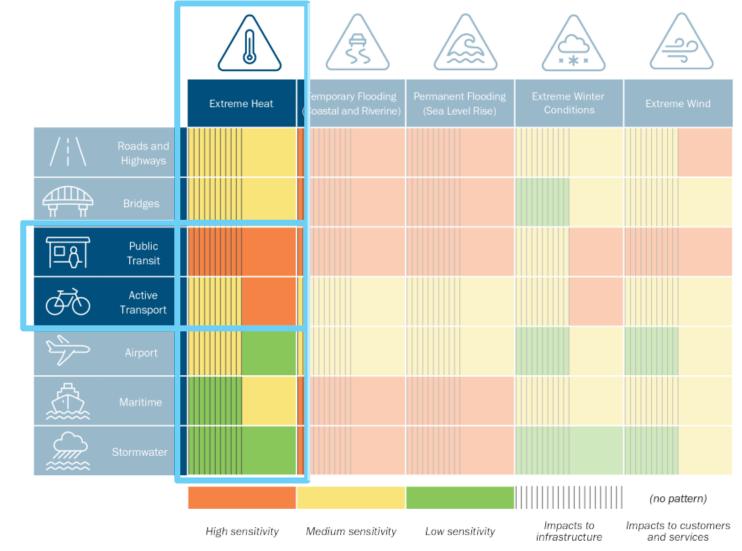
TPB REGIONAL EXTREME HEAT ANALYSIS

Katherine Rainone
TPB Transportation Planner

Regional Public Transportation Subcommittee October 28, 2025

What we know


Figure 2. System-level analysis results (Infrastructure impacts on left; service and customer impacts on right)

The Transportation

Resilience Improvement

Plan (TRIP) provided a

high-level summary of
heat-related impacts to
the system

What we know

Extreme heat poses serious risks to transportation users and assets in the TPB region, including:

Impaired infrastructure performance

Potential for limited access to essential services

Altered transit use patterns and user behavior

Endangered public health

Server meltdowns impacting control rooms and communication

What we need

The TRIP identified the need for deeper dives into extreme heat impacts and resources. **The** Regional Extreme Heat Analysis will:

OBJECTIVE 1

Identify **where** transportation assets and systems in the region may experience the worst impacts of extreme heat.

OBJECTIVE 2

Demonstrate **how** this could impact the local economy and the ability of the region to meet its broader goals.

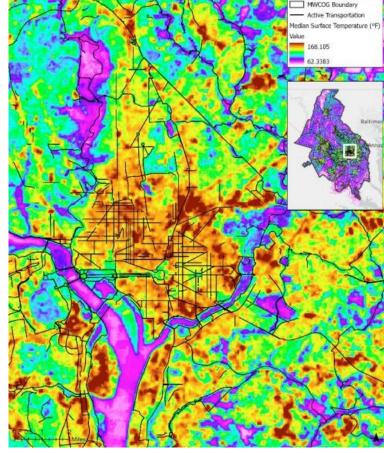
OBJECTIVE 3

Provide **resources** to help member agencies kick-start their efforts to adapt to these risks.

Increase understanding of where the risks are

Goal

Improve understanding of where the worst extreme heat exposure may occur


Approach

- Conduct targeted heat vulnerability assessment for transportation assets and users
- Explore creative approaches to pinpointing risk

Example Outcomes

Extreme heat datasets that go beyond surface temperature

Figure 18. Downtown Washington, DC bike and heat

Increase understanding of specific impacts and provide resources to enhance adaptation

Some initial ideas include:

Transit Infrastructure Resilience Analysis

Commuter Survey Enhancement

Model Policy Language

Decision Tree for Cooling Solutions

Grant
Application
Support
Packages

Best Practice Design Guidance

- 1. Transit Infrastructure Resilience Analysis
- 2. Commuter Survey Enhancement
- 3. Model Policy Language
- 4. Decision Tree for Cooling Solutions
- 5. Grant Application Support Packages
- 6. Best Practice Design Guidance

Goal

Understand how extreme heat affects transit infrastructure and operations regionally

Approach

 Analyze resilience of infrastructure, operations, and users to extreme heat

Example Outcomes

- Impacts assessment
- Slow/stop order frequency (historic and projected)
- Ridership data on high heat days

- 1. Transit Infrastructure Resilience Analysis
- 2. Commuter Survey Enhancement
- 3. Model Policy Language
- 4. Decision Tree for Cooling Solutions
- 5. Grant Application Support Packages
- 6. Best Practice Design Guidance

Goal

Understand heat-related behavioral changes (e.g., mode shifts) and implications for planning and service delivery

Approach

Suggested question additions to existing commuter surveys

Example Outcomes

 Updates to TPB's Commuter Connections survey or other partner agency survey efforts

- 1. Transit Infrastructure Resilience Analysis
- 2. Commuter Survey Enhancement
- 3. Model Policy Language
- 4. Decision Tree for Cooling Solutions
- 5. Grant Application Support Packages
- 6. Best Practice Design Guidance

Goal

Promote use of cooling strategies through redevelopment projects

Approach

 Review policy language in other regions that facilitate or support cooling projects

Example Outcomes

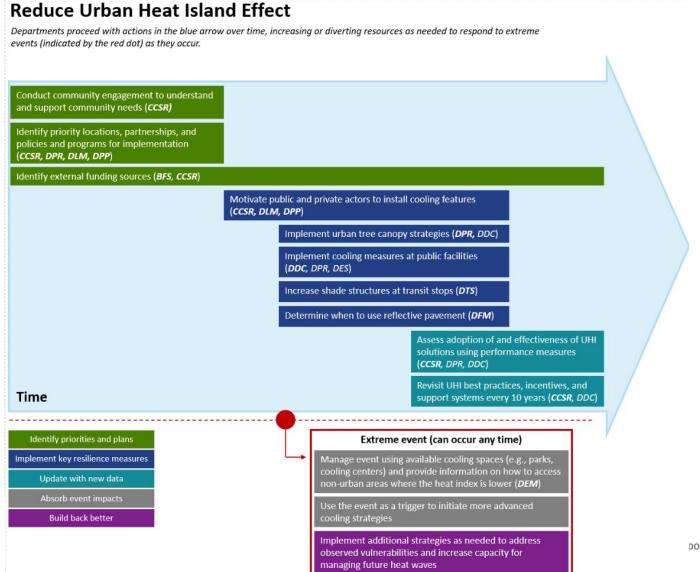
 Draft language for design standards, RFPs, or development guidelines

- 1. Transit Infrastructure Resilience Analysis
- 2. Commuter Survey Enhancement
- 3. Model Policy Language
- 4. Decision Tree for Cooling Solutions
- 5. Grant Application Support Packages
- 6. Best Practice Design Guidance

Goal

Identify **feasible cooling solutions** based on site-specific constraints (e.g., land ownership, space, permitting)

Approach


 Develop inventory of entities that are doing this type of work already and review for lessons learned

Example Outcomes

- Decision-tree tool and cost estimates
- Guidance on selecting potential solutions

Decision Tree & Example Outcomes

Example
Outcome Heat
Adaptation
Pathways

Example from the City and County of Honolulu Climate Ready Oahu Report

- 1. Transit Infrastructure Resilience Analysis
- 2. Commuter Survey Enhancement
- 3. Model Policy Language
- 4. Decision Tree for Cooling Solutions
- 5. Grant Application Support Packages
- 6. Best Practice Design Guidance

Goal

Provide resources to improve grant application competitiveness

Approach

- Identify funding sources
- Evaluate criteria analysis from key resilience grant programs
- Develop "win themes" to incorporate into applications

Example Outcomes

Grant application support package

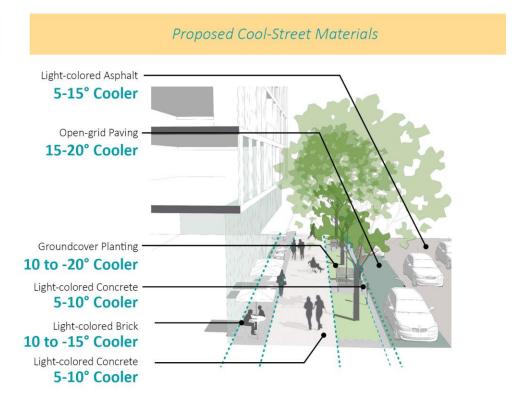
- 1. Transit Infrastructure Resilience Analysis
- 2. Commuter Survey Enhancement
- 3. Model Policy Language
- 4. Decision Tree for Cooling Solutions
- 5. Grant Application Support Packages
- 6. Best Practice Design Guidance

Goal

Support **implementation and efficacy** of cooling solutions

Approach

- Identify contexts, typologies and best practices
- Evaluate tradeoffs (scale, level of impact, cost, ROI, etc.)
- Design concepts and guidelines (for transit, pedestrian, bicycle, etc.)

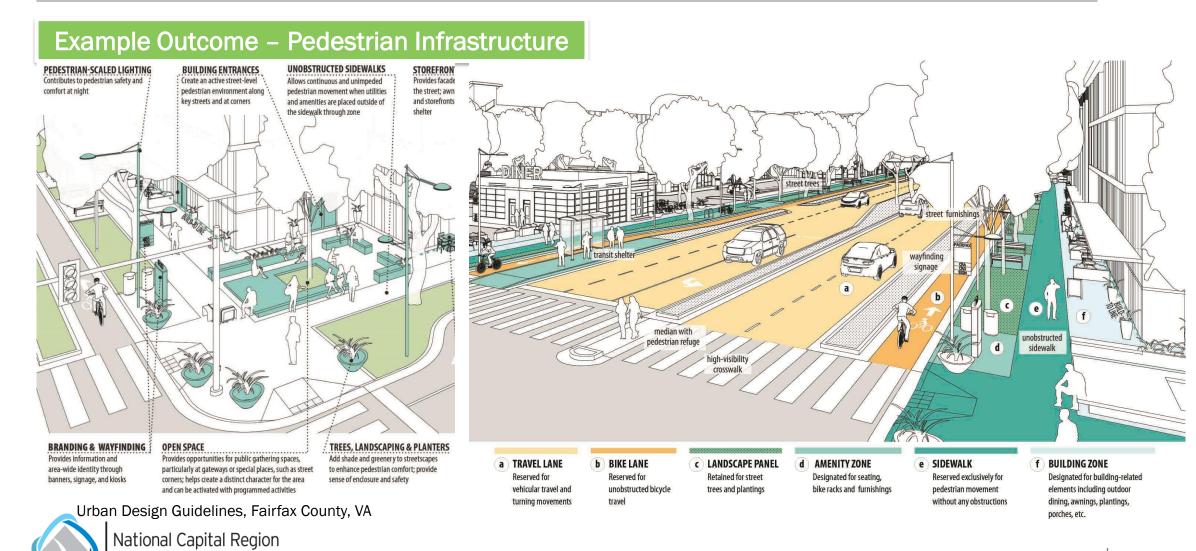

Example Outcomes

 Best practices and design guidance for heat-resilient infrastructure

Design Guidelines & Example Outcomes

Example Outcome - Pedestrian Infrastructure

Standard Asphalt 100-125° Red Brick 100-110° Black Metal Grates 110-120° Charcoal Concrete Pavers 105-115°


Existing Silver Spring streetscape condiitons and average daily temperatures (July 24th)

Cool-street recommendations including temperature differences compared to existing conditions

Design Guidelines & Example Outcomes

Transportation Planning Board

Preliminary Work Plan

Transit Infrastructure Resilience Analysis

 Proposed Deliverables: Memo/White Paper documenting analysis results of historic and projected heat impacts to rail and bus operations ridership

Grant Application Support

 Proposed Deliverables: Excel database documenting relevant funding sources and key details (e.g. critical deadlines, criteria, potential win themes)

Best Practice Design Guidance

Proposed Deliverables: Region-specific design guidance for resilient transportation infrastructure, specifics still in development

Decision Support Tool or Model Policy Language

Proposed Deliverables: Specifics still in development

What do you think?

- Based on your needs and interests, do any aspects of this project and the proposed preliminary work plan jump out at you?
- Any other ideas you would like to see considered?
- Of the types of resources introduced today, what are you most interested in?
- Do you (or does your agency) have data or plans/reports that would be useful in this effort that you would be willing to share?

