000	0.0000	0.0000	0.000
MINNES	0		0	353	419	0	4.5	1,883		43	1,074		810	752	0.0001	0.0002	0.0001	0.0003	0.000
NAT AIR	0	87	0	87	103	0	4.5	1,883	57	43	1,074	246	200	185	0.0002	0.0003	0.0002	0.0006	0.000
	0		1040	2097		1243			57	43					0.0000	0.0001	0.0001	0.0001	
	50		1049		1243	1243	7.5	18,647			10,629	9,866	8,018	7,442					0.006
PRNTAGON	0	561	0	561	665	0	4.5	2,993	57	43	1,706	1,584	1,287	1,195	0.0003	0.0005	0.0004	0.0009	0.001

SEASON 3 (Oct-Dec) 2016 Precursor NOx AUTO ACCESS TO TRANSIT 2011 CLRP / FY2012-2017 TIP AIR QUALITY CONFORMITY

																E M I	SSION	S	
			2002		20	16	AVERAGE	2016	ARTERIAL	FREEWAY	ARTERIAL	Adj.Art	FREEWAY	Adj.Fwy	COLD START		RUNNING		TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE	T	INSIDE	OUTSIDE	TRIP LENGTH	VMT		%	VMT	VMT	VMT	VMT	COLD START	Arterial	Freeway	Total Running	
	MSA (%)	MSA	MSA	Total	Growth Rate	Growth Rate									Rate (gm/mile)	Rate (gm/mile)	Rate (gm/mile)	Emission	(tons/day)
		ì			1.19	1.19						Wk Days =	61	ĺ	0.2604	0.1429	0.1505	(tones/day)	
COMMUTER RAIL LOTS												Seasonal adj =	0.9282						
PENTAGON CITY	0	381	0	381	452	0	4.5	2,033	57	43	1,159	1,075	874	811	0.0002	0.0003	0.0003	0.0006	0.000
POTOMAC AVE	0	533	0	533	632	0	4.5	2,844	57	43	1,621	1,505	1,223	1,135	0.0003	0.0005	0.0004	0.0009	0.001
ROCKVILLE	0	667	0	667	791	0	4.5	3,559	57	43	2,028	1,883	1,530	1,420	0.0004	0.0006	0.0005	0.0011	0.001
ROSSLYN	0	356	0	356	422	0	4.5	1,899	57	43	1,083	1,005	817	758	0.0002	0.0003	0.0003	0.0006	0.000
SHADY GROVE 10%	10	3903	434	4337	4628	514	7.5	38,566	57	43	21,982	20,404	16,583	15,393	0.0024	0.0064	0.0051	0.0115	0.013
SILVER SPRING	0	44	0	44	52	0	4.5	235	57	43	134	124	101	94	0.0000	0.0000	0.0000	0.0001	0.000
SMITH MALL	0	120	0	120	142	0	4.5	640	57	43	365	339	275	256	0.0001	0.0001	0.0001	0.0002	0.000
STADIUM ARM	0	976	0	976	1157	0	4.5	5,207	57	43	2,968	2,755	2,239	2,078	0.0006	0.0009	0.0007	0.0016	0.002
TAKOMA PK	0	146	0	146	173	0	4.5	779	57	43	444	412	335	311	0.0001	0.0001	0.0001	0.0002	0.000
TENLEYTON	0	17	0	17	20	0	4.5	91	57	43	52	48	39	36	0.0000	0.0000	0.0000	0.0000	0.000
TWINBROOK	0	1136	0	1136	1347	0	4.5	6,061	57		3,455	3,207	2,606	2,419	0.0007	0.0010	0.0008	0.0018	0.002
UNION STAT	0	378	0	378	448	0	4.5	2,017	57		1,150	1,067	867	805	0.0002	0.0003	0.0003	0.0006	
VAN NESS	0	343	0	343	407	0	4.5	1,830	57		1,043			730	0.0002	0.0003	0.0002	0.0005	
VIENNA 25%	25	2798	933	3731	3318	1106	7.5	33,177	57		18,911	17,553	14,266	13,242	0.0019	0.0055	0.0044	0.0099	
VA SQUARE	0	642	0	642	761	0	4.5	3,425	57		1,952		1,473	1,367	0.0004	0.0006	0.0005	0.0010	
WEST FALLS CHURCH	0	2183	0	2183	2588	0	4.5	11,647	57		6,639		5,008	4,649	0.0013	0.0019	0.0015		
WHITE FLINT	0	1633	0	1633	1936	0	4.5	8,713	57	43	4,966		3,746	3,477	0.0009	0.0015	0.0012	0.0026	
WOODLEY	0	68	0	68	81	0	4.5	363	57		207			145	0.0000	0.0001	0.0000		
RHODE ISLAND 30%	30	266	114	380	315	135	7.5	3,379	57	43	1,926	1,788	1,453	1,349	0.0002	0.0006	0.0004	0.0010	0.001
BUS & CAR POOL LOTS																			
CARTER BARRON	0	798	0	798	946	0	4.5	4,258	57	43	2,427	, , , , , ,	1,831	1,699	0.0005	0.0007	0.0006		0.001
PG PLAZA	0	47	0	47	56	0	4.5	251	57		143	133	108	100	0.0000	0.0000	0.0000	0.0001	0.000
PENN MAR SHOPP.	0	100	0	100	119	0	4.5	534	57		304			213		0.0001	0.0001	0.0002	
CAP PLAZA	0	100	0	100	119	0	4.5	534	57		304			213	0.0001	0.0001	0.0001		
EASTOVER	0	100	0	100	119	0	4.5	534	57		304			213	0.0001	0.0001	0.0001		
FOUR MILE RUN	0	28	0	28	33	0	4.5	149	57	43	85			60		0.0000	0.0000	0.0000	
SPRINGFIELD MALL	0	580	0	580	688	0	4.5	3,094	57		1,764	· · · · ·	1,331	1,235	0.0003	0.0005	0.0004		0.001
SPRINGFIELD METH CH	0	48	0	48	57	0	4.5	256	57		146			102		0.0000	0.0000	0.0001	
FRED ARMORY	0	33	0	33	39	0	7.5	293	57		167			117		0.0000	0.0000		
MYERSVILLE	0	65	0	65	77	0	7.5	578	57		329			231	0.0000	0.0001	0.0001		
ROSEMONT	0	45	0	45	53	0	7.5	400	57	43	228			160	0.0000	0.0001	0.0001		
URBANA	0	193	0	193	229	0	7.5	1,716	57		978			685	0.0001	0.0003	0.0002	0.0005	0.000
JEFFERSON	0	40	0	40	47	0	7.5	356	57		203			142		0.0001	0.0000	0.0001	
NORBECK RD	0	248	0	248	294	0	7.5	2,205	57		1,257		948	880	0.0001	0.0004	0.0003	0.0007	
MONTROSE RD	0	650	0	650	771	0	7.5	5,780	57		3,295		2,485	2,307	0.0004	0.0010	0.0008		
BRIGG CHENNY 50%	50	215	215	430	255	255	7.5	3,824	57		2,179		1,644	1,526	0.0002	0.0006	0.0005		
COMUS ROAD	0	30	0	30	36	0	7.5	267	57		152			106	0.0000	0.0000	0.0000	0.0001	
LAKEFOREST MALL	0	300	0	300	356	0	7.5	2,668	57		1,521	1,411	1,147	1,065	0.0002	0.0004	0.0004		
BURTONSVILLE	0	500	0	500	593	0	7.5	4,446	57		2,534		1,912	1,775	0.0003	0.0007	0.0006	0.0013	
FORCEY MEM.	0	200	0	200	237	0	7.5	1,778	57		1,014		765	710	0.0001	0.0003	0.0002	0.0005	0.000
TECH ROAD	0	155 265	0	155	184	0	7.5	1,378 2,356	57	43 43	786			550 941	0.0001	0.0002 0.0004	0.0002	0.0004	
BELTWAY	0		0	265	314	0	7.5	,	57		1,343				0.0002	0.0004	0.0003		
LAUREL VAN DUSEN		62	0	62 450	74	0	7.5	551 4.001	57 57		314 2.281	292		220 1,597	0.0000			0.0002	
ACCOKEEK ABC DRIVE IN	0	450 100	0	450 100	534 119	0	7.5 7.5	,	57 57		2,281				0.0003 0.0001	0.0007 0.0001	0.0005		
	20		131	657	623	156	7.5	889 5,842	57		3,330		382 2,512	355 2,332	0.0001	0.0001	0.0001		
BOWIE 20% CLINTON 50%		526 212	212	424	251	251	7.5 7.5	3,770			2,149			1,505	0.0003	0.0010	0.0008	0.0017	
	50	519	130	424 649		251 154	7.5 7.5	5,771	57				1,621 2,482		0.0002	0.0006	0.0008		
OXON HILL 20%	20 50	150	150	300	616 178	154	7.5	2.668	57 57		3,289 1,521			2,303	0.0003	0.0010	0.0008		
EQUESTRIAN CENTER 50 BOWIE MARKET PLACE	0	50	130	50	59	1/8	7.5	2,008	57	43	253		1,147 191	1,065 177	0.0001	0.0004	0.0004	0.0008	
FT.WASHINGTON	0	412	0	412	488	0	7.5	3,664	57		2,088			1,462	0.0000	0.0001	0.0001		
MONTPELIER REC PARK	0	70	0	412 70	488 83	0	7.5 7.5	3,664	57	43	2,088			1,462	0.0002	0.0006	0.0005		
RESTON	0	1547	0	1547	1834	0	7.5	13,756	57		7,841			5,490	0.0000	0.0001	0.0001	0.0002	
	0		0			0			57				5,915					0.0041	
GREENBRIAR FAIR OAKS	0	55 150	0	55 150	65 178	0	7.5 7.5	489 1,334	57		279 760		210 574	195 532		0.0001 0.0002	0.0001 0.0002		
	0		0			0													
ROLLING VALLEY	0	628	0	628	745	0	7.5	5,584	57		3,183		2,401	2,229	0.0004	0.0009	0.0007	0.0017	
SPRINGFIELD PLAZA	0	230	0	230	273	0	7.5	2,045	57		1,166		879	816	0.0001	0.0003	0.0003		
FAIRLANES BOWL	0	35	0	35	41	0	7.5	311	57	43	177	165	134	124	0.0000	0.0001	0.0000	0.0001	0.000

SEASON 3 (Oct-Dec) 2016 Precursor NOx AUTO ACCESS TO TRANSIT 2011 CLRP / FY2012-2017 TIP AIR QUALITY CONFORMITY

COLATION 1979 1970 197																	E M I	SSIONS		
COMMUNITER DATE COMMUNITER				2002		20	16	AVERAGE	2016	ARTERIAL	FREEWAY	ARTERIAL	Adj.Art	FREEWAY	Adj.Fwy	COLD CTART		RUNNING		TOTAL
MORNITOR PIAM, LOTS 100	LOCATION	OUTSIDE	INSIDE	OUTSIDE	T	INSIDE	OUTSIDE	TRIP LENGTH	VMT		%	VMT	VMT	VMT	VMT	COLD START	Arterial	Freeway	Total Running	
COMMOTRIBLE LOTS		MSA (%)	MSA	MSA	rotai	Growth Rate	Growth Rate									Rate (gm/mile)	Rate (gm/mile)	Rate (gm/mile)	Emission	(tons/day)
CONTOURN PORCE 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0						1.19	1.19						Wk Days =	61		0.2604	0.1429	0.1505	(tones/day)	
FEMERICA 0 2287 D 2897 B 291 B 291 B 291 B 292 D 1 75 B 2315 S 75 D 1 1277 B 185 B 507 D 0 3010 D 0 3000 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0	COMMUTER RAIL LOTS																			
FEMERICA 0 2287 D 2897 B 291 B 291 B 291 B 292 D 1 75 B 2315 S 75 D 1 1277 B 185 B 507 D 0 3010 D 0 3000 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0																				
Lips NRD: 0 566 0 756 688 0 776 4.986 0 776 4.986 0 776 4.986 0 776 4.986 0 776 4.986 0 776 4.986 0 776 4.986 0 776 4.986 0 776 4.986 0 776 4.986 0 776 4.986 0 776 4.986 0 776 4.986 0 776 4.986 0 776 4.986 0 77	NOTTOWAY PARK	0	14	0	14	17	0	7.5	124	57	43	71	66	54	50	0.0000	0.0000	0.0000	0.0000	0.0000
NONDENDELET 1985	HORNER RD	0	2397	0	2397	2842	0	7.5	21,315	57	43	12,149	11,277	9,165	8,507	0.0014	0.0036	0.0028	0.0064	0.0078
CEMPOINT 1 156 0 156 158 158 0 75 1,307 179	LAKE RIDGE	0	555	0	555	658	0	7.5	4,935	57	43	2,813	2,611	2,122	1,970	0.0003	0.0008	0.0007	0.0015	0.0018
### STORAC MILES OF 1846 O 246 Page O 7.5 200 Page Page O 7.5 200 Page Page O 7.5 200 Page Page O 7.5 200 Page Page O 7.5 200 Page Page O 7.5 200 Page Page O 7.5 200 Page Page Page Page Page Page Page Page	MINNIEVILLE RD 40%	40	336	224	560	398	266	7.5	4,980	57	43	2,838	2,635	2,141	1,988	0.0003	0.0008	0.0007	0.0015	0.0017
EXPONENCE Color Control Color	GORDON BLVD	0	156	0	156	185	0	7.5	1,387	57	43	791	734	596	554	0.0001	0.0002	0.0002	0.0004	0.0005
Let of new lots to be added in Conformity Decument list PARK-AND-RIDE LOTS - MAYLAND PAR		0		0			0	7.5												
PARK-AND-RIDE LOTS - MARYLAND	POTOMAC MILLS	0	946	0	946	1122	0	7.5	8,412	57	43	4,795	4,451	3,617	3,357	0.0005	0.0014	0.0011	0.0025	0.0031
PARK-AND-RIDE LOTS - MARYLAND																				
PARKAD-RIOSE LOTS - MARYLAND	List of new lots to be add	led in Con	formity D	ocument l	list															
PARKAD-RIOSE LOTS - MARYLAND																				
GHARLES COUNTY S1 Paris R Red 26	PARK-AND-RIDE LOTS -	MARYLAI	ND																	
SOF Parks Right	PARK-AND-RIDE LOTS -	MARYLAI	ND																	
Charles County Government 28 28 8 9 35 31 110 7.5 311 57 40 177 188 134 124 0.0000 0.0001 0.0001 0.0001 0.0001 29 13 30 13 50 44 115 7.5 445 57 40 253 255 191 177 0.0000 0.0001 0.0001 0.0001 20 14 15 15 15 15 15 15 15 15 15 15 15 15 15																				
Food Loss Nepagna Center 28 38 13 50 44 15 7.5 446 57 43 253 236 191 177 0.0000 0.0001																				
LaPitest Armory				-																
Lucie Spring Regional Part 26 38 13 50 44 16 7.5 446 57 43 253 236 191 177 0,0000 0,0001 0,00	- 11 0																			
Life Messyam Church				_																
Mathematic Mathemati																				
Smallwood Village 25 75 25 100 88 30 7.5 889 37 42 57 43 507 470 382 385 0.0001 0.0001 0.0001 0.0003 0.0003 PARK-AND-RIDE LOTS - MARYLAND 0 0 0 0 0 0 0 Frederick (porth) 25 122 41 164 164 49 7.5 1.459 57 43 851 772 627 582 0.0001 0.0002 0.0002 0.0002 0.0002 Frederick (porth) 25 173 88 250 250 68 7.5 2.458 57 43 851 772 627 582 0.0001 0.0003 0.0003 0.0003 0.0003 0.0003 Frederick (porth) 25 173 88 250 250 68 7.5 2.458 57 43 8.51 772 627 582 0.0001 0.0003																				
St. Charles Towne									-, -						,					
PARK_AND-RIDE LOTS - MARYLAND																				
FREDERICK COUNTY				88	350	311		7.5	3,112	57	43	1,774	1,647	1,338	1,242	0.0002	0.0005	0.0004	0.0009	0.0011
Frederick (norm)		MARYLA	ND			0	ŭ		0											
Frederick (south) 25 173 58 230 205 68 7.5 2045 57 43 1,166 1,082 878 816 0,0001 0,0003 0,0006 0,0007									0											
Monagery Marrier 25 600 200 800 711 237 7.5 7.114 57 43 4.055 3.764 3.059 2.839 0.0004 0.0012 0.0009 0.0021 0.0025																				
PARK-AND-RIDE LOTS - MARYLAND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0																				
NONTGOMERY COUNTY				200	800			7.5	7,114	57	43	4,055	3,764	3,059	2,839	0.0004	0.0012	0.0009	0.0021	0.0025
Coleswille		MARYLAI	ND						0											
Damascus 50 0 0 0 0 7.5 0 57 43 0 0 0 0 0 0,0000 0		_	400			U	0		0				201	=00	074		2 2222		0.0005	2 2222
Gathersburg 50 259 259 517 306 306 7.5 4.597 57 43 2.620 2.432 1.977 1.835 0.0002 0.0008 0.0006 0.0014 0.0016 Gathersburg 50 175 175 350 207 207 7.5 3.112 57 43 1.774 1.647 1.338 1.242 0.0002 0.0005 0.0004 0.0009 0.0011 Gathersburg 50 75 75 15 150 88 89 7.5 1.334 57 43 760 706 574 532 0.0001 0.0002 0.0002 0.0004 0.0009 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0004 0.0009 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0004 0.0005 0.0001 0.0				0	190		0		1,690					726	674					
Califfentisturg 50 175 175 350 207 207 7.5 3,112 57 43 1,774 1,647 1,338 1,242 0,0002 0,0005 0,0004 0,0006 0,0001				Ū		0	V		0				·	0	0					
Cermantown Town																				
Circencaste 50 75 75 150 88 89 7.5 1334 57 43 760 706 574 532 0.0001 0.0002 0.0002 0.0004 0.0005				1/5	350		207		3,112			1,774	1,647	1,338	1,242					
Milestone Shopping 50 88 88 175 104 104 7.5 1,556 57 43 887 823 669 621 0.0001 0.0003 0.0002 0.0005 0.0005 PARK-AND-RIDE LOTS - MAYLAND 0 0 0 0 0 0 0 Hampton Mall 0 100 0 100 1119 0 4.5 534 57 43 304 282 229 213 0.0001 0.0001 0.0001 0.0002 Laurel (south) 25 513 171 684 608 203 7.5 6.082 57 43 3.467 3.218 2.615 2.428 0.0003 0.0010 0.0006 0.0002 PARK-AND-RIDE LOTS - VIRGINIA 0 0 0 0 0 0 0 0 0				75	150		0		1 224			760	706	E74	522					
PARK-AND-RIDE LOTS - MAYLANC																				
FRINCE GEORGE'S COUNTY 0 0 10 0 119 0 4.5 534 57 43 304 282 229 213 0.0001 0.0001 0.0001 0.0002				08	1/5			1.5	1,000	5/	43	007	023	009	021	0.0001	0.0003	0.0002	0.0005	0.0005
Hampton Mail			Ĭ			- U	0		0				 							
Laurel (south) 25 513 171 684 608 203 7.5 6,082 57 43 3,467 3,218 2,615 2,428 0,0003 0,0010 0,0008 0,0018 0,0022		1 1 11	100	0	100		0	A =	534	57	10	304	202	220	212	0.0004	0.0004	0.0004	0.0003	0.0003
PARK-AND-RIDE LOTS - VIRGINIA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		25		171			•													
ARLINGTON COUNTY				1/1	004			7.5	0,002	31	43	5,707		2,010	2, 7 20				0.0010	0.0022
Balliston Public Parking Gara 25 375 125 500 445 148 7.5 4.446 57 43 2.534 2.352 1.912 1.775 0.0003 0.0007 0.0006 0.0013 0.0016 Washington-Lee 50 178 178 355 211 211 7.5 3.166 57 43 1.804 1.675 1.361 1.263 0.0002 0.0005 0.0004 0.0009 0.0011 FARK-AND-RIDE LOTS - VIRGINIA		····OINIP	-						0				ŭ		n					
Washington-Lee 50 178 178 356 211 211 7.5 3.166 57 43 1.804 1.675 1.361 1.263 0.0002 0.0005 0.0004 0.0009 0.0011		25	375	125	500			7.5	4 446	57	43	2 53/	ŭ	1 012	1 775				0 0013	0.0016
PARK-AND-RIDE LOTS - VIRGINIA									, .						, .					
FAIRFAX COUNTY			170	110	330			7.5	J, 100	31	73	1,004		1,001	1,200	0.0002	0.0003	0.0004	0.0009	3.0011
American Legion 50 50 50 100 59 59 7.5 889 57 43 507 470 382 355 0.0000 0.0001 0.0001 0.0003			1				·		0				Ů							
Canterbury Woods Pk 50 17 17 34 20 20 7.5 302 57 43 172 160 130 121 0.0000 0.0001 0.00		50	50	50	100			7.5	889	57	43	507		382	355	0 0000	0 0001	0 0001	0 0003	0.0003
Centreville																				
Centreville United Methodist 50 74 74 147 87 87 87 7.5 1,307 57 43 745 692 562 522 0.0001 0.0002 0.0002 0.0004 0.0005 Fairfax County Government 50 85 85 170 101 101 7.5 1,512 57 43 862 800 650 603 0.0001 0.0003 0.0002 0.0005 0																				
Fairfax County Government 50 85 85 170 101 101 7.5 1,512 57 43 862 800 650 603 0.0001 0.0003 0.0002 0.0005 0.0005 Greenbriar Park 50 28 28 55 33 33 7.5 489 57 43 279 259 210 195 0.0000 0.0001 0.0001 0.0001 0.0001 Herndon-Monroe 50 873 873 1,745 1034 1034 7.5 15,517 57 43 8,845 8,210 6,672 6,193 0.0008 0.0026 0.0021 0.0046 0.0054 Michael's 50 100 100 200 119 119 7.5 1,778 57 43 1,014 941 765 710 0.0001 0.0003 0.0002 0.0005 Parkwood Baptist 50 9 9 18 11 11 7.5 160 57 43 91 85 69 64 0.0000 0.0000 0.0000 0.0000 0.0001 South Run District Pk 50 170 170 340 202 202 7.5 3,023 57 43 1,723 1,600 1,300 1,207 0.0001 0.0005 0.0004 0.0003 Stringfellow Rd 50 181 181 361 214 214 7.5 3,210 57 43 1,830 1,698 1,880 1,281 0.0002 0.0005 0.0004 0.0011 0.0011 Total Range Rd 7.5 7																				
Greenbriar Park 50 28 28 55 33 33 7.5 489 57 43 279 259 210 195 0.0000 0.0001 0.0001 0.0001 0.0001 0.0002 0.0001 0.0001 0.0002 0.0005 0																				
Herndon-Monroe 50 873 873 1,745 1034 1034 7.5 15,517 57 43 8,845 8,210 6,672 6,193 0.0008 0.0026 0.0021 0.0046 0.0054 Michael's 50 100 100 200 119 119 7.5 1,778 57 43 1,014 941 765 710 0.0001 0.0003 0.0002 0.0005 0.0006 Parkwood Baptist 50 9 9 18 11 11 7.5 160 57 43 91 85 69 64 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 South Run District Pk 50 170 170 340 202 202 7.5 3,023 57 43 1,723 1,600 1,300 1,207 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 St Paul Chung Catholic Chur 50 50 50 100 59 59 7.5 889 57 43 507 470 382 355 0.0000 0.0001 0.0001 0.0003 Stringfellow Rd 50 181 181 361 214 214 7.5 3,210 57 43 1,830 1,830 1,880 1,281 0.0002 0.0005 0.0004 0.0001 0.0001																				
Michael's 50 100 100 200 119 119 7.5 1,778 57 43 1,014 941 765 710 0.0001 0.0003 0.0002 0.0005 0.0006 Parkwood Baptist 50 9 9 18 11 11 7.5 160 57 43 91 85 69 64 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001																				
Parkwood Baptist 50 9 9 18 11 11 7.5 160 57 43 91 85 69 64 0.0000 0.0000 0.0000 0.0001 South Run District Pk 50 170 170 340 202 202 7.5 3,023 57 43 1,723 1,600 1,300 1,207 0.0001 0.0005 0.0004 0.0009 0.0011 St Paul Chung Catholic Chur 50 50 50 100 59 59 7.5 889 57 43 507 470 382 355 0.0000 0.0001 0.0003 Stringfellow Rd 50 181 181 361 214 214 7.5 3,210 57 43 1,830 1,698 1,380 1,281 0.0002 0.0005 0.0004 0.0010									- , -											
St Paul Chung Catholic Chur 50 50 50 100 59 59 7.5 889 57 43 507 470 382 355 0.0000 0.0001 0.0001 0.0003 0.0003 Stringfellow Rd 50 181 181 361 214 214 7.5 3,210 57 43 1,830 1,698 1,380 1,281 0.0002 0.0005 0.0004 0.0010 0.0011																				
Stringfellow Rd 50 181 181 361 214 214 7.5 3,210 57 43 1,830 1,698 1,380 1,281 0.0002 0.0005 0.0004 0.0010 0.0011	South Run District Pk	50	170	170	340	202	202	7.5	3,023	57	43	1,723	1,600	1,300	1,207	0.0001	0.0005	0.0004	0.0009	0.0011
	St Paul Chung Catholic Chur	50	50	50	100	59	59	7.5	889	57	43	507	470	382	355	0.0000	0.0001	0.0001	0.0003	0.0003
Sully Station 50 70 70 140 83 83 7.5 1,245 57 43 710 659 535 497 0.0001 0.0002 0.0002 0.0004 0.0004	Stringfellow Rd			181	361	214	214	7.5	3,210					1,380	1,281	0.0002	0.0005	0.0004	0.0010	
	Sully Station	50	70	70	140	83	83	7.5	1,245	57	43	710	659	535	497	0.0001	0.0002	0.0002	0.0004	0.0004

SEASON 3 (Oct-Dec) 2016 Precursor NOx AUTO ACCESS TO TRANSIT 2011 CLRP / FY2012-2017 TIP AIR QUALITY CONFORMITY

																E M I	SSIONS		
			2002		20	16	AVERAGE	2016	ARTERIAL	FREEWAY	ARTERIAL	Adj.Art	FREEWAY	Adj.Fwy	COLD START		RUNNING		TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE		INSIDE	OUTSIDE	TRIP LENGTH	VMT		%	VMT	VMT	VMT	VMT	COLD START	Arterial	Freeway	Total Running	
	MSA (%)	MSA	MSA	Total	Growth Rate	Growth Rate					1 1				Rate (gm/mile)	Rate (gm/mile)	Rate (gm/mile)	Emission	(tons/day)
	1115/11/01	11.571	111071		1.19	1.19						Wk Days =	61		0.2604	0.1429	0.1505	(tones/day)	
COMMUTER RAIL LOTS												Seasonal adj =	0.9282					, , , , , ,	
Sydenstricker Rd	50	84	84	167	99	99	7.5	1,485	57	43	846	786	639	593	0.0001	0.0002	0.0002	0.0004	0.0005
Wakefield Chapel Pk	50	25	25	50	30	30	7.5	445	57	43	253	235	191	177	0.0000	0.0001	0.0001	0.0001	0.0002
PARK-AND-RIDE LOTS -	VIRGINIA																		
LOUDOUN COUNTY																			
Ashburn Farm	50	10	10	20	12	12	7.5	178	57	43	101	94	76	71	0.0000	0.0000	0.0000	0.0001	0.0001
Ashburn Village	50	20	20	40	24	24	7.5	356	57	43	203	188	153	142	0.0000	0.0001	0.0000	0.0001	0.0001
Cascades	50	28	28	55	33	33	7.5	489	57	43	279	259	210	195	0.0000	0.0001	0.0001	0.0001	0.0002
Dulles North Transit	50	375	375	750	445	445	7.5	6,669	57	43	3,801	3,528	2,868	2,662	0.0003	0.0011	0.0009	0.0020	0.0023
Hamilton	50	25	25	50	30	30	7.5	445	57	43	253	235	191	177	0.0000	0.0001	0.0001	0.0001	0.0002
Innovation Avenue	50			75	44	44	7.5	667	57	43	380	353	287	266	0.0000	0.0001	0.0001	0.0002	0.0002
Leesburg	50		25	50	30	30	7.5	445	57	43	253	235	191	177	0.0000	0.0001	0.0001	0.0001	0.0002
Leesburg Kohls	50		600	1200	711	711	7.5	10,671	57	43	6,082	5,646	4,588	4,259	0.0005	0.0018	0.0014	0.0032	0.0037
Purcellville	50			35	21	21	7.5	311	57	43	177	165	134	124	0.0000	0.0001	0.0000	0.0001	0.0001
Sterling Park SC	50			45	27	27	7.5	400	57	43		212	172		0.0000	0.0001	0.0001	0.0001	0.0001
Sterling Shaw Rd	50	24	24	48	28	28	7.5	427	57	43	243	226	184	170	0.0000	0.0001	0.0001	0.0001	0.0001
PARK-AND-RIDE LOTS -	VIRGINIA																		
PRINCE WILLIAM COUN	TY																		
Brittany	50			95	56	56	7.5	845	57	43		447	363	337	0.0000	0.0001	0.0001	0.0003	0.0003
Dale City	50		294	587	348	348	7.5	5,220	57	43		2,762	2,244	2,083	0.0003	0.0009	0.0007	0.0016	0.0018
Harbor Drive	50	100	100	200	119	119	7.5	1,778	57	43	1,014	941	765	710	0.0001	0.0003	0.0002	0.0005	0.0006
Lindendale	50	108	108	216	128	128	7.5	1,921	57	43	1,095	1,016	826	767	0.0001	0.0003	0.0003	0.0006	0.0007
Montclair	50	25	25	50	30	30	7.5	445	57	43	253	235	191	177	0.0000	0.0001	0.0001	0.0001	0.0002
PRTC Transit Center	50	93	93	185	110	110	7.5	1,645	57	43	938	870	707	657	0.0001	0.0003	0.0002	0.0005	0.0006
Tackett's Mill	50	85	85	169	100	100	7.5	1,503	57	43	857	795	646	600	0.0001	0.0003	0.0002	0.0004	0.0005
Triangle	50			29	17	17	7.5	258	57	43		136	111	103	0.0000	0.0000	0.0000	0.0001	0.0001
I-95 / Rt 123	50		282	563	334	334	7.5	5,006	57	43		2,649	2,153	1,998	0.0002	0.0008	0.0007	0.0015	0.0017
US 1 / VA 234	50	137	137	274	162	162	7.5	2,436	57	43	1,389	1,289	1,048	972	0.0001	0.0004	0.0003	0.0007	0.0008
MARC TRAIN COMMUTE	R LOTS																0.0000		
College Park	25	431	144	574	510	170	7.5	5,104	57	43		2,700	2,195	2,037	0.0003	0.0009	0.0007	0.0015	0.0018
Frederick	0	0	0	0	0	0	7.5	0	57	43		0	0	0	0.0000	0.0000	0.0000	0.0000	0.0000
Greenbelt	60		2018	3364	1595	2393	7.5	29,913	57	43	17,051	15,826	12,863	11,939	0.0014	0.0050	0.0040	0.0089	0.0103
Harpers Ferry		98	0	98	116	0	7.5	871	57	43	497	461	375	348	0.0001	0.0001	0.0001	0.0003	0.0003
Muirkirk	60		390	650	308	462	7.5	5,780	57	43	3,295	3,058	2,485	2,307	0.0003	0.0010	0.0008	0.0017	0.0020
Seabrook	0	264	0	264	313	0	4.5	1,409	57	43		745	606	562	0.0002	0.0002	0.0002	0.0004	0.0006
Silver Spring	0	0	0	0	0	0	4.5	0	57	43		0	0	0	0.0000	0.0000	0.0000	0.0000	0.0000
Union Station	0	781	0	781	926	0	7.5	6,945	57	43	3,959	3,674	2,986	2,772	0.0004	0.0012	0.0009	0.0021	0.0025
VIRGINIA RAILWAY EXP																			
Backlick Road	50		110	220	130	130	7.5	1,956	57	43	1,115	1,035	841	781	0.0001	0.0003	0.0003	0.0006	0.0007
Broad Run	50		198	396	235	235	7.5	3,521	57	43		1,863	1,514	1,405	0.0002	0.0006	0.0005	0.0011	0.0012
Brooke	50		150	300	178	178	7.5	2,668	57	43		1,411	1,147	1,065	0.0001	0.0004	0.0004	0.0008	0.0009
Burke Center	50		275	550	326	326	7.5	4,891	57	43	2,788	2,588	2,103	1,952	0.0002	0.0008	0.0006	0.0015	0.0017
Franconia/Springfield (opera	50		1900	3800	2253	2253	7.5	33,790	57	43	19,261	17,878	14,530	13,487	0.0016	0.0056	0.0045	0.0101	0.0117
Leeland Road	50		326	652	387	387	7.5	5,798	57	43	3,305	3,067	2,493	2,314	0.0003	0.0010	0.0008	0.0017	0.0020
Lorton	50		100	200	119	119	7.5	1,778	57	43	1,014	941	765	710	0.0001	0.0003	0.0002	0.0005	0.0006
Manassas Manassas Barli	50		187	374	222	222	7.5	3,326	57	43		1,760	1,430	1,327	0.0002	0.0006	0.0004	0.0010	0.0012
Manassas Park	50		150	300	178	178	7.5	2,668	57	43		1,411	1,147	1,065	0.0001	0.0004	0.0004	0.0008	0.0009
Quantico	50 50		109	217	129 178	129 178	7.5 7.5	1,930	57 57	43 43	1,100	1,021	830	770 1,065	0.0001	0.0003	0.0003	0.0006	0.0007
Rippon Rolling Road	50		150 185	300 370	219	219	7.5	2,668 3.290	57	43	1,521 1,875	1,411 1,741	1,147 1.415	1,065	0.0001 0.0002	0.0004 0.0005	0.0004 0.0004	0.0008 0.0010	0.0009 0.0011
	50		185 294	588	349	219 349	7.5 7.5	3,290 5,229	57	43		1,741 2,766	1,415 2,248	1,313 2,087	0.0002	0.0005	0.0004	0.0010	0.0011
Woodbridge METRORAIL PARKING L		294	294	268	349	349	1.5	5,229	5/	43	2,980	2,700	2,248	2,087	0.0003	0.0009	0.0007	0.0016	0.0018
	25	861	287	1148	1021	340	7.5	10,208	57	43	5,819	5,401	4,390	4.074	0.0006	0.0017	0.0014	0.0031	0.0036
Anacostia Branch Avenue	50		1611	3222	1910	1910	7.5	28,651	57	43	16,331	15,158	12,320	11,435	0.0006	0.0017	0.0014	0.0031	0.0036
Capitol Heights	50		194	3222	229	229	7.5	3,441	57	43	1,962	1,821	1,480	1,374	0.0014	0.0048	0.0038	0.0086	0.0100
College Park	25		155	620	551	184	7.5	5,513	57	43		2.917	2,371	2,200	0.0002	0.0009	0.0003	0.0010	0.0012
Congress Heights	0	66	133	66	78	104	4.5	352	57	43		186	151	141	0.0003	0.0003	0.0007	0.0010	0.0020
Deanwood	0	194	0	194	230	0	7.5	1,725	57	43	983	913	742	689	0.0000	0.0001	0.0000	0.0001	0.0001
East Falls Church	50		221	442	262	262	7.5	3,930	57	43	2,240	2,079	1,690	1,569	0.0001	0.0003	0.0002	0.0003	0.0008
Forest Glen	50		329	658	390	390	7.5	5.851	57	43		3.096	2.516	2.335	0.0002	0.0007	0.0003	0.0012	0.0014
Franconia - Springfield	50		1987	3973	2355	2355	4.5	21,197	57	43		11,215	9,115	8,460	0.0003	0.0010	0.0008	0.0017	0.0020
i rancoma - opinignetu	30	1907	1907	3913	2300	2333	4.0	41,101	37	43	12,002	11,413	9,113	0,400	0.0017	0.0033	0.0020	0.0003	0.0001

SEASON 3 (Oct-Dec) 2016 Precursor NOx AUTO ACCESS TO TRANSIT

2011 CLRP / FY2012-2017 TIP AIR QUALITY CONFORMITY

																E M I	SSIONS	3	
			2002		20	16	AVERAGE	2016	ARTERIAL	FREEWAY	ARTERIAL	Adj.Art	FREEWAY	Adj.Fwy	COLD START		RUNNING		TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE	Total	INSIDE	OUTSIDE	TRIP LENGTH	VMT		%	VMT	VMT	VMT	VMT	COLD START	Arterial	Freeway	Total Running	i
	MSA (%)	MSA	MSA	TOtal	Growth Rate	Growth Rate									Rate (gm/mile)	Rate (gm/mile)	Rate (gm/mile)	Emission	(tons/day)
					1.19	1.19						Wk Days =	61		0.2604	0.1429	0.1505	(tones/day)	i
COMMUTER RAIL LOTS												Seasonal adj =	0.9282						
																			1
Glenmont	50	925	925	1850	1097	1097	4.5	9,870	57	43	5,626	5,222	4,244	3,940	0.0008	0.0016	0.0013	0.0030	0.0037
Greenbelt	50	1783	1783	3565	2113	2113	7.5	31,701	57	43	18,069	16,772	13,631	12,653	0.0015	0.0053	0.0042	0.0095	0.0110
Naylor Road	50	216	216	431	256	256	7.5	3,833	57	43	2,185	2,028	1,648	1,530	0.0002	0.0006	0.0005	0.0011	0.0013
Prince George's Plaza	25	927	309	1236	1099	366	7.5	10,991	57	43	6,265	5,815	4,726	4,387	0.0006	0.0018	0.0015	0.0033	0.0039
Southern Avenue	50	1090	1090	2180	1292	1292	4.5	11,631	57	43	6,630	6,154	5,001	4,642	0.0009	0.0019	0.0015	0.0035	0.0044
Suitland	50	1033	1033	2065	1224	1224	4.5	11,017	57	43	6,280	5,829	4,738	4,397	0.0009	0.0018	0.0015	0.0033	0.0042
Van Dorn Street	50	204	204	407	241	241	4.5	2,171	57	43	1,238	1,149	934	867	0.0002	0.0004	0.0003	0.0006	0.0008
West Hyattsville	25	453	151	604	537	179	7.5	5,371	57	43	3,061	2,842	2,309	2,144	0.0003	0.0009	0.0007	0.0016	0.0019
Wheaton	25	759	253	1012	900	300	7.5	8,999	57	43	5,129	4,761	3,870	3,592	0.0005	0.0015	0.0012	0.0027	0.0032
				108,749				847,732	2						0.0538	0.1413	0.1123	0.2535	0.3073
																	Seasonal Total	(tons/season)	18.75

Bold figures: New numbers taken from P & R directory Figures in bracket: Carry forward figures from conformity doc.

Park lot Growth Rate	
transit trips 2016	1295286
transit trips 2002	1092489
Annual growth rate	0.013259
Growth factor (2002-2016)	1.185628

2016 PM AIR QUALITY EMISSIONS INVENTORY

AUTO ACCESS TO TRANSIT

			2002		20:	16	AVERAGE	2016	ADJ	RUNNING	TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE		INSIDE	OUTSIDE	TRIP LENGTH	VMT	WINTER		
	MSA (%)	MSA	MSA	Total	Growth Rate	Growth Rate			VMT	Rate (gm/mile)	(tons/da
	- (- /				1.19	1.19		Wk Days =	83	0.0113	, ,
COMMUTER RAIL LOTS					1,13	1.13		Seasonal adj =	0.9216	0.0220	
									0.00=0		
BRUNSWICK 25%	25	305	102	407	362	121	7.5	3,619	3,335	38	0.00
PT OF ROCKS 25%	25	204	68	272	242	81	7.5	2,419	2,229	25	0.00
DICKERSON	0			15	18	0	7.5	133	123	1	0.0
BARNESVILLE	0		0	46	55	0	7.5	409	377	4	0.0
GERMANTOWN	0		0	386	458	0	7.5	3.432	3.163	36	0.0
MET GROVE	0			352	417	0	7.5	3,130	2,885	33	0.0
WAS GROVE	0		0	15	18	0	7.5	133	123	1	0.0
GARRETT PARK	0		0	22	26	0	7.5	196	180	2	0.0
BOWIE 50%	50	188	188	375	222	222	7.5	3,335	3,073	35	0.0
SEABROOK 15%	15		40	264	266	47	7.5	2.348	2.163	24	0.0
KENSINGTON	0		0	45	53	0	7.5	400	369	4	0.0
LAUREL 30%	30		_	299	248	106	7.5	2.659	2.450	28	0.0
	0		90			0		,	,		0.0
GAITHESBURG	0			280	332		7.5	2,490	2,295	26	
BERWYN HEIGHTS				30	36	0	4.5	160	148	2	0.0
RIVERDALE	0	65	0	65	77	0	4.5	347	320	4	0.0
METRO RAIL LOTS											
WILLING WAIL LOTS											
ADDISON ROAD 40%	40	791	527	1318	938	625	7.5	11,720	10,801	122	0.0
ARCHIVES	0	12	0	12	14	0	4.5	64	59	1	0.0
ARLING	0	10	0	10	12	0	4.5	53	49	1	0.0
BALLSTON	0			1175	1393	0	4.5	6.269	5.778	65	0.0
BENN.RD	0	520	0	520	617	0	4.5	2,774	2,557	29	0.0
BETH	0			395	468	0	4.5	2.107	1,942	22	0.0
BRADD RD	0			10	12	0	4.5	53	49	1	0.0
BROOKLAND	0		0	27	32	0	4.5	144	133	2	0.0
CHEVERLY	0		0	557	660	0	4.5	2,972	2,739	31	0.0
CLARENDON	0		0	554	657	0	4.5	2.956	2,724	31	0.0
CLEVELAND PK	0		0	366	434	0	4.5	1.953	1.800	20	0.0
COURT HOUSE	0		0	256	304	0	4.5	1,366	1,259	14	0.0
CRYSTAL CITY	0		0	347	411	0	4.5	1,851	1,706	19	0.0
DEANWOOD	0		0	194	230	0	4.5	1,035	954	11	0.0
DUN LORING 10%	10	1220	136	1355	1446	161	4.5	7,229	6,663	75	0.0
DUPONT CIRCLE	0		0	165	196	0	4.5	880	811	9	0.0
EASTERN MKT	0		0	178	211	0	4.5	950	875	10	0.0
EAST FALLS CH	0		0	442	524	0	4.5	2.358	2.173	25	0.0
EIS	0		0	352	417	0	4.5	1,878	1,731	20	0.0
FARRAGUT NORTH	0		0	102	121	0	4.5	544	502	6	0.0
FARRAGUT WEST	0		0	221	262	0	4.5	1.179	1.087	12	0.0
FEDERAL CENTER	0			75	89	0	4.5	400	369	4	0.0
FEDERAL CENTER FEDERAL TRI	0		0	75 54	64	0	4.5	288	266	3	0.0
-EDERAL IRI -OGGY	0		0	102	121	0	4.5	288 544	200 502	<u>3</u>	0.0
	0		0	445	528	0	4.5			25	0.0
FORT TROTTEN								2,374	2,188		
FRH.HEIGHTS	0		0	679	805	0	4.5	3,623	3,339	38	0.0
GALLERY PLACE	0		0	124	147	0	4.5	662	610	7	0.0
GROSVENOR 400/	0		0	716	849	0	4.5	3,820	3,521	40	0.0
HUNT NORTH 40%	40		1249	3122	2221	1481	7.5	27,761	25,585	289	0.0
JUD SQUARE	0		0	110	130	0	4.5	587	541	6	0.0
KING ST	0	30	0	30	36	0	4.5	160	148	2	0.0

2016 PM AIR QUALITY EMISSIONS INVENTORY

AUTO ACCESS TO TRANSIT

							1	1	1	1	
			2002		201	L6	AVERAGE	2016	ADJ	RUNNING	TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE	Total	INSIDE	OUTSIDE	TRIP LENGTH	VMT	WINTER		
	MSA (%)	MSA	MSA	TOtal	Growth Rate	Growth Rate			VMT	Rate (gm/mile)	(tons/day)
					1.19	1.19		Wk Days =	83	0.0113	
COMMUTER RAIL LOTS								Seasonal adj =	0.9216		
LANDOVER 25%	25	1410	470	1880	1672	557	7.5	16,717	15,407	174	0.0002
L'ENFANT PLAZA	0	296	0	296	351	0	4.5	1,579	1,455	16	0.0000
MCPHERSON SQ	0	52	0	52	62	0	4.5	277	256	3	0.0000
MEDICAL CENTER	0	14	0	14	17	0	4.5	75	69	1	0.0000
METRO CENTER	0	177	0	177	210	0	4.5	944	870	10	0.0000
MINNES	0	353	0	353	419	0	4.5	1,883	1,736	20	0.0000
NAT AIR	0	87	0	87	103	0	4.5	464	428	5	0.0000
NEW CARROL 50%	50	1049	1049	2097	1243	1243	7.5	18,647	17,185	194	0.0002
PRNTAGON	0	561	0	561	665	0	4.5	2,993	2,758	31	0.0000
PENTAGON CITY	0	381	0	381	452	0	4.5	2,033	1,873	21	0.0000
POTOMAC AVE	0	533	0	533	632	0	4.5	2,844	2,621	30	0.0000
ROCKVILLE	0	667	0	667	791	0	4.5	3,559	3,280	37	0.0000
ROSSLYN	0	356	0	356	422	0	4.5	1,899	1,750	20	0.0000
SHADY GROVE 10%	10	3903	434	4337	4628	514	7.5	38,566	35,542	402	0.0004
SILVER SPRING	0	44	0	44	52	0	4.5	235	216	2	0.0000
SMITH MALL	0	120	0	120	142	0	4.5	640	590	7	0.0000
STADIUM ARM	0	976	0	976	1157	0	4.5	5,207	4,799	54	0.0001
TAKOMA PK	0	146	0	146	173	0	4.5	779	718	8	0.0000
TENLEYTON	0	17	0	17	20	0	4.5	91	84	1	0.0000
TWINBROOK	0	1136	0	1136	1347	0	4.5	6,061	5,586	63	0.0001
UNION STAT	0	378	0	378	448	0	4.5	2,017	1,859	21	0.0000
VAN NESS	0	343	0	343	407	0	4.5	1,830	1,687	19	0.0000
VIENNA 25%	25	2798	933	3731	3318	1106	7.5	33,177	30,576	346	0.0004
VA SQUARE	0	642	0	642	761	0	4.5	3,425	3,157	36	0.0000
WEST FALLS CHURCH	0	2183	0	2183	2588	0	4.5	11,647	10,734	121	0.0001
WHITE FLINT	0	1633	0	1633	1936	0	4.5	8,713	8,030	91	0.0001
WOODLEY	0	68	0	68	81	0	4.5	363	334	4	0.0000
RHODE ISLAND 30%	30	266	114	380	315	135	7.5	3,379	3,114	35	0.0000
BUS & CAR POOL LOTS											
CARTER BARRON	0	798	0	798	946	0	4.5	4,258	3,924	44	0.0000
PG PLAZA	0	47	0	47	56	0	4.5	251	231	3	0.0000
PENN MAR SHOPP.	0	100	0	100	119	0	4.5	534	492	6	0.0000
CAP PLAZA	0	100	0	100	119	0	4.5	534	492	6	0.0000
EASTOVER	0	100	0	100	119	0	4.5	534	492	6	0.0000
FOUR MILE RUN	0	28	0	28	33	0	4.5	149	138	2	0.0000
SPRINGFIELD MALL	0	580	0	580	688	0	4.5	3,094	2,852	32	0.0000
SPRINGFIELD METH CH	0	48	0	48	57	0	4.5	256	236	3	0.0000
FRED ARMORY	0	33	0	33	39	0	7.5	293	270	3	0.0000
MYERSVILLE	0	65	0	65	77	0	7.5	578	533	6	0.0000
ROSEMONT	0	45	0	45	53	0	7.5	400	369	4	0.0000
URBANA	0	193	0	193	229	0	7.5	1,716	1,582	18	0.0000
JEFFERSON	0	40	0	40	47	0	7.5	356	328	4	0.0000
NORBECK RD	0	248	0	248	294	0	7.5	2,205	2,032	23	0.0000
MONTROSE RD	0	650	0	650	771	0	7.5	5,780	5,327	60	0.0001
BRIGG CHENNY 50%	50	215	215	430	255	255	7.5	3,824	3,524	40	0.0000
COMUS ROAD	0	30	0	30	36	0	7.5	267	246	3	0.0000
LAKEFOREST MALL	0	300	0	300	356	0	7.5	2.668	2,459	28	0.0000

2016 PM AIR QUALITY EMISSIONS INVENTORY

AUTO ACCESS TO TRANSIT

			2002		203	16	AVERAGE	2016	ADJ	RUNNING	TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE		INSIDE	OUTSIDE	TRIP LENGTH	VMT	WINTER		
	MSA (%)	MSA	MSA	Total	Growth Rate	Growth Rate	THE LEWOTT	V 1V11	VMT	Rate (gm/mile)	(tons/day)
	1413/1 (70)	IVISA	IVISA		1.19	1.19		Wk Days =	83	0.0113	(10115) 441)
COMMUTER RAIL LOTS					1.13	1.13		Seasonal adj =	0.9216	0.0113	
COMMINICATE TO TO								Ocasonai auj –	0.3210		
BURTONSVILLE	0	500	0	500	593	0	7.5	4.446	4.098	46	0.000
FORCEY MEM.	0		0	200	237	0	7.5	1,778	1,639	19	0.000
TECH ROAD	0		0	155	184	0	7.5	1,378	1,270	14	0.000
BELTWAY	0		0	265	314	0	7.5	2,356	2,172	25	0.0000
LAUREL VAN DUSEN	0		0	62	74	0	7.5	551	508	6	0.0000
ACCOKEEK	0		0	450	534	0	7.5	4.001	3,688	42	0.0000
ABC DRIVE IN	0		0	100	119	0	7.5	889	820	9	0.0000
BOWIE 20%	20	526	131	657	623	156	7.5	5.842	5.384	61	0.000
CLINTON 50%	50	212	212	424	251	251	7.5	3,770	3,475	39	0.000
OXON HILL 20%	20	519	130	649	616	154	7.5	5,771	5,319	60	0.000
EQUESTRIAN CENTER 5	50	150	150	300	178	178	7.5	2,668	2,459	28	0.000
BOWIE MARKET PLACE	0		0	50	59	0	7.5	445	410	5	0.0000
FT.WASHINGTON	0		0	412	488	0	7.5	3.664	3,376	38	0.0000
MONTPELIER REC PARK	0		0	70	83	0	7.5	622	574	6	0.0000
RESTON	0		0	1547	1834	0	7.5	13.756	12.678	143	0.0002
GREENBRIAR	0		0	55	65	0	7.5	489	451	5	0.0000
FAIR OAKS	0		0	150	178	0	7.5	1,334	1,229	14	0.0000
ROLLING VALLEY	0		0	628	745	0	7.5	5.584	5.146	58	0.000
SPRINGFIELD PLAZA	0		0	230	273	0	7.5	2,045	1,885	21	0.0000
FAIRLANES BOWL	0		0	35	41	0	7.5	311	287	3	0.0000
NOTTOWAY PARK	0		0	14	17	0	7.5	124	115	1	0.0000
HORNER RD	0		0	2397	2842	0	7.5	21.315	19.644	222	0.0002
LAKE RIDGE	0		0	555	658	0	7.5	4,935	4,548	51	0.0002
MINNIEVILLE RD 40%	40	336	224	560	398	266	7.5	4.980	4,589	52	0.000
GORDON BLVD	0		0	156	185	0	7.5	1,387	1,278	14	0.0000
HILLENDALE	0		0	248	294	0	7.5	2,205	2,032	23	0.0000
POTOMAC MILLS	0		0	946	1122	0	7.5	8,412	7,753	88	0.000
			-			_		9,1	.,		
List of new lots to be add	ed in Conf	ormity Do	cument lis	st							
PARK-AND-RIDE LOTS - MA	ARYLAND										
PARK-AND-RIDE LOTS - MA	ARYLAND										
CHARLES COUNTY											
301 Park & Ride	25	287	96	383	341	114	7.5	3,406	3,139	35	0.0000
Charles County Governmen	25	26	9	35	31	10	7.5	311	287	3	0.0000
Food Lion Shopping Center	25	38	13	50	44	15	7.5	445	410	5	0.0000
La Plata Armory	25	15	5	20	18	6	7.5	178	164	2	0.0000
Laurel Springs Regional Pa	25		13	50	44	15	7.5	445	410	5	0.0000
Life Wesleyan Church	25	38	13	50	44	15	7.5	445	410	5	0.0000
Mattawoman-Beantown Rd	25	435	145	580	516	172	7.5	5,157	4,753	54	0.000
Smallwood Village	25	75	25	100	89	30	7.5	889	820	9	0.000
St. Charles Towne	25	263	88	350	311	104	7.5	3,112	2,868	32	0.000
PARK-AND-RIDE LOTS - MA	ARYLAND										
FREDERICK COUNTY											
Frederick (north)	25		41	164	146	49	7.5	1,458	1,344	15	0.000
Frederick (south)	25	173	58	230	205	68	7.5	2,045	1,885	21	0.000
Monacacy Marcst	25	600	200	800	711	237	7.5	7,114	6,556	74	0.000
PARK-AND-RIDE LOTS - MA	ARYLAND										
MONTGOMERY COUNTY							<u> </u>				
Colesville	0	190	0	190	225	0	7.5	1,690	1,557	18	0.000
Damascus	50	0	0		0	0	7.5	0	0	0	0.000
Gaithersburg	50	259	259	517	306	306	7.5	4,597	4,237	48	0.000
Gaithersburg	50	175	175	350	207	207	7.5	3,112	2,868	32	0.000
Germantown Town	50	0	0		0	0	7.5	0	0	0	0.000

2016 PM AIR QUALITY EMISSIONS INVENTORY

AUTO ACCESS TO TRANSIT

			2002		201	16	AVERAGE	2016	ADJ	RUNNING	TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE		INSIDE	OUTSIDE	TRIP LENGTH	VMT	WINTER	-	
	MSA (%)	MSA	MSA	Total	Growth Rate	Growth Rate	22.10111	*****	VMT	Rate (gm/mile)	(tons/day)
1	11.57 (70)	1115/1	1110/1		1.19	1.19		Wk Days =	83	0.0113	(,,
COMMUTER RAIL LOTS					1.13	1.15		Seasonal adj =	0.9216	0.0113	
								ocaconar aaj	0.5210		
Greencastle	50	75	75	150	89	89	7.5	1.334	1,229	14	0.0000
Milestone Shopping	50	88	88	175	104		7.5	1,556	1,434	16	0.0000
PARK-AND-RIDE LOTS - MA		00	00	175	104	104	7.0	1,000	1,707	10	0.0000
PRINCE GEORGE'S COUNT											
Hampton Mall	. 0	100	0	100	119	0	4.5	534	492	6	0.0000
Laurel (south)	25	513	171	684	608		7.5	6,082	5,605	63	0.0001
PARK-AND-RIDE LOTS - VII		313	- ''	00+	0		7.5	0,002	0,000	0	
ARLINGTON COUNTY	CINIA				0			0	0	0	
Ballston Public Parking Garac	25	375	125	500	445	148	7.5	4,446	4,098	46	0.0001
Washington-Lee	50	178	178	356	211	211	7.5	3,166	2,917	33	0.0001
PARK-AND-RIDE LOTS - VII		170	170	330	211	211	7.5	3,100	2,317	33	0.0000
FAIRFAX COUNTY	JINA										
American Legion	50	50	50	100	59	59	7.5	889	820	9	0.0000
Canterbury Woods Pk	50	17	17	34	20	20	7.5	302	279	3	0.0000
Centreville	50	185	185	370	219		7.5	3.290	3.032	34	0.0000
	50	74	74		87	87	7.5			14	0.0000
Centreville United Methodis	50	74 85	85	147 170	101	101	7.5	1,307 1,512	1,205 1,393	16	0.0000
Fairfax County Governmen	50	28	28	55		33	7.5	1,512	451	5	0.0000
Greenbriar Park					33						
Herndon-Monroe	50	873	873	1,745	1034	1034	7.5	15,517	14,300	162	0.0002
Michael's	50	100	100	200	119		7.5	1,778	1,639	19	0.0000
Parkwood Baptist	50	9	9	18	11	11	7.5	160	148	2	0.0000
South Run District Pk	50	170	170	340	202	202	7.5	3,023	2,786	31	0.0000
St Paul Chung Catholic Ch	50	50	50	100	59	59	7.5	889	820	9	
Stringfellow Rd	50	181	181	361	214		7.5	3,210	2,958	33	0.0000
Sully Station	50	70	70	140	83		7.5	1,245	1,147	13	0.0000
Sydenstricker Rd	50	84	84	167	99		7.5	1,485	1,369	15	0.0000
Wakefield Chapel Pk	50	25	25	50	30	30	7.5	445	410	5	0.0000
PARK-AND-RIDE LOTS -	VIRGINIA										
LOUDOUN COUNTY											
Ashburn Farm	50	10	10	20	12	12	7.5	178	164	2	0.0000
Ashburn Village	50	20	20	40	24	24	7.5	356	328	4	
Cascades	50	28	28	55	33	33	7.5	489	451	5	0.0000
Dulles North Transit	50	375	375	750	445	445	7.5	6,669	6,146	69	0.0001
Hamilton	50	25	25	50	30		7.5	445	410	5	
Innovation Avenue	50	38	38	75	44		7.5	667	615	7	0.0000
Leesburg	50	25	25	50	30	30	7.5	445	410	5	0.0000
Leesburg Kohls	50	600	600	1200	711	711	7.5	10,671	9,834	111	0.0001
Purcellville	50	18	18	35	21	21	7.5	311	287	3	
Sterling Park SC	50	23	23	45	27	27	7.5	400	369	4	0.000
Sterling Shaw Rd	50	24	24	48	28	28	7.5	427	393	4	0.0000
PARK-AND-RIDE LOTS - VII	RGINIA										
PRINCE WILLIAM COUNTY											
Brittany	50	48	48	95	56		7.5	845	779	9	0.0000
Dale City	50	294	294	587	348	348	7.5	5,220	4,811	54	0.0001
Harbor Drive	50	100	100	200	119		7.5	1,778	1,639	19	0.0000
Lindendale	50	108	108	216	128	128	7.5	1,921	1,770	20	0.0000
Montclair	50	25	25	50	30	30	7.5	445	410	5	0.0000
PRTC Transit Center	50	93	93	185	110	110	7.5	1,645	1,516	17	0.0000
Tackett's Mill	50	85	85	169	100	100	7.5	1,503	1,385	16	0.0000
Triangle	50	15	15	29	17	17	7.5	258	238	3	0.0000
I-95 / Rt 123	50	282	282	563	334	334	7.5	5,006	4,614	52	0.0001
US 1 / VA 234	50	137	137	274	162	162	7.5	2,436	2,245	25	0.0000
MARC TRAIN COMMUTER I					0	0		0			
College Park	25	431	144	574	510	170	7.5	5,104	4,704	53	0.0001

2016 PM AIR QUALITY EMISSIONS INVENTORY

AUTO ACCESS TO TRANSIT

2011 CLRP / FY2012-2017 TIP AIR QUALITY CONFORMITY

			2002		201	16	AVERAGE	2016	ADJ	RUNNING	TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE	Total	INSIDE	OUTSIDE	TRIP LENGTH	VMT	WINTER		
	MSA (%)	MSA	MSA	rotai	Growth Rate	Growth Rate			VMT	Rate (gm/mile)	(tons/day)
				•	1.19	1.19		Wk Days =	83	0.0113	
COMMUTER RAIL LOTS								Seasonal adj =	0.9216		
								_			
Frederick	0	0	0	0	0	0	7.5	0	0	0	0.0000
Greenbelt	60	1346	2018	3364	1595	2393	7.5	29,913	27,568	312	0.0003
Harpers Ferry		98	0	98	116	0	7.5	871	803	9	0.0000
Muirkirk	60	260	390	650	308	462	7.5	5,780	5,327	60	0.0001
Seabrook	0	264	0	264	313	0	4.5	1,409	1,298	15	0.0000
Silver Spring	0	0	0	0	0	0	4.5	0	0	0	0.0000
Union Station	0	781	0	781	926	0	7.5	6,945	6,400	72	0.0001
VIRGINIA RAILWAY EXPRE											
Backlick Road	50	110	110	220	130	130	7.5	1,956	1,803	20	0.0000
Broad Run	50	198	198	396	235	235	7.5	3,521	3,245	37	0.0000
Brooke	50	150	150	300	178	178	7.5	2,668	2,459	28	0.0000
Burke Center	50	275	275	550	326	326	7.5	4,891	4,507	51	0.0001
Franconia/Springfield (oper	50	1900	1900	3800		2253	7.5	33,790	31,141	352	0.0004
Leeland Road	50	326	326	652	387	387	7.5	5,798	5,343	60	0.0001
Lorton	50	100	100	200	119	119	7.5	1,778	1,639	19	0.0000
Manassas	50	187	187	374	222	222	7.5	3,326	3,065	35	0.0000
Manassas Park	50	150	150	300	178	178	7.5	2,668	2,459	28	0.0000
Quantico	50	109	109	217	129	129	7.5	1,930	1,778	20	0.0000
Rippon	50	150	150	300	178	178	7.5	2,668	2,459	28	0.0000
Rolling Road	50	185	185	370	219	219	7.5	3,290	3,032	34	0.0000
Woodbridge	50	294	294	588	349	349	7.5	5,229	4,819	54	0.0001
METRORAIL PARKING LOT											
Anacostia	25	861	287	1148	1021	340	7.5	10,208	9,408	106	0.0001
Branch Avenue	50 50	1611	1611	3222	1910	1910	7.5	28,651	26,404	298	0.0003
Capitol Heights	25	194 465	194 155	387 620	229 551	229 184	7.5 7.5	3,441	3,171	36 57	0.0000
College Park		465 66						5,513	5,081		
Congress Heights Deanwood	0	194	0	66 194	78 230	0	4.5 7.5	352 1.725	325 1,590	<u>4</u> 18	0.0000
East Falls Church	50	221	221	442	230	262	7.5	3.930	3.622	41	0.0000
	50	329	329	658	390	390	7.5	5.851	5,392	61	0.0000
Forest Glen Franconia - Springfield	50	1987	1987	3973	2355	2355	4.5	21,197	19,535	221	0.0001
Glenmont	50	925	925	1850	1097	1097	4.5	9.870	9,097	103	0.0002
Greenbelt	50	1783	1783	3565	2113	2113	7.5	31,701	29,215	330	0.0001
Navlor Road	50	216	216	431	2113	256	7.5	31,701	3,532	40	0.0004
Prince George's Plaza	25	927	309	1236	1099	366	7.5	10.991	10,129	114	0.0000
Southern Avenue	50	1090	1090	2180	1292	1292	4.5	11,631	10,719	121	0.0001
Suitland	50	1033	1033	2065	1292	1292	4.5	11,031	10,719	115	0.0001
Van Dorn Street	50	204	204	407	241	241	4.5	2.171	2.001	23	0.0001
West Hyattsville	25	453	151	604	537	179	7.5	5,371	4,950	56	0.0001
Wheaton	25	759	253	1012	900	300	7.5	8,999	8.293	94	0.0001
VVIICALOII	20	133	200	108.749	900	300	7.5	847.732	0,293	8.828.3491	0.0001
				.00,.40				- , -	Seasonal To	tal (tons/season) =	0.8077

Bold figures: New numbers taken from P & R directory

Figures in bracket: Carry forward figures from conformity doc.

 Park lot Growth Rate

 Transit trips 2016
 1295286

 Transit trips 2002
 1092489

 Annual growth rate
 0.013259

 Growth factor (2002-2011)
 1.185628

2016 PM AIR QUALITY EMISSIONS INVENTORY

AUTO ACCESS TO TRANSIT

			2002		20:	16	AVERAGE	2016	ADJ	RUNNING	TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE	Total	INSIDE	OUTSIDE	TRIP LENGTH	VMT	WINTER		
	MSA (%)	MSA	MSA	rotai	Growth Rate	Growth Rate			VMT	Rate (gm/mile)	(tons/day)
	` '				1.19	1.19		Wk Davs =	107	0.0113	
COMMUTER RAIL LOTS								Seasonal adi =	0.9873		
BRUNSWICK 25%	25	305	102	407	362	121	7.5	3.619	3,573	40	0.0000
PT OF ROCKS 25%	25	204	68	272	242	81	7.5	2,419	2,388	27	0.000
DICKERSON	0	15		15	18	0	7.5	133	132	1	0.000
BARNESVILLE	0	46	0	46	55			409	404	5	
GERMANTOWN	0	386	0	386	458	0		3.432	3,389	38	0.000
MET GROVE	0	352	0	352	417	0	7.5	3,130	3,090	35	0.000
WAS GROVE	0	15	0	15	18	0	7.5	133	132	1	0.000
GARRETT PARK	0	22	0	22	26	0	7.5	196	193	2	0.000
BOWIE 50%	50	188	188	375	222	222	7.5	3,335	3.292	37	0.000
SEABROOK 15%	15	224	40	264	266	47	7.5	2,348	2,318	26	0.000
KENSINGTON	0	45		45	53	0	7.5	2,346	395	4	0.000
LAUREL 30%	30	209		299	248	106	7.5	2,659	2,625	30	0.000
GAITHESBURG	0	280	90	280	332	0	7.5	2,659	2,025	28	0.000
BERWYN HEIGHTS	0	30		<u>∠80</u> 30	332			2,490 160	2,458 158	28	0.000
										4	
RIVERDALE	0	65	0	65	77	0	4.5	347	342	4	0.000
METRO DAIL LOTO											
METRO RAIL LOTS											
ADDISON ROAD 40%	40	791	527	1318	938	625	7.5	11,720	11,571	131	0.000
ARCHIVES	0	12	0	12	14	0	4.5	64	63	1	0.000
ARLING	0	10		10	12	0	4.5	53	53	1	0.000
BALLSTON	0	1175		1175	1393	0		6,269	6,189	70	0.000
BENN.RD	0	520	0	520	617	0		2,774	2,739	31	0.000
BETH	0	395		395	468	0		2,107	2,081	24	0.0000
BRADD RD	0	10		10	12	0		53	53	1	0.000
BROOKLAND	0	27	0	27	32	0	4.5	144	142	2	0.000
CHEVERLY	0	557	0	557	660	0	4.5	2,972	2,934	33	0.000
CLARENDON	0	554	0	554	657	0	4.5	2,956	2,918	33	0.0000
CLEVELAND PK	0	366	0	366	434	0	4.5	1,953	1,928	22	0.0000
COURT HOUSE	0	256	0	256	304	0	4.5	1,366	1,348	15	0.0000
CRYSTAL CITY	0	347	0	347	411	0	4.5	1,851	1,828	21	0.000
DEANWOOD	0	194	0	194	230	0	4.5	1,035	1,022	12	0.000
DUN LORING 10%	10	1220	136	1355	1446	161	4.5	7,229	7,138	81	0.000
DUPONT CIRCLE	0	165	0	165	196	0	4.5	880	869	10	0.000
EASTERN MKT	0	178	0	178	211	0	4.5	950	938	11	0.000
EAST FALLS CH	0	442	0	442	524	0	4.5	2,358	2,328	26	0.000
EIS	0	352	0	352	417	0	4.5	1,878	1,854	21	0.000
FARRAGUT NORTH	0	102	0	102	121	0		544	537	6	0.000
FARRAGUT WEST	0	221	0	221	262	0		1.179	1.164	13	0.000
FEDERAL CENTER	0	75	0	75	89	0		400	395	4	0.000
FEDERAL TRI	0	54	0	54	64	0		288	284	3	0.000
FOGGY	0	102	0	102	121	0	4.5	544	537	6	0.000
FORT TROTTEN	0	445	0	445	528	0		2.374	2.344	26	0.000
FRH.HEIGHTS	0	679	0	679	805	0	4.5	3.623	3.577	40	0.000
GALLERY PLACE	0	124	0	124	147	0		662	653	7	0.000
	0	716	0	716	849	0	4.5	3,820	3,772	43	
GROSVENOR						ŭ					0.000
HUNT NORTH 40%	40	1873	1249	3122	2221	1481	7.5	27,761	27,409	310	0.000
JUD SQUARE	0	110		110	130	0		587	579	7	0.000
KING ST	0	30	0	30	36	0	4.5	160	158	2	0.000

2016 PM AIR QUALITY EMISSIONS INVENTORY

AUTO ACCESS TO TRANSIT

			2002		20:	16	AVERAGE	2016	ADJ	RUNNING	TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE	+	INSIDE	OUTSIDE	TRIP LENGTH	VMT	WINTER		
	MSA (%)	MSA	MSA	Total	Growth Rate	Growth Rate			VMT	Rate (gm/mile)	(tons/day)
	- \.				1.19	1.19		Wk Days =	107	0.0113	
COMMUTER RAIL LOTS								Seasonal adj =	0.9873		
LANDOVER 25%	25	1410	470	1880	1672	557	7.5	16,717	16,505	187	0.0002
L'ENFANT PLAZA	0	296	0	296	351	0	4.5	1,579	1,559	18	0.0000
MCPHERSON SQ	0	52	0	52	62	0	4.5	277	274	3	0.0000
MEDICAL CENTER	0	14	0	14	17	0	4.5	75	74	1	0.0000
METRO CENTER	0	177	0	177	210	0	4.5	944	932	11	0.0000
MINNES	0	353	0	353	419	0	4.5	1,883	1,859	21	0.0000
NAT AIR	0	87	0	87	103	0	4.5	464	458	5	0.0000
NEW CARROL 50%	50	1049	1049	2097	1243	1243	7.5	18,647	18,410	208	0.0002
PRNTAGON	0	561	0	561	665	0	4.5	2,993	2,955	33	0.0000
PENTAGON CITY	0	381	0	381	452	0	4.5	2,033	2,007	23	0.0000
POTOMAC AVE	0	533	0	533	632	0	4.5	2,844	2,808	32	0.0000
ROCKVILLE	0	667	0	667	791	0	4.5	3,559	3,513	40	0.0000
ROSSLYN	0	356	0	356	422	0	4.5	1,899	1,875	21	0.0000
SHADY GROVE 10%	10	3903	434	4337	4628	514	7.5	38,566	38,076	430	0.0005
SILVER SPRING	0	44	0	44	52	0	4.5	235	232	3	0.0000
SMITH MALL	0	120	0	120	142	0	4.5	640	632	7	0.0000
STADIUM ARM	0	976	0	976	1157	0		5,207	5,141	58	0.0001
TAKOMA PK	0	146	0	146	173	0	4.5	779	769	9	0.0000
TENLEYTON	0	17	0	17	20	0		91	90	1	0.0000
TWINBROOK	0	1136	0	1136	1347	0		6,061	5,984	68	0.0001
UNION STAT	0	378	0	378	448	0	4.5	2,017	1,991	22	0.0000
VAN NESS	0	343	0	343	407	0	4.5	1,830	1,807	20	0.0000
VIENNA 25%	25	2798	933	3731	3318	1106	7.5	33,177	32,756	370	0.0004
VA SQUARE	0	642	0	642	761	0		3,425	3,382	38	0.0000
WEST FALLS CHURCH	0	2183	0	2183	2588	0	4.5	11,647	11,499	130	0.0001
WHITE FLINT	0	1633	0	1633	1936	0	4.5	8,713	8,602	97	0.0001
WOODLEY	0 30	68	0	68	81 315	0	4.5 7.5	363	358	4 38	0.0000
RHODE ISLAND 30%	30	266	114	380	315	135	7.5	3,379	3,336	38	0.0000
DUG & CAD DOOL LOTO											
BUS & CAR POOL LOTS											
CARTER BARRON	0	798	0	700	946	0	4.5	4.258	4.204	47	0.0001
PG PLAZA	0	47	0	798 47	56	0		4,256		3	0.0001
PENN MAR SHOPP.	0	100	0	100	119	0	4.5	534	248 527	6	0.0000
CAP PLAZA	0	100	0	100	119	0		534	527	6	0.0000
EASTOVER	0	100	0	100	119	0	4.5	534	527	6	0.0000
FOUR MILE RUN	0	28	0	28	33	0		149	147	2	0.0000
SPRINGFIELD MALL	0	580	0	580	688	0		3.094	3.055	35	0.0000
SPRINGFIELD METH CH	0	48	0	48	57	0	4.5	256	253	3	0.0000
FRED ARMORY	0	33	0	33	39	0	7.5	293	290	3	0.0000
MYERSVILLE	0	65	0	65	77	0	7.5	578	571	6	0.0000
ROSEMONT	0	45	0	45	53	0	7.5	400	395	4	0.0000
URBANA	0	193	0	193	229	0		1.716	1,694	19	0.0000
JEFFERSON	0	40	0	40	47	0	7.5	356	351	4	0.0000
NORBECK RD	0	248	0	248	294	0		2.205	2.177	25	0.0000
MONTROSE RD	0	650	0	650	771	0	7.5	5,780	5,707	64	0.0001
BRIGG CHENNY 50%	50	215	215	430	255	255	7.5	3,824	3,775	43	0.0000
COMUS ROAD	0	30	0	30	36	233	7.5	267	263	3	0.0000
LAKEFOREST MALL	0	300	0	300	356	0		2,668	2,634	30	0.0000

2016 PM AIR QUALITY EMISSIONS INVENTORY

AUTO ACCESS TO TRANSIT

			2002		20:	16	AVERAGE	2016	ADJ	RUNNING	TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE		INSIDE	OUTSIDE	TRIP LENGTH	VMT	WINTER		
	MSA (%)	MSA	MSA	Total	Growth Rate	Growth Rate	TIMIT ELINOTTI	VIVII	VMT	Rate (gm/mile)	(tons/day
	IVISA (70)	IVISA	IVIOA		1.19	1.19		Wk Days =	107	0.0113	(toris) day
OMMUTER RAIL LOTS					1.19	1.19		Seasonal adj =	0.9873	0.0113	
SOMMOTER RAIL LOTS								Seasonal auj =	0.9073		
BURTONSVILLE	0	500	0	500	593	0	7.5	4,446	4.390	50	0.000
ORCEY MEM.	0		0	200	237	0	7.5	1,778	1,756	20	0.000
TECH ROAD	0		0	155	184	0	7.5	1,378	1,361	15	0.00
BELTWAY	0		0	265	314	0	7.5	2,356	2,327	26	0.00
AUREL VAN DUSEN	0		0	62	74	0	7.5	551	544	6	0.00
ACCOKEEK	0		0	450	534	0	7.5	4.001	3,951	45	0.00
ABC DRIVE IN	0			100	119	0	7.5	889	878	10	0.00
BOWIE 20%	20	526		657	623	156	7.5	5,842	5,768	65	0.00
CLINTON 50%	50	212	212	424	251	251	7.5	3,770	3,722	42	0.00
DXON HILL 20%	20	519	130	649	616	154	7.5	5,771	5,698	64	0.00
QUESTRIAN CENTER 5	50	150	150	300	178	178	7.5	2,668	2,634	30	0.00
BOWIE MARKET PLACE	0			50	59	0	7.5	445	439	5	0.00
T.WASHINGTON	0		0	412	488	0	7.5	3.664	3,617	41	0.00
MONTPELIER REC PARK	0			70	83	0	7.5	622	615	7	0.00
RESTON	0		0	1547	1834	0		13.756	13.582	153	0.00
GREENBRIAR	0		0	55	65	0	7.5	489	483	5	0.00
FAIR OAKS	0			150	178	0	7.5	1,334	1,317	15	0.00
ROLLING VALLEY	0			628	745	0		5,584	5,513	62	0.00
SPRINGFIELD PLAZA	0		0	230	273	0	7.5	2.045	2.019	23	0.00
FAIRLANES BOWL	0			35	41	0	7.5	311	307	3	0.00
NOTTOWAY PARK	0		0	14	17	0	7.5	124	123		0.00
HORNER RD	0		0	2397	2842	0	7.5	21,315	21.044	238	0.00
AKE RIDGE	0		0	555	658	0	7.5	4.935	4.873	55	0.00
MINNIEVILLE RD 40%	40	336	224	560	398	266	7.5	4,980	4,916	56	0.000
GORDON BLVD	0			156	185	200	7.5	1,387	1.370	15	0.000
HILLENDALE	0		0	248	294	0	7.5	2,205	2,177	25	0.000
POTOMAC MILLS	0			946	1122	0	7.5	8,412	8,305	94	0.000
FOTOMAC MILLS	0	340	U	340	1122	U	7.5	0,412	0,505	34	0.000
List of new lots to be add	ed in Conf	ormity Do	cument lis	si							
PARK-AND-RIDE LOTS - MA											
PARK-AND-RIDE LOTS - MA	RYLAND										
CHARLES COUNTY											
301 Park & Ride	25	287	96	383	341	114	7.5	3,406	3,362	38	0.000
Charles County Governme	25	26		35	31	10	7.5	311	307	3	0.00
Food Lion Shopping Cente	25	38	13	50	44	15	7.5	445	439	5	0.00
La Plata Armory	25	15		20	18	6	7.5	178	176	2	0.00
Laurel Springs Regional Pa	25	38		50	44	15	7.5	445	439	5	0.00
ife Wesleyan Church	25	38	13	50	44	15	7.5	445	439	5	0.00
Mattawoman-Beantown Rd	25		145	580	516	172	7.5	5,157	5,092	58	0.00
Smallwood Village	25	75		100	89	30	7.5	889	878	10	0.00
St. Charles Towne	25	263	88	350	311	104	7.5	3,112	3,073	35	0.00
PARK-AND-RIDE LOTS - I	MARYLAN	D									
FREDERICK COUNTY											
rederick (north)	25	123	41	164	146	49	7.5	1,458	1,440	16	0.00
rederick (south)	25	173	58	230	205	68	7.5	2,045	2,019	23	0.00
Monacacy Marcst	25	600	200	800	711	237	7.5	7,114	7,023	79	0.00
PARK-AND-RIDE LOTS - I	MARYLAN	ID									
MONTGOMERY COUNTY											
Colesville	0	190	0	190	225	0	7.5	1,690	1,668	19	0.00
Damascus	50	0	0		0	0	7.5	0	0	0	0.00
Gaithersburg	50	259		517	306	306	7.5	4,597	4,539	51	0.00
Gaithersburg	50	175		350	207	207	7.5	3.112	3,073	35	0.00
Germantown Town	50	0		550	0		7.5	0,112	0,070	0	0.00

2016 PM AIR QUALITY EMISSIONS INVENTORY

AUTO ACCESS TO TRANSIT

			2002		20:	16	AVERAGE	2016	ADJ	RUNNING	TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE		INSIDE	OUTSIDE	TRIP LENGTH	VMT	WINTER	KOMMING	TOTAL
EGOKHON				Total	Growth Rate		TRIP LENGTH	VIVII	VMT	Data (am/mila)	(tons/day)
	MSA (%)	MSA	MSA			Growth Rate		MIL Davis		Rate (gm/mile)	(tons/day)
COMMUTER RAIL LOTS					1.19	1.19		Wk Days =	107	0.0113	
COMMUTER RAIL LOTS								Seasonal adj =	0.9873		
Greencastle	50	75	75	150	89	89	7.5	1.334	1.317	15	0.0000
	50		88		104	104		, , ,		17	0.0000
Milestone Shopping PARK-AND-RIDE LOTS - MA		88	00	175	104	104	7.5	1,556	1,536	17	0.0000
PRINCE GEORGE'S COUNT											
Hampton Mall	0	100	0	100	119	0	4.5	534	527	6	0.0000
Laurel (south)	25	513	171	684	608	203	7.5	6,082	6,005	68	0.0001
PARK-AND-RIDE LOTS - VIF		513	171	004	008	203	7.5	0,082	0,005	00	0.0001
ARLINGTON COUNTY	KUINIA				0	0		0	0	0	0.0000
	25	375	125	500	445	148	7.5	4.446	4,390	50	0.0001
Ballston Public Parking Gai Washington-Lee	50	178	178	356	211	211	7.5	3,166	3,125	35	0.0001
PARK-AND-RIDE LOTS - VIF		170	176	330	211	211	7.5	3,100	3,123	33	0.0000
FAIRFAX COUNTY	KUINIA		-								
	50	50	50	100	59	59	7.5	889	878	10	0.0000
American Legion					20	20				10 3	
Canterbury Woods Pk	50	17	17 185	34			7.5	302	298		0.0000
Centreville	50 50	185 74	185 74	370 147	219 87	219 87	7.5 7.5	3,290	3,248 1,291	37 15	0.0000
Centreville United Methodis								1,307			
Fairfax County Governmen	50	85	85	170	101	101	7.5	1,512	1,492	17	0.0000
Greenbriar Park	50	28	28	55	33	33	7.5	489	483	5	0.0000
Herndon-Monroe	50	873	873	1,745	1034	1034	7.5	15,517	15,320	173	0.0002
Michael's	50	100	100	200	119	119	7.5	1,778	1,756	20	0.0000
Parkwood Baptist	50	9	9	18	11	11	7.5	160	158	2	0.0000
South Run District Pk	50	170	170	340	202	202	7.5	3,023	2,985	34	0.0000
St Paul Chung Catholic Ch	50	50	50	100	59	59	7.5	889	878	10	0.0000
Stringfellow Rd	50	181	181	361	214	214	7.5	3,210	3,169	36	0.0000
Sully Station	50	70	70	140	83	83	7.5	1,245	1,229	14	0.0000
Sydenstricker Rd	50	84	84	167	99	99	7.5	1,485	1,466	17	0.0000
Wakefield Chapel Pk	50	25	25	50	30	30	7.5	445	439	5	0.0000
PARK-AND-RIDE LOTS - VI	RGINIA										
LOUDOUN COUNTY											
Ashburn Farm	50	10	10	20	12	12	7.5	178	176	2	0.0000
Ashburn Village	50	20	20	40	24	24	7.5	356	351	4	0.0000
Cascades	50	28	28	55	33	33	7.5	489	483	5	0.0000
Dulles North Transit	50	375	375	750	445	445	7.5	6,669	6,584	74	0.0001
Hamilton	50	25	25	50	30	30	7.5	445	439	5	0.0000
Innovation Avenue	50	38	38	75	44	44	7.5	667	658	7	0.0000
Leesburg	50	25	25	50	30	30	7.5	445	439	5	0.0000
Leesburg Kohls	50	600	600	1200	711	711	7.5	10,671	10,535	119	0.0001
Purcellville	50	18	18	35	21	21	7.5	311	307	3	0.0000
Sterling Park SC	50	23	23	45	27	27	7.5	400	395	4	0.0000
Sterling Shaw Rd	50	24	24	48	28	28	7.5	427	421	5	0.0000
PARK-AND-RIDE LOTS - VI	RGINIA										
PRINCE WILLIAM COUNTY											
Brittany	50	48	48	95	56	56	7.5	845	834	9	0.0000
Dale City	50	294	294	587	348	348	7.5	5,220	5,153	58	0.0001
Harbor Drive	50	100	100	200	119	119	7.5	1,778	1,756	20	0.0000
Lindendale	50	108	108	216	128	128	7.5	1,921	1,896	21	0.0000
Montclair	50	25	25	50	30	30	7.5	445	439	5	0.0000
PRTC Transit Center	50	93	93	185	110	110	7.5	1,645	1,624	18	0.0000
Tackett's Mill	50	85	85	169	100	100	7.5	1,503	1,484	17	0.0000
Triangle	50	15	15	29	17	17	7.5	258	255	3	0.0000
I-95 / Rt 123	50	282	282	563	334	334	7.5	5,006	4,943	56	0.0001
US 1 / VA 234	50	137	137	274	162	162	7.5	2,436	2,406	27	0.0000
MARC TRAIN COMMUTER	RLOTS				0	0		0			
College Park	25	431	144	574	510	170	7.5	5,104	5,039	57	0.0001

2016 PM AIR QUALITY EMISSIONS INVENTORY

AUTO ACCESS TO TRANSIT

2011 CLRP / FY2012-2017 TIP AIR QUALITY CONFORMITY

			2002		20:	16	AVERAGE	2016	ADJ	RUNNING	TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE	-	INSIDE	OUTSIDE	TRIP LENGTH	VMT	WINTER		
	MSA (%)	MSA	MSA	Total	Growth Rate	Growth Rate			VMT	Rate (gm/mile)	(tons/day
					1.19	1.19		Wk Davs =	107	0.0113	
COMMUTER RAIL LOTS								Seasonal adj =	0.9873		
								,			
Frederick	0	0	0	0	0	0	7.5	0	0	0	0.00
Greenbelt	60	1346	2018	3364	1595	2393	7.5	29,913	29,534	334	0.00
Harpers Ferry		98	0	98	116	0	7.5	871	860	10	0.00
Muirkirk	60	260	390	650	308	462	7.5	5,780	5,707	64	0.00
Seabrook	0	264	0	264	313	0	4.5	1,409	1,391	16	0.00
Silver Spring	0	0	0	0	0	0	4.5	0	0	0	0.00
Union Station	0	781	0	781	926	0	7.5	6,945	6,857	77	0.00
VIRGINIA RAILWAY EXPRE	SS COMMU	TER LOTS	3								
Backlick Road	50	110		220	130	130	7.5	1,956	1,931	22	0.00
Broad Run	50	198	198	396	235	235	7.5	3,521	3,477	39	0.00
Brooke	50	150	150	300	178	178	7.5	2,668	2,634	30	0.00
Burke Center	50	275	275	550	326	326	7.5	4,891	4,829	55	0.00
Franconia/Springfield (oper	50	1900	1900	3800	2253	2253	7.5	33,790	33,361	377	0.00
Leeland Road	50	326	326	652	387	387	7.5	5,798	5,724	65	0.00
Lorton	50	100	100	200	119	119	7.5	1,778	1,756	20	0.00
Manassas	50	187	187	374	222	222	7.5	3,326	3,283	37	0.00
Manassas Park	50	150	150	300	178	178	7.5	2,668	2,634	30	0.00
Quantico	50	109	109	217	129	129	7.5	1,930	1,905	22	0.00
Rippon	50	150	150	300	178	178	7.5	2,668	2,634	30	0.00
Rolling Road	50	185	185	370	219	219	7.5	3,290	3,248	37	0.00
Woodbridge	50	294	294	588	349	349	7.5	5,229	5,162	58	0.00
METRORAIL PARKING LOT	S										
Anacostia	25	861	287	1148	1021	340	7.5	10,208	10,079	114	0.00
Branch Avenue	50	1611	1611	3222	1910	1910	7.5	28,651	28,287	320	0.00
Capitol Heights	50	194	194	387	229	229	7.5	3,441	3,398	38	0.00
College Park	25	465	155	620	551	184	7.5	5,513	5,443	62	0.00
Congress Heights	0	66	0	66	78	0	4.5	352	348	4	0.00
Deanwood	0	194	0	194	230	0	7.5	1,725	1,703	19	0.00
East Falls Church	50	221	221	442	262	262	7.5	3,930	3,880	44	0.00
Forest Glen	50	329	329	658	390	390	7.5	5,851	5,777	65	0.00
Franconia - Springfield	50	1987	1987	3973	2355	2355	4.5	21,197	20,928	236	0.00
Glenmont	50	925	925	1850	1097	1097	4.5	9,870	9,745	110	0.00
Greenbelt	50	1783	1783	3565	2113	2113	7.5	31,701	31,298	354	0.00
Naylor Road	50	216	216	431	256	256	7.5	3,833	3,784	43	0.00
Prince George's Plaza	25	927	309	1236	1099	366	7.5	10,991	10,851	123	0.00
Southern Avenue	50	1090	1090	2180	1292	1292	4.5	11,631	11,483	130	0.00
Suitland	50	1033	1033	2065	1224	1224	4.5	11,017	10,878	123	0.00
Van Dorn Street	50	204	204	407	241	241	4.5	2,171	2,144	24	0.00
West Hyattsville	25	453	151	604	537	179	7.5	5,371	5,303	60	0.00
Wheaton	25	759	253	1012	900	300	7.5		8,885	100	0.00
				108,749				847,732		9.457.7138	0.0

Bold figures: New numbers taken from P & R directory

Figures in bracket: Carry forward figures from conformity doc.

Park lot Growth Rate	
Transit trips 2016	1295286
Transit trips 2002	1092489
Annual growth rate	0.013259
Growth factor (2002-2011)	1.185628

2016 PM AIR QUALITY EMISSIONS INVENTORY

AUTO ACCESS TO TRANSIT

			2002		20:	16	AVERAGE	2016	ADJ	RUNNING	TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE	Total	INSIDE	OUTSIDE	TRIP LENGTH	VMT	WINTER		
	MSA (%)	MSA	MSA	TOtal	Growth Rate	Growth Rate			VMT	Rate (gm/mile)	(tons/day)
					1.19	1.19		Wk Days =	61	0.0113	
COMMUTER RAIL LOTS								Seasonal adj =	0.9282		
BRUNSWICK 25%	25	305	102	407	362	121	7.5	3,619	3,359	38	0.0000
PT OF ROCKS 25%	25	204	68	272	242	81	7.5	2,419	2,245	25	0.0000
DICKERSON	0	15	0	15	18		7.5	133	124	1	0.0000
BARNESVILLE	0	46	0	46	55		7.5	409	380	4	0.0000
GERMANTOWN	0	386	0	386	458	0	7.5	3,432	3,186	36	0.0000
MET GROVE	0	352	0	352	417	0	7.5	3,130	2,905	33	0.0000
WAS GROVE	0	15	0	15	18	0	7.5	133	124	1	0.0000
GARRETT PARK	0	22	0	22	26	0	7.5	196	182	2	0.0000
BOWIE 50%	50	188	188	375	222	222	7.5	3,335	3,095	35	0.0000
SEABROOK 15%	15	224	40	264	266	47	7.5	2,348	2,179	25	0.0000
KENSINGTON	0	45	0	45	53	0	7.5	400	371	4	0.0000
LAUREL 30%	30	209	90	299	248	106	7.5	2,659	2,468	28	0.0000
GAITHESBURG	0	280	0	280	332	0	7.5	2,490	2,311	26	0.0000
BERWYN HEIGHTS	0	30	0	30	36		4.5	160	149	2	0.0000
RIVERDALE	0	65	0	65	77	0	4.5	347	322	4	0.0000
METRO RAIL LOTS											
ADDISON ROAD 40%	40	791	527	1318	938	625	7.5	11,720	10,878	123	0.0001
ARCHIVES	0	12	0	12	14	0	4.5	64	59	1	0.0000
ARLING	0	10	0	10	12	0	4.5	53	50	1	0.0000
BALLSTON	0	1175	0	1175	1393	0	4.5	6,269	5,819	66	0.0001
BENN.RD	0	520	0	520	617	0	4.5	2,774	2,575	29	0.0000
BETH	0	395	0	395	468	0	4.5	2,107	1,956	22	0.0000
BRADD RD	0	10	0	10	12		4.5	53	50	1	0.0000
BROOKLAND	0	27	0	27	32	0	4.5	144	134	2	0.0000
CHEVERLY	0	557	0	557	660	0	4.5	2,972	2,758	31	0.0000
CLARENDON	0	554	0	554	657	0	4.5	2,956	2,744	31	0.0000
CLEVELAND PK	0	366	0	366	434	0	4.5	1,953	1,813	20	0.0000
COURT HOUSE	0	256	0	256	304	0	4.5	1,366	1,268	14	0.0000
CRYSTAL CITY	0	347	0	347	411	0	4.5	1,851	1,718	19	0.0000
DEANWOOD	0	194	0	194	230	0	4.5	1,035	961	11	0.0000
DUN LORING 10%	10	1220	136	1355	1446	161	4.5	7,229	6,710	76	0.0001
DUPONT CIRCLE	0	165	0	165	196		4.5	880	817	9	0.0000
EASTERN MKT	0	178	0	178	211	0	4.5	950	882	10	0.0000
EAST FALLS CH	0	442	0	442	524	0	4.5	2,358	2,189	25	0.0000
EIS	0	352	0	352	417	0	4.5	1,878	1,743	20	0.0000
FARRAGUT NORTH	0	102	0	102	121	0	4.5	544	505	6	0.0000
FARRAGUT WEST	0	221	0	221	262	0	4.5	1,179	1,094	12	0.0000
FEDERAL CENTER	0	75	0	75	89	0	4.5	400	371	4	0.0000
FEDERAL TRI	0	54	0	54	64	0	4.5	288	267	3	0.0000
FOGGY	0	102	0	102	121	0	4.5	544	505	6	0.0000
FORT TROTTEN	0	445	0	445	528	0	4.5	2,374	2,204	25	0.0000
FRH.HEIGHTS	0	679	0	679	805	0	4.5	3,623	3,363	38	0.0000
GALLERY PLACE	0	124	0	124	147	0	4.5	662	614	7	0.0000
GROSVENOR	0	716	0	716	849	0	4.5	3,820	3,546	40	0.0000
HUNT NORTH 40%	40	1873	1249	3122	2221	1481	7.5	27,761	25,768	291	0.0003
JUD SQUARE	0	110	0	110	130	0	4.5	587	545	6	0.0000
KING ST	0	30	0	30	36	0	4.5	160	149	2	0.0000

2016 PM AIR QUALITY EMISSIONS INVENTORY

AUTO ACCESS TO TRANSIT

			2002		20:	16	AVERAGE	2016	ADJ	RUNNING	TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE	T	INSIDE	OUTSIDE	TRIP LENGTH	VMT	WINTER		
	MSA (%)	MSA	MSA	Total	Growth Rate	Growth Rate			VMT	Rate (gm/mile)	(tons/day)
					1.19	1.19		Wk Days =	61	0.0113	
COMMUTER RAIL LOTS								Seasonal adj =	0.9282		
								,			
LANDOVER 25%	25	1410	470	1880	1672	557	7.5	16.717	15.517	175	0.000
L'ENFANT PLAZA	0	296	0	296	351	0	4.5	1,579	1,466	17	0.000
MCPHERSON SQ	0	52	0	52	62	0	4.5	277	258	3	0.000
MEDICAL CENTER	0	14	0	14	17	0	4.5	75	69	1	0.000
METRO CENTER	0	177	0	177	210	0	4.5	944	877	10	0.000
MINNES	0	353	0	353	419	0	4.5	1.883	1.748	20	0.000
NAT AIR	0	87	0	87	103	0	4.5	464	431	5	0.000
NEW CARROL 50%	50	1049	1049	2097	1243	1243	7.5	18,647	17,308	196	0.000
PRNTAGON	0	561	0	561	665	0	4.5	2,993	2,778	31	0.000
PENTAGON CITY	0	381	0	381	452	0	4.5	2,033	1,887	21	0.000
POTOMAC AVE	0	533	0	533	632	0	4.5	2,844	2,640	30	0.000
ROCKVILLE	0	667	0	667	791	0	4.5	3,559	3,303	37	0.000
ROSSLYN	0	356	0	356	422	0	4.5	1,899	1,763	20	0.000
SHADY GROVE 10%	10	3903	434	4337	4628	514	7.5	38,566	35,797	405	0.000
SILVER SPRING	0	44	0	44	52	0	4.5	235	218	2	0.000
SMITH MALL	0	120	0	120	142	0	4.5	640	594	7	0.000
STADIUM ARM	0	976	0	976	1157	0	4.5	5,207	4,833	55	0.000
TAKOMA PK	0	146	0	146	173	0	4.5	779	723	8	0.000
TENLEYTON	0	17	0	17	20	0	4.5	91	84	1	0.000
TWINBROOK	0	1136	0	1136	1347	0	4.5	6,061	5,626	64	0.000
UNION STAT	0	378	0	378	448	0	4.5	2,017	1,872	21	0.000
VAN NESS	0	343	0	343	407	0	4.5	1,830	1,699	19	0.000
VIENNA 25%	25	2798	933	3731	3318	1106	7.5	33,177	30,795	348	0.000
VA SQUARE	0	642	0	642	761	0	4.5	3,425	3,179	36	0.000
WEST FALLS CHURCH	0	2183	0	2183	2588	0	4.5	11,647	10,811	122	0.000
WHITE FLINT	0	1633	0	1633	1936	0	4.5	8,713	8,087	91	0.000
WOODLEY	0	68	0	68	81	0	4.5	363	337	4	0.000
RHODE ISLAND 30%	30	266	114	380	315	135	7.5	3,379	3,136	35	0.000
BUS & CAR POOL LOTS											
CARTER BARRON	0	798	0	798	946	0	4.5	4,258	3,952	45	0.000
PG PLAZA	0	47	0	47	56	0	4.5	251	233	3	0.000
PENN MAR SHOPP.	0	100	0	100	119		4.5	534	495	6	0.000
CAP PLAZA	0	100	0	100	119		4.5	534	495	6	0.000
EASTOVER	0	100	0	100	119		4.5	534	495	6	0.000
FOUR MILE RUN	0	28	0	28	33		4.5	149	139	2	0.000
SPRINGFIELD MALL	0	580	0	580	688		4.5	3,094	2,872	32	0.000
SPRINGFIELD METH CH	0	48	0		57		4.5	256	238	3	0.000
FRED ARMORY	0	33	0		39		7.5	293	272	3	0.000
MYERSVILLE	0	65	0	65	77	0	7.5	578	536	6	0.000
ROSEMONT	0	45	0		53	0	7.5	400	371	4	0.000
URBANA	0	193	0	193	229		7.5	1,716	1,593	18	0.000
JEFFERSON NORDEGIC DD	0	40	0	40	47	0	7.5	356	330	4	0.000
NORBECK RD	0	248	0	248	294	0	7.5	2,205	2,047	23	0.000
MONTROSE RD	0	650	0		771	0	7.5	5,780	5,365	61	0.000
BRIGG CHENNY 50%	50	215	215	430	255		7.5	3,824	3,549	40	0.000
COMUS ROAD	0	30	0	30	36		7.5	267	248	3	0.000
LAKEFOREST MALL	0	300	0	300	356	0	7.5	2,668	2,476	28	0.000

2016 PM AIR QUALITY EMISSIONS INVENTORY

AUTO ACCESS TO TRANSIT

			2002		201	.6	AVERAGE	2016	ADJ	RUNNING	TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE		INSIDE	OUTSIDE	TRIP LENGTH	VMT	WINTER		
200/111011	MSA (%)	MSA	MSA	Total	Growth Rate	Growth Rate	22.10	*****	VMT	Rate (gm/mile)	(tons/day)
	IVISA (70)	IVISA	IVISA		1.19	1.19		Wk Days =	61	0.0113	(101.5) 44)
COMMUTER RAIL LOTS					1.19	1.19		Seasonal adj =	0.9282	0.0113	
COMMOTER RAIL LOTS								Seasonal auj -	0.9202		
BURTONSVILLE	0	500	0	500	593	0	7.5	4.446	4,127	47	0.0001
	0	200	0	200	237	0	7.5		1.651	19	0.0001
FORCEY MEM.			0			0		1,778	1,031	19	
TECH ROAD	0	155		155	184		7.5	1,378			0.0000
BELTWAY	0	265	0	265	314	0	7.5	2,356	2,187	25	0.0000
LAUREL VAN DUSEN	0	62	0	62	74		7.5	551	512	6	0.0000
ACCOKEEK	0	450	0	450	534	0	7.5	4,001	3,714	42	0.0000
ABC DRIVE IN	0	100	0	100	119	0	7.5	889	825	9	0.0000
BOWIE 20%	20	526	131	657	623	156	7.5	5,842	5,423	61	0.0001
CLINTON 50%	50	212	212	424	251	251	7.5	3,770	3,500	40	0.0000
OXON HILL 20%	20	519	130	649	616	154	7.5	5,771	5,357	61	0.0001
EQUESTRIAN CENTER 50%	50	150	150	300	178	178	7.5	2,668	2,476	28	0.0000
BOWIE MARKET PLACE	0	50	0	50	59	0	7.5	445	413	5	0.0000
FT.WASHINGTON	0	412	0	412	488	0	7.5	3,664	3,401	38	0.0000
MONTPELIER REC PARK	0	70	0	70	83	0	7.5	622	578	7	0.0000
RESTON	0	1547	0	1547	1834	0	7.5	13,756	12,769	144	0.0002
GREENBRIAR	0	55	0	55	65	0	7.5	489	454	5	0.0000
FAIR OAKS	0	150	0	150	178	0	7.5	1,334	1,238	14	0.0000
ROLLING VALLEY	0	628	0	628	745	0	7.5	5,584	5,183	59	0.0001
SPRINGFIELD PLAZA	0	230	0	230	273	0	7.5	2,045	1,898	21	0.0000
FAIRLANES BOWL	0	35	0	35	41	0	7.5	311	289	3	0.0000
NOTTOWAY PARK	0	14	0	14	17	0	7.5	124	116	1	0.0000
HORNER RD	0	2397	0	2397	2842	0	7.5	21,315	19,784	224	0.0002
LAKE RIDGE	0	555	0	555	658	0	7.5	4,935	4,581	52	0.0001
MINNIEVILLE RD 40%	40	336	224	560	398	266	7.5	4,980	4,622	52	0.0001
GORDON BLVD	0	156	0	156	185	0	7.5	1,387	1,288	15	0.0000
HILLENDALE	0	248	0	248	294	0	7.5	2,205	2,047	23	0.0000
POTOMAC MILLS	0	946	0	946	1122	0	7.5	8,412	7,808	88	0.0001
List of new lots to be added	in Conforn	nity Docu	ment list								
PARK-AND-RIDE LOTS - MA	RYLAND										
PARK-AND-RIDE LOTS - MA	RYLAND										
CHARLES COUNTY											
301 Park & Ride	25	287	96	383	341	114	7.5	3,406	3,161	36	0.0000
Charles County Government B	25	26	9	35	31	10	7.5	311	289	3	0.0000
Food Lion Shopping Center	25	38	13	50	44	15	7.5	445	413	5	0.0000
La Plata Armory	25	15	5	20	18	6	7.5	178	165	2	0.0000
Laurel Springs Regional Park	25	38	13	50	44	15	7.5	445	413	5	0.0000
Life Wesleyan Church	25	38	13	50	44	15	7.5	445	413	5	0.0000
Mattawoman-Beantown Rd	25	435	145	580	516	172	7.5	5,157	4,787	54	0.0001
Smallwood Village	25	75	25	100	89	30	7.5	889	825	9	0.0000
St. Charles Towne	25	263	88	350	311	104	7.5	3,112	2,889	33	0.0000
PARK-AND-RIDE LOTS - MA	RYLAND							,	,		
FREDERICK COUNTY											
Frederick (north)	25	123	41	164	146	49	7.5	1,458	1,354	15	0.0000
Frederick (south)	25	173	58	230	205	68	7.5	2,045	1,898	21	0.0000
Monacacy Marcst	25	600	200	800	711	237	7.5	7,114	6,603	75	0.0001
PARK-AND-RIDE LOTS - MA		000	200	000	, 111	231	7.5	7,114	0,000	73	0.0001
MONTGOMERY COUNTY											
Colesville	0	190	0	190	225	0	7.5	1.690	1.568	18	0.0000
Damascus	50	190	0	190	0	0	7.5	1,690	1,306	0	0.0000
	50	259	259	517	306	306	7.5	4,597	4,267	48	0.0000
Gaithersburg	50	259 175	259 175	350	207	207	7.5	4,597 3.112	2,889	33	0.0001
Gaithersburg	50 50	1/5	1/5	350	0	0	7.5		2,889	0	
Germantown Town	50	0	0		0	0	7.5	0	0	0	0.0000

2016 PM AIR QUALITY EMISSIONS INVENTORY

AUTO ACCESS TO TRANSIT

			2002		201	16	AVERAGE	2016	ADJ	RUNNING	TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE	Ŧ	INSIDE	OUTSIDE	TRIP LENGTH	VMT	WINTER		
	MSA (%)	MSA	MSA	Total	Growth Rate	Growth Rate			VMT	Rate (gm/mile)	(tons/day)
					1.19	1.19		Wk Days =	61	0.0113	
COMMUTER RAIL LOTS								Seasonal adj =	0.9282		
								,			
Greencastle	50	75	75	150	89	89	7.5	1,334	1,238	14	0.0000
Milestone Shopping	50	88	88	175	104	104	7.5	1,556	1,444	16	0.0000
PARK-AND-RIDE LOTS - MA	YLAND							,	,		
PRINCE GEORGE'S COUNT	′										
Hampton Mall	0	100	0	100	119	0	4.5	534	495	6	0.0000
Laurel (south)	25	513	171	684	608	203	7.5	6.082	5.646	64	0.0001
PARK-AND-RIDE LOTS - VIR		0.0			0	0	, .0	0,002	0,0.0	0	0.0000
ARLINGTON COUNTY					0	0		0	0	0	0.0000
Ballston Public Parking Garage	25	375	125	500	445	148	7.5	4,446	4,127	47	0.0001
Washington-Lee	50	178	178	356	211	211	7.5	3,166	2,938	33	0.0000
PARK-AND-RIDE LOTS - VIR		170	170	550	211	411	7.5	5,100	2,330	33	0.0000
FAIRFAX COUNTY	- IIII										
American Legion	50	50	50	100	59	59	7.5	889	825	9	0.0000
Canterbury Woods Pk	50	17	17	34	20	20	7.5	302	281	3	0.0000
Centreville	50	185	185	370	219	219	7.5	3.290	3.054	35	0.0000
Centreville United Methodist C	50	74	74	147	87	219 87	7.5	3,290 1,307	1,213	35 14	0.0000
	50	85	74 85	170	101	101			1,403	16	0.0000
Fairfax County Government Co Greenbriar Park	50	28	28	55	33	33	7.5 7.5	1,512 489	1,403 454	5	0.0000
Herndon-Monroe	50	873	873	1.745	1034	1034	7.5	15.517	14.403	163	0.0000
	50	100	100	200	119	119			1,651		
Michael's		9	9				7.5	1,778		19	0.0000
Parkwood Baptist	50	170	170	18 340	11 202	11 202	7.5 7.5	160	149	2	0.0000
South Run District Pk	50			100		202 59	7.5	3,023	2,806 825	32	0.0000
St Paul Chung Catholic Church	50 50	50 181	50 181	361	59 214	214	7.5	889 3,210	2,980	9 34	0.0000
Stringfellow Rd	50		70							13	
Sully Station		70 84		140	83 99	83 99	7.5	1,245	1,156	13	0.0000
Sydenstricker Rd	50 50	25	84 25	167		30	7.5 7.5	1,485	1,378		0.0000
Wakefield Chapel Pk PARK-AND-RIDE LOTS - VIR		25	25	50	30	30	7.5	445	413	5	0.0000
LOUDOUN COUNTY	GINIA										
	50	40	40		40	40	7.5	470	405	0	0.0000
Ashburn Farm	50	10	10	20	12	12	7.5	178	165	2	0.0000
Ashburn Village	50	20	20	40	24	24	7.5	356	330	4	0.0000
Cascades	50	28	28	55	33	33	7.5	489	454	5	0.0000
Dulles North Transit	50	375	375	750	445	445	7.5	6,669	6,190	70	0.0001
Hamilton	50	25	25	50	30	30	7.5	445	413	5	0.0000
Innovation Avenue	50	38	38	75	44	44	7.5	667	619	7	0.0000
Leesburg	50	25	25	50	30	30	7.5	445	413	5	0.0000
Leesburg Kohls	50	600	600	1200	711	711	7.5	10,671	9,905	112	0.0001
Purcellville	50	18	18	35	21	21	7.5	311	289	3	0.0000
Sterling Park SC	50	23	23	45	27	27	7.5	400	371	4	0.0000
Sterling Shaw Rd	50	24	24	48	28	28	7.5	427	396	4	0.0000
PARK-AND-RIDE LOTS - VIR	GINIA										
PRINCE WILLIAM COUNTY											
Brittany	50	48	48	95	56	56	7.5	845	784	9	0.0000
Dale City	50	294	294	587	348	348	7.5	5,220	4,845	55	0.0001
Harbor Drive	50	100	100	200	119	119	7.5	1,778	1,651	19	0.0000
Lindendale	50	108	108	216	128	128	7.5	1,921	1,783	20	0.0000
Montclair	50	25	25	50	30	30	7.5	445	413	5	0.0000
PRTC Transit Center	50	93	93	185	110	110	7.5	1,645	1,527	17	0.0000
Tackett's Mill	50	85	85	169	100	100	7.5	1,503	1,395	16	0.0000
Triangle	50	15	15	29	17	17	7.5	258	239	3	0.0000
I-95 / Rt 123	50	282	282	563	334	334	7.5	5,006	4,647	53	0.0001
US 1 / VA 234	50	137	137	274	162	162	7.5	2,436	2,262	26	0.0000
MARC TRAIN COMMUTER L					0	0		0			
College Park	25	431	144	574	510	170	7.5	5,104	4,738	54	0.0001

2016 PM AIR QUALITY EMISSIONS INVENTORY

AUTO ACCESS TO TRANSIT

2011 CLRP / FY2012-2017 TIP AIR QUALITY CONFORMITY

			2002		20:	16	AVERAGE	2016	ADJ	RUNNING	TOTAL
LOCATION	OUTSIDE	INSIDE	OUTSIDE		INSIDE	OUTSIDE	TRIP LENGTH	VMT	WINTER		
	MSA (%)	MSA	MSA	Total	Growth Rate	Growth Rate			VMT	Rate (gm/mile)	(tons/da
					1.19	1.19		Wk Davs =	61	0.0113	
COMMUTER RAIL LOTS								Seasonal adj =	0.9282		
								,			
Frederick	0	0	0	0	0	0	7.5	0	0	0	0.00
Greenbelt	60	1346	2018	3364	1595	2393	7.5	29,913	27,766	314	0.00
Harpers Ferry		98	0	98	116	0	7.5	871	809	9	0.00
Muirkirk	60	260	390	650	308	462	7.5	5,780	5,365	61	0.00
Seabrook	0	264	0	264	313	0	4.5	1,409	1,307	15	0.00
Silver Spring	0	0	0	0	0	0	4.5	0	0	0	0.00
Jnion Station	0	781	0	781	926	0	7.5	6,945	6,446	73	0.00
VIRGINIA RAILWAY EXPRES	S COMMU	JTER LOT	S								
Backlick Road	50	110	110	220	130	130	7.5	1,956	1,816	21	0.00
Broad Run	50	198	198	396	235		7.5	3,521	3,268	37	0.00
Brooke	50	150	150	300	178	178	7.5	2,668	2,476	28	0.00
Burke Center	50	275	275	550	326	326	7.5	4.891	4.540	51	0.00
Franconia/Springfield (operate	50	1900	1900	3800	2253	2253	7.5	33,790	31,364	354	0.00
Leeland Road	50	326	326	652	387	387	7.5	5,798	5,381	61	0.00
_orton	50	100	100	200	119	119	7.5	1,778	1,651	19	0.00
Manassas	50	187	187	374	222	222	7.5	3,326	3,087	35	0.00
Manassas Park	50	150	150	300	178	178	7.5	2,668	2,476	28	0.00
Quantico	50	109	109	217	129	129	7.5	1,930	1,791	20	0.00
Rippon	50	150	150	300	178	178	7.5	2,668	2.476	28	0.00
Rolling Road	50	185	185	370	219	219	7.5	3,290	3.054	35	0.00
Woodbridge	50	294	294	588	349	349	7.5	5,229	4.853	55	0.00
METRORAIL PARKING LOTS	3										
Anacostia	25	861	287	1148	1021	340	7.5	10.208	9.475	107	0.00
Branch Avenue	50	1611	1611	3222	1910	1910	7.5	28,651	26,594	301	0.00
Capitol Heights	50	194	194	387	229	229	7.5	3,441	3,194	36	0.00
College Park	25	465	155	620	551	184	7.5	5.513	5,117	58	0.00
Congress Heights	0	66	0	66	78	0	4.5	352	327	4	0.00
Deanwood	0	194	0	194	230	0	7.5	1.725	1.601	18	0.00
East Falls Church	50	221	221	442	262	262	7.5	3,930	3,648	41	0.00
Forest Glen	50	329	329	658	390	390	7.5	5,851	5,431	61	0.00
Franconia - Springfield	50	1987	1987	3973	2355		4.5	21,197	19,675	222	0.00
Glenmont	50	925	925	1850	1097	1097	4.5	9,870	9,162	104	0.00
Greenbelt	50	1783	1783	3565	2113		7.5	31,701	29,425	332	0.00
Naylor Road	50	216	216	431	256		7.5	3,833	3,557	40	0.00
Prince George's Plaza	25	927	309	1236	1099		7.5	10,991	10,202	115	0.00
Southern Avenue	50	1090	1090	2180	1292	1292	4.5	11,631	10,796	122	0.00
Suitland	50	1033	1033	2065	1224	1224	4.5	11,017	10,226	116	0.00
Van Dorn Street	50	204	204	407	241	241	4.5	2.171	2.016	23	0.00
West Hyattsville	25	453	151	604	537	179	7.5	5.371	4.985	56	0.00
Wheaton	25	759	253	1012	900		7.5	8,999	8.353	94	0.00
		. 50		108,749		. 500		847,732	-,,,,,,	8.891.5730	0.00

Bold figures: New numbers taken from P & R directory Figures in bracket: Carry forward figures from conformity doc.

Park lot Growth Rate

Transit trips 2016 1295286
Transit trips 2002 1092489
Annual growth rate 0.013259
Growth factor (2002-2011) 1.185628

APPENDIX H

Bus Emissions Estimation

MEMORANDUM

October 11, 2011

To: Files

From: Anant Choudhary, MWCOG/DTP

Subject: Transit and School Bus Emissions

This memo discusses the collection of information from regional transit providers and the development of ozone season NOx and VOC, winter CO, and $PM_{2.5}$ precursor NOx and direct $PM_{2.5}$ emissions estimates for transit and school buses for various analysis years.

Approach

Data Collection

In order to obtain current regional transit data, staff developed a questionnaire for transit providers and school bus operators in the region. The technique of emailing and then conducting follow-up phone calls produced a high response rate. Staff used response data to complete a table showing daily VMT with average operating speed (Table 1).

Fleet Age Distribution

Using 2008 VIN data, staff developed regional school bus and transit bus age distributions (shown in Tables 2A and 2B respectively) and diesel sales fractions which were used in the Mobile6.2 model to develop emissions rates. A detailed description of this process can be found in a June 9, 2009 memo from Daivamani Sivasailam in the VIN Decoder Project Files. Emissions for buses that are not diesel (e.g. CNG buses) are accounted for using TERM analysis.

VMT Estimates

The annual VMT from the survey was divided by the number of service days for each provider to calculate a daily VMT. To account for bus VMT for providers in the region for which no survey data was received, staff estimated VMT by using data from providers with similar service type. In many cases where VMT data was not provided, total number of buses was provided, making the estimate process more accurate. In Table 1 estimated VMT values are shown in italics. Daily school bus VMT represents a school day in May.

The resulting daily 2001 VMT from the survey, including estimation values from providers for which no data was received is 277,000 for transit buses (compared to 180,000 in the FY03-08 TIP), and 480,000 for school buses (Table 5A).

For estimating bus VMT for the future, staff used the HDBS (school bus) and HDBT (transit bus) values in the "National Average Vehicle Miles Traveled Fractions by Vehicle Class" table from EPA's *Technical Guidance on the use of Mobile 6 for Emission Inventory Preparation* to modify current data. This is shown as Table 3.

Emission Estimates

Using the survey data staff created transit bus and school bus emission tables. In the tables the daily VMT was adjusted from the base (survey) year (2001) using the method described above. Factors for PM_{2.5} pollutants were prepared for each of 3 seasons (Season 1:January-April, Season 2: May-September, Season 3: October-December) Using the appropriate emission factor based on the average operating speed for each provider, staff calculated each pollutant's emissions for

transit buses and school buses for each analysis year. Table 4 shows a one-year sample of busemission factors. Tables 5A-5D show a one-year sample of transit and school bus emissions for each of the pollutants analyzed.	
I:\11conf\report\Appendices\Appendix H\C11 bus emiss documentation_apph.doc	

TABLE 1 2001 Bus **Operating Statistics**

	Contact	Average	Daily
Service	Name	Speed	VMT
Metrobus	Lora Byala	10	123,299
Fairfax Connector	Andy Szakos	15	18,036
PRTC Omnilink	Tim Roseboom	15	4038
Alexandria DASH	Cindy Modell	13	3,454
City of Fairfax CUE	Alex Verzosa	15	1,483
Arlington Co. ART	Jim Maslanka	16	794
Loudoun Transportation Assc.	Mark McGregor	15	4,532
Mont. Co. Ride-On	Phil McLaughlin	14.5	35,616
PG Co. The Bus	Frank Bell	15-20	9,723
Fredrick Co. TransiT	Sherry Burford	11.78	3,082
Corridor Transit (CTC)	Joe Gann	17.8	1,265
Crystal City Express		15	96
Skyline Crystal Express		15	144
PRTC OmniRide	Tim Roseboom	26.62	5,700
Loudoun Commuter Service	Sharon Affinito	25	1,866
MTA Commuter buses	Larry Dougherty	45	10,453
Lee Coaches	Joe Ann Foweler	45	70
Brooks Transit		45	750
Quicks Commuter Service	Robbie Quick	45	1,320
Eyre buses (under MTA)	Teri Lee Cosker	45	(under MTA)
Dillon buses (under MTA)	Ron Dillon Sr.	45	(under MTA)
Keller buses (under MTA)	Charles D. Keller	45	(under MTA)
National Coach Works	Jeff Bodnar	45	1,650
Greyhound / Trailways (VA)	David Cohen	55	5000
Peter Pan / Trailways	Christ Crean	55	2000
Carolina Trailways		55	500
Capitol Trailways	Ms.Gale Ellsworth	55	500
Martz / Grey Line sightseeing	Robert Lynch	55-68	5000
New World	Arnold Brown	20	299
Washington Flyer Coach Service	Nicholas Marshall	65	1,370
ShuttleUM (U. of MD)	Cynthia Trombly	11.1	1,864

TABLE 1 2001 Bus Operating Statistics

	Contact	Average	Daily
Service	Name	Speed	VMT
Georgetown U. shuttle	Diann Nock Smith	15	100
American U. shuttle	Thomas Leathers	20-25	83
George Washington U shuttle	John Kane	15	100
CIA Shuttle		15	200
EPA Shuttle		15	200
USDOT Shuttle	Franklin Weaver	15	200
Gallaudet Shuttle	Darnese Nicholson	15	100
Tourmobile	Richard Lewis	15	(Gas powered)
Old Town "trolley" buses		20	300
Metro Access - paratransit	Avon Mackel	15	5000
Fairfax Co. Fastran- paratransit	Steve Yaffe	14.53	11,427
Alexandria DOT-paratransit	Lakeshia Lewis	15	924
Arlington STAR-paratransit	Eric Smith	15	3,245
City of Ffx, City Wheels- paratransit.	Alex Verzosa	15	100
City of Falls Ch. Fare Wheels- paratransit	Letha Flippin	15	100
Loudoun Transit (LCTA)- paratransit	Mark McGregor	15	100
P.G. Co. paratransit	Frank Bell	15	3000
All buses excluding school			277,361
School buses - DC	Alfred Winder	14	10000
School buses- Mont. Co.	Qiyu C. Wu	30	27,000
School buses- P.G. Co.	Mark Dreszer	30	28,896
School buses- Fred. Co.	Richard Wandres	30	10,747
School buses- Alexandria	Velma Tsongos	25	3520
School buses- Arl. Co.	Daniel Roseboro	25	4800
School buses- Ffx. Co.	Tim Parker	30-35	24,112
School buses- Loud. Co.	J Michael Lunsfurg	30	11,906
School buses- P.W. Co.	Eward Bishop	30	8,144

Total for School Buses

129,126

Table 2A
2008 Regional Age Fractions
Vehicle Type=HDBS
Number of Decoded Vins=6484

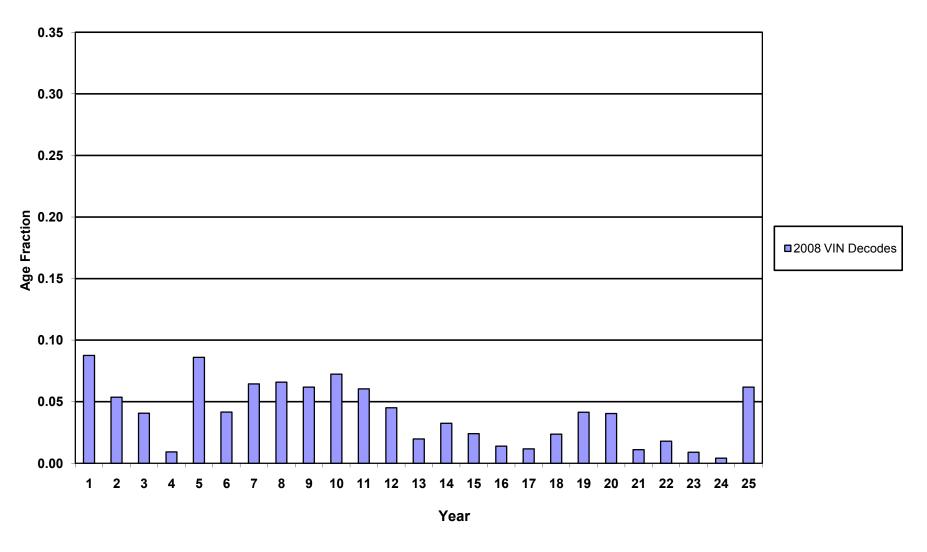


Table 2B 2008 Regional Age Fractions Vehicle Type=HDBT Number of Decoded Vins=6148

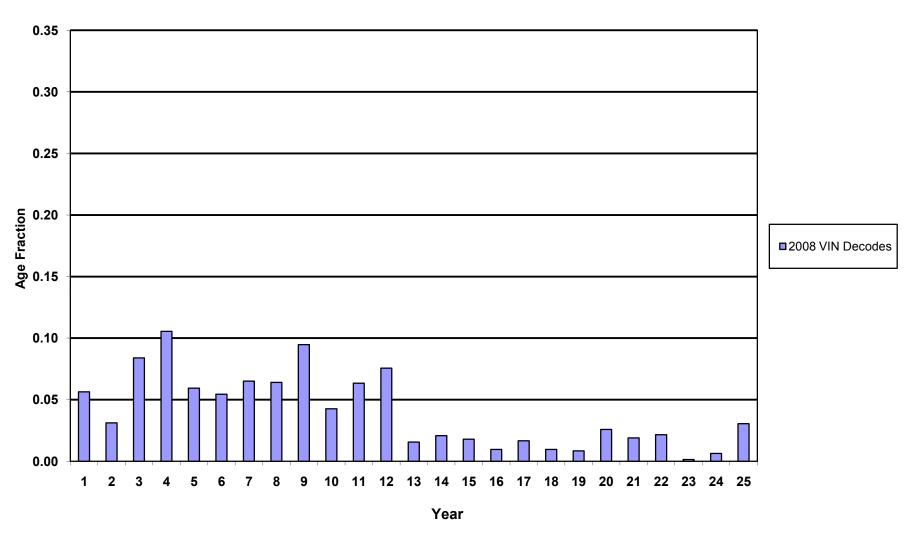


TABLE 3

National Average Vehicle Miles Traveled Fractions By Vehicle Class
Using MOBILE 6

Calend	iar LDV	LDT1	LDT2	LDT3	LDT4	HDV2B	HDV3	HDV4	HDV5	HDV6	HDV7	HDV8A	HDV8B	HOBS	HDBT	MC
Year		2	3	4	5	6	7	8	9	10	11	12	13	14	15	18
1990	0.6284	0.0420	0.1397	0.0568	0.0280	0.0332	0.0034	0.0020	0.0016	0.0084	0.0079	0.0094	0.0337	0.0017	0.0008	0.0073
1991	0.6212	0.0435	0.1448	0.0560	0.0257	0.0338	0.0035	0.0021	0.0017	0.0068	0.0081	0.0095	0.0341	0.0017	0.0008	0.0072
,1992	0.6109	0.0456	0.1518	0.0555	0.0255	0.0342	0.0036	0.0022	0.0017	0.0088	0.0083	0.0097	0.0346	0.0017	0.0008	0.0071
1993	0.6009	0.0477	0.1597	0.0551	0.0253	0.0348	0.0036	0.0023	0.0018	0.0070	0.0085	0.0098	0.0350	0.0017	0.0008	0.0070
1994	0.5910	0.0497	0.1655	0.0546	0.0251	0.0354	0.0037	0.0024	0.0018	0.0072	0.0087	0.0100	0.0355	0.0018	0.0008	0.0070
1995	0,5815	0.0517	0.1721	0.0542	0.0249	0.0358	0.0037	0.0025	0.0019	0.0073	0.0089	0.0101	0.0380	0.0018	0.0008	0.0069
1998	0.5721	0.0534	0.1776	0.0547	0.0252	0.0382	0.0037	0.0025	0.0019	0.0075	0.0090	0.0102	0.0364	0.0018	0.0009	0.0068
1997	0.5569	0.0557	0.1883	0.0571	0.0263	0.0387	0.0037	0.0026	0.0020	0.0077	0.0092	0.0104	0.0370	0.0018	0.0009	0.0087
1998	0.5360	0.0590	0.1983	0.0805	0.0278	0.0372	0.0038	0.0027	0.0021	0.0079	0.0095	0.0106	0.0376	0.0019	0.0009	0.0065
1999	0.5153	0.0822	0.2071	0.0838	0.0294	0.0377	0.0038	0.0028	0.0021	0.0081	0.0097	0.0107	0.0382	. 0,0019	0.0009	0.0054
2000	0.4953	0.0855	0,2179	0.0872	0,0309	0.0380	0.0038	0.0029	0.0022	0.0082	0,0098	0.0108	0.0388	0.0019	0,0009	0.0082
2001	0.4785	0.0883	0.2273	0.0700	0.0322	0.0381	0.0038	0.0029	0.0022	0.0083	0.0099	0.0109	0.0388	0.0019	0.0008	0.0061
2002	0.4846	0.0706	0.2349	0.0724	0.0333	0.0382	0.0038	0.0030	0.0022	0.0084	0.0100	0.0109	0.0390	0.0019	0.0009	0.0080
2003	0.4507	0.0729	0.2425	0.0748	0.0344	0.0384	0.0038	0.0030	0.0023	0.0085	0.0100	0.0110	0.0392	0.0019	0.0009	0.0059
2004	0.4385	0.0752	0.2503	0.0771	0.0355	0.0386	0.0038	0.0030	0.0023	0.0085	0.0101	0.0111	0.0394	0.0019	0.0009	0.0058
2005	0.4231	0.0774	0.2577	0,0794	0,0365	0.0387	0.0038	0.0031	0.0023	0.0086	0.0102	0.0111	0.0395	0.0020	0.0009	0.0057
2008	0.4098	0.0797	0.2654	0.0818	0.0376	0.0387	0.0038	0.0031	0.0023	0.0088	0.0102	0.0111	0.0396	0.0020	0.0009	0.0058
2007	0.3952	0.0822	0.2735	0.0843	0.0388	0.0387	0.0038	0.0031	0.0023	8800.0	0.0102	0.0111	0.0386	0.0020	0.0008	0.0058
2008	0.3807	0.0848	0.2817	0.0868	0.0399	0.0388	0.0038	0.0031	0.0024	0.0087	0.0102	0.0111	0.0397	0.0020	0.0009	0.0056
2009	0.3669	0.0889	0.2894	0.0892	0.0410	0.0389	0.0038	0.0032	0.0024	0.0087	0.0103	0.0112	0.0398	0.0020	0.0010	0.0054
2010	0.3544	0.0891	0.2965	0.0914	0.0420	0.0390	0.0038	0.0032	0.0024	0.0087	0,0103	0.0112	0.0399	0.0020	0,0010	0.0054
2011	0.3428	0.0911	0.3031	0.0934	0.0430	0.0390	0.0038	0.0032	0.0024	0.0087	0.0103	0.0112	0.0398	0.0020	0.0010	0.0053
2012	0.3325	0.0928	0.3090	0.0982	0.0438	0.0390	0.0038	0.0032	0.0024	0.0087	0.0103	0.0112	0.0389	0.0020	0.0010	0.0053
2013	0.3231	0.0944	0.3143	0.0969	0.0445	0.0390	0.0038	0.0032	0.0024	0.0087	0.0103	0.0112	0.0399	0.0020	0.0010	0.0053
2014	0.3145	0.0959	0.3191	0.0983	0.0452	0.0391	0.0038	0.0032	0.0024	.0.0088	0.0103	0.0112	0.0400	0.0020	0.0010	0.0052
2015	0.3071	0.0971	0.3233	0.0996	0.0458	0.0391	0.0039	0.0032	0.0024	0.0088	0.0104	0.0112	0.0400	0.0020	0.0010	0.0052
2018	0.3004	0.0982	0.3270	0.1008	0.0483	0.0392	0.0039	0.0033	0.0024	8800.0	0.0104	0.0112	0.0400	0.0020	0.0010	0.0082
2017	0.2944	0.0992	0.3304	0.1018	0.048B	0,0392	0.0039	0.0033	0.0024	8800.0	0.0104	0.0113	0.0401	0.0020	0.0010	0.0051
2018	0.2892	0.1001	0.3332	0.1027	0.0472	0.0393	0.0039	0.0033	0.0024	0.0088	0.0104	0.0113	0.0402	0.0020	0.0010	0.0051
2019	0.2846	0.1008	0.3357	0.1035	0.0476	0.0394	0.0039	0.0033	D.0025	D.0088	0.0104	0.0113	0.0403	0.0020	0.0010	0.0051
2020 -	0.2793	0.1017	0.3384	0.1043	0.0480	0.0398	0.0039	0.0033	0.0025	0.0089	0.0105	0.0114	0.0405	0.0020	0.0010	0.0051
2050						l .								l		i i

Source: Technical Guidance on the use of Mobile 6 for Emission Inventory Preparation, U.S. EPA, January 2002.

Table 4
MWCOG Regional 2016 Ozone Season Bus Emission Factors

Diesel Bus Emission Factors (grams/mile)

	=	School	Bus	Transit	Bus
Road Type	Speed (mph)	VOC	NOx	VOC	NOx
Arterial/Freeway	1.00	1.309	9.084	0.82	8.611
Arterial/Freeway	2.00	1.309	9.084	0.82	8.611
Arterial/Freeway	3.00	1.256	8.774	0.787	8.318
Arterial/Freeway	4.00	1.19	8.387	0.745	7.952
Arterial/Freeway	5.00	1.15	8.155	0.721	7.732
Arterial/Freeway	6.00	1.068	7.686	0.669	7.289
Arterial/Freeway	7.00	1.009	7.351	0.632	6.972
Arterial/Freeway	8.00	0.965	7.1	0.604	6.735
Arterial/Freeway	9.00	0.93	6.905	0.583	6.55
Arterial/Freeway	10.0	0.903	6.749	0.566	6.403
Arterial/Freeway	11.0	0.854	6.487	0.535	6.155
Arterial/Freeway	12.0	0.814	6.268	0.51	5.948
Arterial/Freeway	13.0	0.78	6.083	0.488	5.773
Arterial/Freeway	14.0	0.75	5.925	0.47	5.624
Arterial/Freeway	15.0	0.725	5.788	0.454	5.494
Arterial/Freeway	16.0	0.692	5.627	0.434	5.342
Arterial/Freeway	17.0	0.663	5.485	0.416	5.207
Arterial/Freeway	18.0	0.638	5.359	0.4	5.088
Arterial/Freeway	19.0	0.615	5.246	0.385	4.981
Arterial/Freeway	20.0	0.594	5.144	0.372	4.885
Arterial/Freeway	21.0	0.572	5.048	0.358	4.794
Arterial/Freeway	22.0	0.551	4.961	0.345	4.712
Arterial/Freeway	23.0	0.532	4.881	0.333	4.636
Arterial/Freeway	24.0 25.0	0.515 0.499	4.807 4.74	0.322 0.312	4.567 4.503
Arterial/Freeway	26.0	0.499	4.691	0.312	4.457
Arterial/Freeway Arterial/Freeway	27.0	0.462	4.646	0.302	4.414
Arterial/Freeway	28.0	0.453	4.604	0.284	4.374
Arterial/Freeway	29.0	0.44	4.565	0.204	4.337
Arterial/Freeway	30.0	0.427	4.528	0.268	4.303
Arterial/Freeway	31.0	0.415	4.519	0.26	4.294
Arterial/Freeway	32.0	0.404	4.51	0.253	4.285
Arterial/Freeway	33.0	0.394	4.501	0.247	4.277
Arterial/Freeway	34.0	0.384	4.493	0.24	4.27
Arterial/Freeway	35.0	0.375	4.486	0.235	4.262
Arterial/Freeway	36.0	0.366	4.513	0.229	4.288
Arterial/Freeway	37.0	0.358	4.538	0.224	4.312
Arterial/Freeway	38.0	0.35	4.563	0.219	4.335
Arterial/Freeway	39.0	0.343	4.586	0.215	4.357
Arterial/Freeway	40.0	0.336	4.608	0.21	4.378
Arterial/Freeway	41.0	0.329	4.673	0.206	4.44
Arterial/Freeway	42.0	0.323	4.736	0.203	4.499
Arterial/Freeway	43.0	0.318	4.796	0.199	4.556
Arterial/Freeway	44.0	0.312	4.853	0.196	4.61
Arterial/Freeway	45.0	0.307	4.907	0.192	4.661

Table 4
MWCOG Regional 2016 Ozone Season Bus Emission Factors

Diesel Bus Emission Factors (grams/mile)

	_	School	Bus	Transit	Bus
Road Type	Speed (mph)	VOC	NOx	VOC	NOx
Arterial/Freeway	46.0	0.303	5.018	0.19	4.766
Arterial/Freeway	47.0	0.299	5.125	0.187	4.867
Arterial/Freeway	48.0	0.295	5.227	0.185	4.963
Arterial/Freeway	49.0	0.291	5.325	0.182	5.056
Arterial/Freeway	50.0	0.288	5.419	0.18	5.145
Arterial/Freeway	51.0	0.285	5.588	0.179	5.304
Arterial/Freeway	52.0	0.282	5.75	0.177	5.458
Arterial/Freeway	53.0	0.28	5.906	0.175	5.606
Arterial/Freeway	54.0	0.278	6.057	0.174	5.748
Arterial/Freeway	55.0	0.275	6.202	0.172	5.885
Arterial/Freeway	56.0	0.274	6.449	0.172	6.119
Arterial/Freeway	57.0	0.273	6.688	0.171	6.345
Arterial/Freeway	58.0	0.272	6.918	0.17	6.563
Arterial/Freeway	59.0	0.27	7.141	0.169	6.774
Arterial/Freeway	60.0	0.269	7.356	0.169	6.977
Arterial/Freeway	61.0	0.269	7.715	0.169	7.317
Arterial/Freeway	62.0	0.269	8.063	0.169	7.645
Arterial/Freeway	63.0	0.269	8.399	0.169	7.963
Arterial/Freeway	64.0	0.269	8.725	0.169	8.272
Arterial/Freeway	65.0	0.269	9.041	0.169	8.57
Fwy Ramp	34.6	0.378	4.582	0.237	4.333
Local	12.9	0.793	6.147	0.497	5.833

TABLE 5A 2011 CLRP AIR QUALITY CONFORMITY ANALYSIS 2016 SCHOOL BUS CHARACTERISTICS / EMISSIONS (8-HOUR OZONE AREA*)

	2002	2016	Average	ge VOC				NOx	
Jurisdiction	Daily VMT	Daily VMT	Speed	factors (g/mile)	emissions (grams)	emissions (tons)	factors (g/mile)	emissions (grams)	emissions (tons)
District of Columbia	12,696	13,331	14	0.750	9998.1000	0.0110	5.925	78984.9900	0.0871
Montgomery	100,000	105,000	30	0.427	44835.0000	0.0494	4.528	475440.0000	0.5241
Prince George's	129,967	136,465	30	0.427	58270.7045	0.0642	4.528	617915.1048	0.6811
Frederick	25,589	26,868	30	0.427	11472.8282	0.0126	4.528	121660.3416	0.1341
Charles	20,801	21,841	30	0.427	9326.1284	0.0103	4.528	98896.2744	0.1090
Calvert	25,653	26,936	30	0.427	11501.5226	0.0127	4.528	121964.6232	0.1344
Alexandria	2,028	2,129	25	0.499	1062.5706	0.0012	4.74	10093.3560	0.0111
Arlington	2,600	2,730	25	0.499	1362.2700	0.0015	4.74	12940.2000	0.0143
Fairfax	96,524	101,350	30	0.427	43276.5354	0.0477	4.528	458913.7056	0.5059
Prince William	36,114	37,920	30	0.427	16191.7119	0.0178	4.528	171700.4016	0.1893
Loudoun	28,347	29,764	30	0.427	12709.3775	0.0140	4.528	134772.9768	0.1486
TOTAL	480,319				220006.7489	0.2425		2303281.9740	2.5389

^{*} MSA excluding Stafford County

TABLE 5B 2011 CLRP/FY2012-2017 TIP AIR QUALITY CONFORMITY ANALYSIS

2016 TRANSIT BUS CHARACTERISTICS / EMISSIONS (8-HOUR OZONE AREA*)

		2002	2016	Average	<u> </u>		_			
Jurisdiction	Operator	Daily VMT	VMT w/o Stafford	Speed	factors (g/mile)	emissions (grams)	emissions (tons)	factors (g/mile)	emissions (grams)	emissions (tons)
District of Columbia	Metrobus	50,552	56,113	10	0.5660	31759.7995	0.0350	6.4030	359289.7462	0.3960
District of Columbia	MTA Commuter buses	2,510	2,786	45	0.1920	534.9312	0.0006	4.6610	12986.0121	0.0143
District of Columbia	Peter Pan / Trailways	200	222	55	0.1720	38.1840	0.0000	5.8850	1306.4700	0.0014
District of Columbia	Carolina Trailways	20	22	55	0.1720	3.8184	0.0000	5.8850	130.6470	0.0001
District of Columbia	Capitol Trailways	100	111	55	0.1720	19.0920	0.0000	5.8850	653.2350	0.0007
District of Columbia	Martz / Grey Line sightseeing	500	555	55	0.1720	95.4600	0.0001	5.8850	3266.1750	0.0036
District of Columbia	New World Tours	100	111	20	0.3720	41.2920	0.0000	4.8850	542.2350	0.0006
District of Columbia	Georgetown U. shuttle	100	111	15	0.4540	50.3940	0.0001	5.4940	609.8340	0.0007
District of Columbia	American U. shuttle	83	92	20	0.3720	34.2724	0.0000	4.8850	450.0551	0.0005
District of Columbia	George Washington U shuttle	100	111	15	0.4540	50.3940	0.0001	5.4940	609.8340	0.0007
District of Columbia	EPA Shuttle	200	222	15	0.4540	100.7880	0.0001	5.4940	1219.6680	0.0013
District of Columbia	USDOT Shuttle	200	222	15	0.4540	100.7880	0.0001	5.4940	1219.6680	0.0013
District of Columbia	Gallaudet Shuttle	100	111	15	0.4540	50.3940	0.0001	5.4940	609.8340	0.0007
District of Columbia	Metro Access - paratransit	5,000	5,550	15	0.4540	2519.7000	0.0028	5.4940	30491.7000	0.0336
Maryland	Corridor Transit (CTC)	1,265	1,404	18	0.4000	561.6600	0.0006	5.0880	7144.3152	0.0079
Maryland	Peter Pan / Trailways	1,800	1,998	55	0.1720	343.6560	0.0004	5.8850	11758.2300	0.0130
Maryland	Carolina Trailways	225	250	55	0.1720	42.9570	0.0000	5.8850	1469.7788	0.0016
Maryland	Capitol Trailways	400	444	55	0.1720	76.3680	0.0001	5.8850	2612.9400	0.0029
Maryland	Martz / Grey Line sightseeing	2,250	2,498	55	0.1720	429.5700	0.0005	5.8850	14697.7875	0.0162
Maryland	New World Tours	100	111	20	0.3720	41.2920	0.0000	4.8850	542.2350	0.0006
Montgomery	Metrobus	17,262	19,161	15	0.4540	8699.0123	0.0096	5.4940	105269.5451	0.1160
Montgomery	MTA Commuter buses	2,180	2,420	45	0.1920	464.6016	0.0005	4.6610	11278.6878	0.0124
Montgomery	Mont. Co. Ride-On	35,616	39,534	15	0.4540	17948.3270	0.0198	5.4940	217198.4774	0.2394
Prince George's	Metrobus	24,660	27,373	15	0.4540	12427.1604	0.0137	5.4940	150385.0644	0.1658

TABLE 5B 2011 CLRP/FY2012-2017 TIP AIR QUALITY CONFORMITY ANALYSIS

2016 TRANSIT BUS CHARACTERISTICS / EMISSIONS (8-HOUR OZONE AREA*)

		2002	2016	Average	e VOC			NOx			
Jurisdiction	Operator	Daily VMT	VMT w/o Stafford	Speed	factors (g/mile)	emissions (grams)	emissions (tons)	factors (g/mile)	emissions (grams)	emissions (tons)	
Prince George's	MTA Commuter buses	6,840	7,592	45	0.1920	1457.7408	0.0016	4.6610	35388.1764	0.0390	
Prince George's	PG Co. The Bus	9,723	10,793	15	0.4540	4899.8086	0.0054	5.4940	59294.1598	0.0654	
Prince George's	ShuttleUM (U. of MD)	1,864	2,069	11	0.5350	1106.9364	0.0012	6.1550	12734.9412	0.0140	
Prince George's	P.G. Co. paratransit	3,000	3,330	15	0.4540	1511.8200	0.0017	5.4940	18295.0200	0.0202	
Frederick	MTA Commuter buses	370	411	45	0.1920	78.8544	0.0001	4.6610	1914.2727	0.0021	
Frederick	Fredrick Co. TransiT	3,082	3,421	12	0.5100	1744.7202	0.0019	5.9480	20348.2270	0.0224	
Charles	MTA Commuter buses	2,290	2,542	45	0.1920	488.0448	0.0005	4.6610	11847.7959	0.0131	
Calvert	MTA Commuter buses	1,080	1,199	45	0.1920	230.1696	0.0003	4.6610	5587.6068	0.0062	
Virginia	Metrobus	30,825	34,216	15	0.4540	15533.9505	0.0171	5.4940	187981.3305	0.2072	
Virginia	Lee Coaches	70	54	45	0.1920	10.4429	0.0000	4.6610	253.5118	0.0003	
Virginia	Brooks Transit	750	583	45	0.1920	111.8880	0.0001	4.6610	2716.1978	0.0030	
Virginia	Quicks Commuter Service	1,320	1,026	45	0.1920	196.9229	0.0002	4.6610	4780.5080	0.0053	
Virginia	National Coach Works	1,650	1,282	45	0.1920	246.1536	0.0003	4.6610	5975.6351	0.0066	
Virginia	Greyhound / Trailways (VA)	5,000	3,885	55	0.1720	668.2200	0.0007	5.8850	22863.2250	0.0252	
Virginia	Carolina Trailways	225	175	55	0.1720	30.0699	0.0000	5.8850	1028.8451	0.0011	
Virginia	Martz / Grey Line sightseeing	2,250	1,748	55	0.1720	300.6990	0.0003	5.8850	10288.4513	0.0113	
Virginia	New World Tours	100	78	20	0.3720	28.9044	0.0000	4.8850	379.5645	0.0004	
Alexandria	Alexandria DASH	3,454	3,834	13	0.4880	1870.9627	0.0021	5.7730	22133.3356	0.0244	
Alexandria	Old Town "trolley" buses	300	333	20	0.3720	123.8760	0.0001	4.8850	1626.7050	0.0018	
Alexandria	Alexandria DOT-paratransit	924	1,026	15	0.4540	465.6406	0.0005	5.4940	5634.8662	0.0062	
Arlington	Arlington Co. ART	794	881	16	0.4340	382.5016	0.0004	5.3420	4708.1183	0.0052	
Arlington	Crystal City Express	96	107	15	0.4540	48.3782	0.0001	5.4940	585.4406	0.0006	
Arlington	Skyline Crystal Express	144	160	15	0.4540	72.5674	0.0001	5.4940	878.1610	0.0010	
Arlington	Arlington STAR-paratransit	3,245	3,602	15	0.4540	1635.2853	0.0018	5.4940	19789.1133	0.0218	

TABLE 5B 2011 CLRP/FY2012-2017 TIP AIR QUALITY CONFORMITY ANALYSIS

2016 TRANSIT BUS CHARACTERISTICS / EMISSIONS (8-HOUR OZONE AREA*)

		2002	2016	Average	e VOC				NOx	
Jurisdiction	Operator	Daily VMT	VMT w/o Stafford	Speed	factors (g/mile)	emissions (grams)	emissions (tons)	factors (g/mile)	emissions (grams)	emissions (tons)
Fairfax	Fairfax Connector	18,036	20,020	15	0.4540	9089.0618	0.0100	5.4940	109989.6602	0.1212
Fairfax	Washington Flyer Coach Service	1,370	1,521	65	0.1690	256.9983	0.0003	8.5700	13032.3990	0.0144
Fairfax	Fairfax Co. Fastran- paratransit	11,427	12,684	15	0.4540	5758.5224	0.0063	5.4940	69685.7312	0.0768
Fairfax	City of Fairfax CUE	1,483	1,646	15	0.4540	747.3430	0.0008	5.4940	9043.8382	0.0100
Fairfax	City of Ffx, City Wheels- paratransit.	100	111	15	0.4540	50.3940	0.0001	5.4940	609.8340	0.0007
Fairfax	City of Falls Ch. Fare Wheels- paratransit	100	111	15	0.4540	50.3940	0.0001	5.4940	609.8340	0.0007
Prince William	PRTC Omnilink	4,038	4,482	15	0.4540	2034.9097	0.0022	5.4940	24625.0969	0.0271
Prince William	PRTC OmniRide	5,700	6,327	27	0.2930	1853.8110	0.0020	4.4140	27927.3780	0.0308
Loudoun	Loudoun Transportation Assc.	4,532	5,031	15	0.4540	2283.8561	0.0025	5.4940	27637.6769	0.0305
Loudoun	Loudoun Commuter Service	1,866	2,071	25	0.3120	646.2331	0.0007	4.5030	9326.8838	0.0103
Loudoun	Loudoun Transit (LCTA)- paratransit	100	111	15	0.4540	50.3940	0.0001	5.4940	609.8340	0.0007
TOTAL		273,671	299,990			132500.3870	0.1461		1685873.5494	1.8584

^{*} MSA excluding Stafford County

Notes:

¹⁾ Used WMATA percent VMT by jurisdiction from FY03-08 AQC, Appendix I (page I-3)

²⁾ Assumed average freeway speed of 55 mph where higher than 55 speed limit is available, and 45 mph where speed limit is 55

2011 CLRP / FY2012-2017 TIP AIR QUALITY CONFORMITY ANALYSIS

2016 SCHOOL BUS CHARACTERISTICS / EMISSIONS

 $(PM_{2.5})$

					WINTER (January - April)						
	2001	2002	2016	Average		PM _{2.5}			precursor NO	X	
Jurisdiction	Annual VMT	Daily VMT	Daily VMT	Speed	factors (g/mile)	emissions (grams)	emissions (tons)	factors (g/mile)	emissions (grams)	emissions (tons)	
District of Columbia	2,800,000	12,670	13,303	14	0.2117	2816.2805	0.0031	6.4330	85579.2760	0.0943	
Montgomery	19,000,000	85,973	90,271	30	0.2117	19110.4751	0.0211	4.9160	443774.6606	0.4892	
Prince George's	21,000,000	95,023	99,774	30	0.2117	21122.1041	0.0233	4.9160	490487.7828	0.5407	
Frederick	6,400,000	28,959	30,407	30	0.2117	6437.2127	0.0071	4.9160	149481.9910	0.1648	
Charles	3,950,000	17,873	18,767	30	0.2117	3972.9672	0.0044	4.9160	92258.4163	0.1017	
Alexandria	446,264	2,019	2,120	25	0.2117	448.8588	0.0005	5.1460	10910.8519	0.0120	
Arlington	571,986	2,588	2,718	25	0.2117	575.3118	0.0006	5.1460	13984.6695	0.0154	
Fairfax	18,200,000	82,353	86,471	30	0.2117	18305.8235	0.0202	4.9160	425089.4118	0.4686	
Prince William	6,900,000	31,222	32,783	30	0.2117	6940.1199	0.0077	4.9160	161160.2715	0.1776	
Loudoun	6,100,000	27,602	28,982	30	0.2117	6135.4683	0.0068	4.9160	142475.0226	0.1571	
TOTAL	85,368,250	386,282	405,596			85864.6220	0.0946		2015202.3540	2.2214	

					SUMMER (May - September)							
	2001	2002	2016	Average	PM _{2.5}				precursor NO	(
Jurisdiction	Annual VMT	Daily VMT	Daily VMT	Speed	factors (g/mile)	emissions (grams)	emissions (tons)	factors (g/mile)	emissions (grams)	emissions (tons)		
District of Columbia	2,800,000	12,670	13,303	14	0.1957	2603.4299	0.0029	5.9250	78821.2670	0.0869		
Montgomery	19,000,000	85,973	90,271	30	0.1957	17666.1312	0.0195	4.5280	408749.3213	0.4506		
Prince George's	21,000,000	95,023	99,774	30	0.1957	19525.7240	0.0215	4.5280	451775.5656	0.4980		
Frederick	6,400,000	28,959	30,407	30	0.1957	5950.6968	0.0066	4.5280	137683.9819	0.1518		
Charles	3,950,000	17,873	18,767	30	0.1957	3672.6957	0.0040	4.5280	84976.8326	0.0937		
Alexandria	446,264	2,019	2,120	25	0.1957	414.9347	0.0005	4.7400	10050.0268	0.0111		
Arlington	571,986	2,588	2,718	25	0.1957	531.8305	0.0006	4.7400	12881.3318	0.0142		
Fairfax	18,200,000	82,353	86,471	30	0.1957	16922.2941	0.0187	4.5280	391538.8235	0.4316		
Prince William	6,900,000	31,222	32,783	30	0.1957	6415.5950	0.0071	4.5280	148440.5430	0.1636		
Loudoun	6,100,000	27,602	28,982	30	0.1957	5671.7579	0.0063	4.5280	131230.0452	0.1447		
TOTAL	85,368,250	386,282	405,596			79375.0898	0.0875		1856147.7387	2.0461		

					FALL (October - December)							
	2001	2002	2016	Average		PM _{2.5}			precursor NO	X		
Jurisdiction	Annual VMT	Daily VMT	Daily VMT	Speed	factors (g/mile)	emissions (grams)	emissions (tons)	factors (g/mile)	emissions (grams)	emissions (tons)		
District of Columbia	2,800,000	12,670	13,303	14	0.1324	1761.3394	0.0019	5.7010	75841.3575	0.0836		
Montgomery	19,000,000	85,973	90,271	30	0.1324	11951.9457	0.0132	4.3610	393673.9819	0.4340		
Prince George's	21,000,000	95,023	99,774	30	0.1324	13210.0452	0.0146	4.3610	435113.3484	0.4796		
Frederick	6,400,000	28,959	30,407	30	0.1324	4025.9186	0.0044	4.3610	132605.9729	0.1462		
Charles	3,950,000	17,873	18,767	30	0.1324	2484.7466	0.0027	4.3610	81842.7489	0.0902		
Alexandria	446,264	2,019	2,120	25	0.1324	280.7223	0.0003	4.5640	9676.8613	0.0107		
Arlington	571,986	2,588	2,718	25	0.1324	359.8077	0.0004	4.5640	12403.0376	0.0137		
Fairfax	18,200,000	82,353	86,471	30	0.1324	11448.7059	0.0126	4.3610	377098.2353	0.4157		
Prince William	6,900,000	31,222	32,783	30	0.1324	4340.4434	0.0048	4.3610	142965.8145	0.1576		
Loudoun	6,100,000	27,602	28,982	30	0.1324	3837.2036	0.0042	4.3610	126390.0679	0.1393		
TOTAL	85,368,250	386,282	405,596	-		53700.8783	0.0592		1787611.4260	1.9705		

Table 5D **2011 CLRP AIR QUALITY CONFORMITY ANALYSIS**

2016 SCHOOL BUS CHARACTERISTICS / EMISSIONS **Wintertime CO**

	Daily	Average		Wintertime CC)
Jurisdiction	VMT	Speed	factors (g/mile)	emissions (grams)	emissions (tons)
District of Columbia *	13,331	14	2.214	29514	0.0325
Montgomery *	105,000	30	1.0360	108780	0.1199
Prince George's *	136,465	30	1.0360	141378	0.1558
Frederick	26,868	30	1.0360	27836	0.0307
Charles	21,841	30	1.0360	22627	0.0249
Calvert	26,936	30	1.0360	27905	0.0308
Alexandria *	2,129	25	1.2530	2668	0.0029
Arlington *	2,730	25	1.2530	3421	0.0038
Fairfax	101,350	30	1.0360	104999	0.1157
Prince William	37,920	30	1.0360	39285	0.0433
Loudoun	29,764	30	1.0360	30836	0.0340
Stafford	10,091	30	1.0360	10454	0.0115
TOTAL	514,425			549702.9384	0.6059
TOTAL FOR CO NO	N-ATTAIN	MENT A	REA*:		0.3150

^{*} The non-attainment area for wintertime CO includes: DC, ARL, ALEX, MONT, PG

APPENDIX I

TERMs Implementation Reports From: Hodgson, Fred R [mailto:Randy.Hodgson@VDOT.Virginia.gov]

Sent: Wednesday, September 29, 2010 1:44 PM

To: Anant Choudhary

Cc: Srikanth, Kanathur N.; Allahdoust, Fatemeh; McDonald, Robert, P.E.

Subject: TERMS Status Report

Sir: Attached is the updated TERMS Status Report for the NoVa District. The changes are shown in purple. Please let me know if you have any questions. Thank you. Randy Hodgson

<<TERM Status Report FY11 TIP.xls>>

Randy Hodgson, AICP

Regional Transporation Planning Engineer

Virginia Department of Transportation

Ph. 703-383-2216

Fx. 703-383-2230

Randy.Hodgson@VDOT.Virginia.gov

Transportation Emission Reduction Measures - Status Report For Post Year 2000 TERMs FROM VDOT FOR FY 2010- 2015 TIP AND 2009 CLRP Changes made during this review are in bold font.

				FROM VDOT FOR FT 2010- 2015 TIP AND 2009 CLRP Changes		IPLEMENTA			STATUS REPORT	
						LEMENTA	11014 317	1100	OTATOO NET ON	
TERM	CREDIT	TIP				SCALED	UNDER-			Project
No.	TAKEN	CREDITED	AGENCY	PROJECT	FULL	BACK	WAY	REMOVED		Category *
									Complete construction -July 2008	
	.,	4005.00	1 /D O T	01 111111755				.,	Developer defaulted on project, so no	0 (7011)
56	Х	1995-00	VDOT	Cherry Hill VRE Access				Х	timetable to providing access.	C (TCM)
									Drainata 4 9 C incomplete due to	
									Projects 4 & 6 incomplete due to incomplete funding. Project #6 projected	
									to be complete in 2008, and Project # 4	
									projected to be completed in mid 2009.	
									Project 3 revised to sidewalks & wide-curb lanes ony,not bike lanes. All others	
									complete. #4 - Phase I of project under	
									construction. Phase 2 in final design.	
									Possible construction in 2010	
									depending upon funding. #6 - Project design complete but underfunded.	
			ARLG /						Negotiating with National Park Service	
69	Х	1995-00	FFX CO.	Bicycle Trails and Facilities (Arlington & Fairfax Co 7 locations)	Х		Х		which could result in reduced costs.	С
									Burke station completed 2001. Phase 2	
									completed in 2007, improved geometry on	
									Rte. 630 between Brooke High School and Rte. 629. Phase 3 replacing Rte. 630	
									bridge over railroad crossing expected to	
									be completed after Six Year Plan Only	
									change is possibility of securing ARRA	
									Stimulus funds to advance bridge replacement to a Jan.2010 Ad.	
									Otherwise, bridge replacement set for	
70	X	1995-00	VDOT		Х		Х		July 2012.	С
									Arlington completing design review and	
									permitting. Construction anticipated in	
									early 2008. Contract to construct Phase I of bike lanes& sidewalks awarded.	
									Construction in summer '09.	
									Construction of Phase 2 expected to	
82	X	1996-01	ARLG / FF	Old Dominion Drive Bike Trail			Х		occur in 2010.	С
									Construction commenced September, 2007, to be completed March, 2009.	
117	X	1998-03	ARLG	Arlington County Four Mile Run Bike Trail	х				Project now complete.	С
									Completion by 2008. PWC reports that	
127	Х	1999-04	VDOT	VA 234 Bike Trail	Х				trail should be finished by 12/30/09.	С
									Construction of Phase 2 (Cross County Trail -Accotink Stream Valley-Lake	
									Accotink dam to Hunter Village Drive)	
									includes three bridge crossings and an	
									underpass of Old Keen mill Rd began in	
									spring 2008 and scheduled to be complete summer 2009. Project completed in	
136	Х	2000-05	VDOT	Columbia Pike Trail - Now named Cross County Trail	х				March 2009,	С
137	Х	2000-05	VDOT	Lee Highway trail	Х				Project complete & open to public.	С
									Phase I of project to be complete in	
									January, 2008 and then Phase II will start. DRPT states that Phase I of TDM	
									software System complete.Phase II	
									mostly complete, & Phase III began in	
177	Х	2003-08	VDRPT	Interactive Rideshare & Kiosk Initiative	Х				July.	С
									Pilot program started in 2004. Funded till 2008. Program completed with opening	
190	Х	2003-08	VDOT	Employer Vanpool Program (Bridge Bucks)	х				of bridge.	С
1									Project scheduled for completion in late	
									2008 or early 2009. County reports that P&R lot under construction, planned	
191	х	2003-08	LOU CO	Town of Leesburg P&R Lot (150 spaces)	х				completion, Jan 2010.	С
<u> </u>	.,								Thisprogram has been underway since	
				M-24 Spped Limit Adherence					about 2000 and is anticipated to	
221	Χ	1995-00	REGION		X				continue at least thru 2013.	TR

^{1.} These TERM projects were a one-time, limited term (two years) infusion of funding from NoVa to support extra activities. 2010 UPDATES:

#69 - Bicycle Trail Facilities. #4 - Phase 1 was completed. Phase 2 is in final design and \$250,000 short on construction.

Want to build in 2011 provided that County bond money becomes available. Revenue Sharing request was denied.

Project is still in design and need of supplemental; funding. Hope for construction in late 2011 or 2012 providing get grant.

#82 Old Dominion Drive. Phase 1 completed in 2010. Phase 2 in final design and right of way acquisition. Funds for construction largely secured and construction expected in 2011.

#70 - Fredericksburg District Projects . Fredericksburg officials indicate that the Rte. 630 Bridge over Railroad is now under Construction.

----Original Message----

From: Lyn Erickson [mailto:lerickson@mdot.state.md.us]

Sent: Monday, September 13, 2010 12:05 PM

To: Reena Mathews; Daivamani Sivasailam; Vaughn Lewis; Eric Beckett

Cc: Howard Simons

Subject: FW: TERMS Tracking - review, comment and add by Sept 10

Hi Siva-

Here are our comments on the TERMS tracking sheet. If you have trouble reading them, please let us know and we'll get you something cleaner. I haven't gotten anything yet from MTA so there still is the potential for more comments, but there won't be many. Thanks!

Lyn Erickson, AICP Maryland Department of Transportation 7201 Corporate Center Drive Hanover, MD 21076 W410-865-1279 C703-587-7935

From: Reena Mathews

Sent: Friday, September 10, 2010 3:35 PM

To: Lyn Erickson

Cc: Howard Simons; Vaughn Lewis; Eric Beckett; Roy Gothie; L'Kiesha Markley

Subject: RE: TERMS Tracking - review, comment and add by Sept 10

Hi Lyn,

Let me know if you have a problem reading our comments.

Reena Mathews

410-545-5668

TERM TRACKING SHEET
TRANSPORTATION EMISSION REDUCTION MEASURES
Part A - Daily Ozone Precursor Emissions

1 1		1		- Commune, H - Heavy Dury Vehicles (Enjoye Yechnology), SP	IMPLEMENTATION STATUS				ORIGINAL	ACTUAL						-		
19Os	TAKER	CREONEU	ACENCY			SCALED	UNDER-		COMPLETION	COUPLETION	20	na -	20	20	_	230	Burker	
219	×	2003-01	VOOT	PROJECT MV-123 Employer Outreach for Public Sector Employees ²	FULL	BACK	WAY	REM	DATE	DATE	voc	Nox	VOC	NOX	VOC	NOX	Project . Category*	
220	×	2003-01	REGION	Signal System Optivization	×		-		2005	2003	0,0147	0.0210	0.0086	0,0090	0,0077	0,0076	С.	
221		2007-12	HOOT	Too P & R Loss in Frederick County (18 special)	×				2005	2005	0.4155	0.1488	0.2445	0,0463	0,2204	0.0323	TR	
					x	-	<u> </u>	L	2007	2008	0,0006	0.0011	- 0,0003	0,0005	0.0003	0.0004	_ 6	
722			- d-=	Purkand Ride Lot us suo (F		· ———	<u> </u>		Available E	nisalons Credita	2.325	4,497	1.406	1.088	1.270	0,758		
	•		1.vaol	expanded 66-97 spaces	resten	rk co	Ŋ											
					7	1	1		2009	2007-								
23		er-	チット	" LLS 342 mit zion Rela	~~~~		 		ત્રેજી	3002								
				naw lot 37 spaces	,		ì		4004	~WP								
94		61	×et-	Prope/ Risks (:)			<u>i</u>											
• ,				Prot/ Risk (Finderick)		1	X		2010	2010								
				שיבני ושר ושט באונבג														
35		ir ibs)	T	US 340 Mt Zin Rd						-								
				Expension 39 new space	2				2011	2011								
									•									
,		FIDST		1-270 @ MOSO Moth Lot														
6		P (Da i							2009	રવા ડ								
· a				Exponsion 164 Now Spec	ڪ				4 1	,								
7		MAOT	1000	Signal Systems Review	:-													
									2010	on going						•		
α	ZIC	ranz	625 T	the Sienel Free F a	=		/		Water and the second									
1				the signal systems evering, hundreds of thousand	J -	Ye	eirs l	/CO 7	ighels <	Jecar)	They	estin	~. J	4-4	y	501	Kick man	Cm
N	ない	3-C	dela	ig, hundreds of thousand	12	of.	(2) S	Sweet	001	c. 1	. J		W 74	met 1	"y	ے حر) استان	perce	en'c
									,	FLAU	crac 4	יענייאב	ביאול.	73ic 4	horus/	120	Cur I	whom it
Þ	he	شم	<u>_/</u> 0 ø	and \$30 million. This	L 1.	5, 1c	ے کیاں	•						•				J- /3
	M	الحا		Teles 1 -	700									. 8				
	1.0	ωı		Takena Langley Transil	Canta	-		20	1.2	O+10								
				The state of the s				25.		2412								
				LO Check With 17TA														

Terre tricking Drone June 08-2009 TJP - Curterel incheses \$7/27/2009

MEMORANDUM

DATE:

July 8, 2009

TO:

FY2010-2015 TIP Air Quality Conformity File

FROM:

Nicholas W. Ramfos, Director

Alternative Commute Programs

SUBJECT:

Implementation of Commuter Connections Regional Transportation

Emission Reduction Measure (TERMs)

The Commuter Connections regional TERM projects programmed and implemented for the FY95, FY96, FY97 and FY98 Transportation Improvement Programs (TIP) for the Washington metropolitan region for the purpose of reducing Nitrogen Oxides and Volatile Organic Compound emissions and achieving air quality conformity for the TIP include Employer Outreach, Guaranteed Ride Home, Telework Resource Center, Integrated Rideshare programs, and the Mass Marketing TERM (M-101a) adopted in the FY 97-02 TIP and advanced for implementation in the FY 98-03 TIP. In addition to the above pollutants the programs reduce PM 2.5, and Pre-cursor NOx which the region needs to mitigate.

Impact results for each of these TERMs were produced through a vigorous evaluation methodology implemented by Commuter Connections staff and several consulting firms.

An analysis report was completed in 2008 and the emissions benefit in 2008 is as shown below.

TERM	TERM Name	VOC	NOx	PM 2.5	Precursor NOx
Number		(T/Day)	(T/Day)	Annual Tons	Annual Tons
M-92	Telework Resource Center	0.126	0.211	1.3	50
M-47C	Guaranteed Ride Home	0.056	0.106	0.7	25.2
M-47C	Employer Outreach	0.102	0.178	2.9	109.7
M-70B	Employer Outreach – Bicycle	0.001	0.001	0.0	0.2
M-47*	Integrated Rideshare	0.016	0.027	0.2	6.4
M-101A	Mass Marketing	0.017	0.032	0.2	7.6

^{*}Virginia discontinued the kiosk project portion of the TERM on December 31, 2006.

NATIONAL CAPITAL REGION TRANSPORTATION PLANNING BOARD, 777 NORTH CAPITOL STREET, N.E., SUITE 300, WASHINGTON, DC 20002-4239

Jane Posey

ĔĔĔĔĔŠã↔&⇔^á→ÁRæbbá&æĔĔĔĔĔĀ

Á

Ôä~†İÁPä+b\+^ÁRŘÁÒá+⿆á^ÁY†á++\~İ+åá+⿆á^M}†á\áŘ´~†ŸÁ

Sent: Monday, September 25, 2006 9:32 AM

To: Daivamani Sivasailam

Cc: Nat Bottigheimer; Tomika Hughey; Thomas Harrington; Wendy Jia

Subject: WMATA projects on the TERM Tracking Sheet

Two projects that WMATA had underway on the TERM Tracking sheet have been fully implemented. They are:

Item 143: Ultra Low Sulfur Diesel Fuel with CRT filters * completed

installation, June 2006

Item 197: 250 CNG buses * completed purchase and in service, June 2006.

With this status report all the WMATA projects have been fully implemented.

Kristin Haldeman
Office of Business Planning & Project Development
Washington Metropolitan Area Transit Authority
600 Fifth Street, NW
Washington, DC 20001
202-962-1848
202-962-1409 (fax)

From: Casey, Austina (DDOT) [mailto:austina.casey@dc.gov]

Sent: Tuesday, September 28, 2010 10:17 AM **To:** Daivamani Sivasailam; Keys, Maurice (DDOT)

Cc: Jane Posey; Anant Choudhary

Subject: RE: TERMs

Hello Siva,

Thanks for sending me the information. Here is the update for the DC projects:

#	Project	Current Status	Updated Status
72	Bicycle Facility	Scaled back	Full
146	Bicycle Lane in D.C. (35 miles)	Underway	Full
225	M-103 Taxicab Replacement (DC)	None	Remove

Currently, I do not have any new projects to add to the list. Maurice and other DDOT Executives have to meet and decide on which ones need to be added to the TERMS tracking. I don't know when that meeting would occur but I will update you as soon as the decision is made.

Please let me know if you have any questions.

Thanks

-Tina

From: Daivamani Sivasailam [mailto:siva@mwcog.org]

Sent: Monday, September 27, 2010 2:41 PM **To:** Casey, Austina (DDOT); Keys, Maurice (DDOT)

Cc: Jane Posey; Anant Choudhary

Subject: TERMs

Tina:

Find attached a copy of the tracking sheet with projects 221 through 224. Please send an email to remove project number "225" from the list. You need to report only on projects that are underway which is two or three in DC. Also if you can add new projects that have already been funded to the list it will be good since we have not added projects since FY 2003 TIP. The reported will be presented to the TPB Tech this Friday and the full report will be released for public comment next Thursday. We need comments by Wednesday so we can incorporate them for Friday's release.

Siva

Daivamani Sivasailam Principal Transportation Engineer MWCOG 202 962-3226 siva@mwcog.org