

ITEM 10 – INFORMATION
February 18, 2026

**Regional Transportation Safety Trends and
Findings from Inventory of Roadway Safety Strategies**

Background: TPB staff will brief the board on findings from its recent Regional Roadway Safety Study Update and assessment of regional safety activities. Proposed by the TPB as part of the 2024 Regional Roadway Safety Summit, the assessment inventories the activities of member jurisdictions to address roadway safety in the region and attempts to understand the effectiveness of deployed strategies, as well as barriers to implementing countermeasures and programs. Staff will also present a related paper that reviews current research on the effectiveness of automated traffic enforcement.

Attachments

- 2025 TPB Regional Roadway Safety Update
- Regional Inventory of Roadway Safety Strategies
- Automated Speed and Red-Light Enforcement White Paper

REGIONAL ROADWAY SAFETY STUDY

Final Report

February 2026

REGIONAL ROADWAY SAFETY STUDY

Published on February 18, 2026

ABOUT THE TPB

The National Capital Region Transportation Planning Board (TPB) is the federally designated metropolitan planning organization (MPO) for metropolitan Washington. It is responsible for developing and carrying out a continuing, cooperative, and comprehensive transportation planning process in the metropolitan area. Members of the TPB include representatives of the transportation agencies of the states of Maryland and Virginia and the District of Columbia, 24 local governments, the Washington Metropolitan Area Transit Authority, the Maryland and Virginia General Assemblies, and nonvoting members from the Metropolitan Washington Airports Authority and federal agencies. The TPB is staffed by the Department of Transportation Planning at the Metropolitan Washington Council of Governments (COG).

CREDITS

This report was prepared for the Metropolitan Washington Council of Governments (COG) Transportation Planning Board (TPB) by TYLin International and ICF. The following members contributed to the report:

- TPB Staff: Janie Nham, Charlene Howard, Ceriann Price, and Thomas Harrington.
- TYLin International Staff: Soumya Dey, Christopher Moon-Miklaucic, Md. Touhid Hossain, and Michael Alvino.
- ICF Staff: Sherry Stein and Isabella Brown.

Cover photo: BeyondDC/[Flickr](#).

ACCOMMODATIONS POLICY

Alternative formats of this document are available upon request. Visit www.mwcog.org/accommodations or call (202) 962-3300 or (202) 962-3213 (TDD).

TITLE VI NONDISCRIMINATION POLICY

The Metropolitan Washington Council of Governments (COG) operates its programs without regard to race, color, and national origin and fully complies with Title VI of the Civil Rights Act of 1964 and related statutes and regulations prohibiting discrimination in all programs and activities. For more information, to file a Title VI related complaint, or to obtain information in another language, visit www.mwcog.org/nondiscrimination or call (202) 962-3300.

El Consejo de Gobiernos del Área Metropolitana de Washington (COG) opera sus programas sin tener en cuenta la raza, el color, y el origen nacional y cumple con el Título VI de la Ley de Derechos Civiles de 1964 y los estatutos y reglamentos relacionados que prohíben la discriminación en todos los programas y actividades. Para más información, presentar una queja relacionada con el Título VI, u obtener información en otro idioma, visite www.mwcog.org/nondiscrimination o llame al (202) 962-3300.

Copyright © 2026 by the Metropolitan Washington Council of Governments

National Capital Region

Transportation Planning Board

COG REGIONAL ROADWAY SAFETY STUDY 2025

CONTENTS

1. INTRODUCTION	2
1.1 STUDY PURPOSE	2
1.2 STUDY APPROACH	2
1.3 ONGOING TPB SAFETY EFFORTS	5
2. SETTING THE CONTEXT: REGIONAL TRENDS	8
2.1 THE TRANSPORTATION PLANNING BOARD (TPB) REGION	8
2.2 POPULATION AND ECONOMIC GROWTH	8
2.3 AVERAGE WEEKDAY VEHICLE MILES TRAVELED (VMT)	10
2.4 TRAVEL MODE SHARE AND ACTIVE TRANSPORTATION	11
2.5 CONGESTION	13
2.6 COOPERATIVE FORECASTS: EMPLOYMENT, POPULATION, AND HOUSEHOLD FORECASTS	14
2.7 REGIONAL TRENDS SUMMARY	15
3. LITERATURE REVIEW	17
3.1 KEY INSIGHTS	18
3.2 LITERATURE REVIEW SUMMARY	20
4. CRASH DATA ANALYSIS	21
4.1 OVERVIEW OF CRASH DATA	22
4.2 TPB SAFETY TARGETS	26
4.3 CRASH TYPES	27
4.4 CRASH DATA BY INVOLVED FACTORS	29
4.5 CRASH DATA SUMMARY	30
5. FOCUS AREAS	32
5.1 IDENTIFYING FOCUS AREAS	32
5.2 FOCUS AREA DEEP-DIVES	34
5.2.1 FOCUS AREA #1 – PEDESTRIANS	34
5.2.2 FOCUS AREA #2 - BICYCLISTS	39
5.2.3 FOCUS AREA #3 – INTERSECTIONS	43
5.2.4 FOCUS AREA #4 – SPEEDING	45
5.2.5 FOCUS AREA #5 – IMPAIRED DRIVING	49
5.2.6 FOCUS AREA #6 – PRINCIPAL ARTERIALS	52
5.3 FOCUS AREA SUMMARY	57
6. COVID-19 IMPACTS ON CRASHES	61
6.1 IMPACTS ON TRAVEL ACTIVITY	61
6.2 IMPACTS ON CRASHES	61
6.3 SHIFT IN BEHAVIORAL TRENDS	62
6.4 COVID-19 IMPACTS SUMMARY	64
7. JURISDICTIONAL QUESTIONNAIRE	66
7.1 KEY QUESTIONNAIRE FINDINGS	66
7.2 QUESTIONNAIRE SUMMARY	67
8. RECOMMENDATIONS AND NEXT STEPS	69
8.1 STEPS TAKEN BY THE TPB SINCE 2020	69
8.2 RECOMMENDATIONS	70
8.2.1 PRIORITIZE FOCUS AREAS	70
8.2.2 ADOPT THE SAFE SYSTEM APPROACH	70
8.2.3 RESTRUCTURE COUNTERMEASURES USING THE SAFE SYSTEM FRAMEWORK	71
8.2.4 MORE EMPHASIS ON POST-CRASH CARE	72

8.2.5 PURSUE ADDITIONAL FUNDING OPPORTUNITIES	72
8.2.6 DEVELOP A MULTIJURISDICTIONAL ARRANGEMENT.....	73
8.2.7 CONTINUE TO LEVERAGE FORUMS AT MWCOG.....	73
8.3 FUTURE AREAS OF RESEARCH	73
9. APPENDICES	76
9.1 APPENDIX A: POPULATION DATA BY JURISDICTION, 2019-2023	76
9.2 APPENDIX B: AVERAGE WEEKDAY VEHICLE MILES TRAVELED (VMT) DATA BY JURISDICTION, 2019-2023	77
9.3 APPENDIX C: CRASH DATA BY TPB REGION AND JURISDICTION, 2019-2023	78
9.4 APPENDIX D: EQUITY EMPHASIS AREA ANALYSIS, 2019-2023.....	79
9.5 APPENDIX E: MAPPING RECOMMENDED COUNTERMEASURES TO FOCUS AREAS	82

FIGURES

Figure 1: Roadway Safety Study Methodology	3
Figure 2: MWCOG TPB Region Zones	8
Figure 3: Overall Population Growth In the TPB Region, 2013-2023	9
Figure 4: Per Capita Personal Income In the COG Region, 2017-2023	10
Figure 5: Jobs In the COG Region, 2013-2023	10
Figure 6: Average Weekday VMT for the COG Region, 2013-2023	11
Figure 7: Capital Bikeshare Ridership, 2010-2023	13
Figure 8: Annual Average Travel Time Index by Highway Category - Total AM and PM Peaks, 2010-2023.	13
Figure 9: Employment, Population, and Household Forecasts In the COG Region, 2020-2050	14
Figure 10: Total Crashes, 2013-2023	22
Figure 11: Fatalities, 2013-2023	23
Figure 12: Serious Injuries, 2013-2023	23
Figure 13: Fatalities by TPB Subregions, 2019-2023	24
Figure 14: Serious Injuries by TPB Subregions, 2019-2023	24
Figure 15: Comparative Analysis of Fatalities (left) and Serious Injuries (right), 2013-2017 and 2019-2023	25
Figure 16: Fatality Rate by 100,000 People (left) and Serious Injury Rate by 100,000 People (right), 2019-2023	25
Figure 17: Pedestrian Fatalities as a Percentage of Total Fatalities, 2013-2023	26
Figure 18: Crash Types Categories as a Percentage of Fatalities (left) and Serious Injuries (Right), 2019-2023	28
Figure 19: Involved Factors for Fatalities and Serious Injuries, 2019-2023	29
Figure 20: TPB Region Pedestrian Fatalities (left) and Serious Injuries (right), 2019-2023	34
Figure 21: Pedestrian Fatalities by 100 Million Annual VMT (left) and Pedestrian Serious Injuries by 100 Million VMT (right) by Subregions, 2019-2023	35
Figure 22: Pedestrian fatalities (left) and Serious Injuries (right) by Month of the Year, 2019-2023	36
Figure 23: Pedestrian Fatalities (left) and Serious Injuries (right) by Hour of the Day, 2019-2023	36
Figure 24: Location of Pedestrian Fatalities (left) and Serious Injuries (right), 2019-2023	37
Figure 25: Pedestrian Fatalities and Serious Injuries with Multiple Involved Factors, 2019-2023	38
Figure 26: Bicyclists Fatalities (left) and Bicyclists Serious Injuries (right), 2019-2023	39
Figure 27: Bicyclists Fatalities and Serious Injuries by Subregion, 2019-2023.....	40
Figure 28: Bicyclists Fatalities and Serious Injuries by Month of the Year (left) and Hour of the Day (right), 2019-2023	41
Figure 29: Bicyclist Fatalities and Serious Injuries Locations, 2019-2023.....	41
Figure 30: Multiple Involved Factors for Bicyclist Fatalities and Serious Injuries, 2019-2023.....	42
Figure 31: Intersection Fatalities (left) and Serious Injuries (right), 2019-2023	43
Figure 32: Intersection Fatalities (left) and Serious Injuries (right) by 100 Million Annual VMT per Subregion, 2019-2023	43
Figure 33: Intersection Fatalities (top) and Serious Injuries (bottom) by Hour of the Day, 2019-2023	44

Figure 34: Multiple Involved Factors for Intersection Fatalities and Serious Injuries, 2019-2023.....	44
Figure 35: Speed-Related Fatalities (left) and Serious Injuries (right), 2019-2023	45
Figure 36: Speeding Fatalities (left) and Serious Injuries (right) per 100 Million VMT by Subregion, 2019-2023	45
Figure 37: Intersection Fatalities (top) and Serious Injuries (bottom) by Hour of the Day, 2019-2023	46
Figure 38: Speed-Related Fatalities and Serious Injuries Locations, 2019-2023.....	47
Figure 39: Speed-Related Fatalities and Serious Injuries by Roadway Type, 2019-2023.....	47
Figure 40: Multiple Involved Factors for Speed-Related Fatalities and Serious Injuries, 2019-2023	48
Figure 41: Impaired Driving Fatalities (left) and Serious Injuries (right), 2019-2023	49
Figure 42: Impaired Driving Fatalities and Serious Injuries per 100 Million VMT by Subregion, 2019-2023	49
Figure 43: Impaired Driving Fatalities and Serious Injuries Month of the Year (left) and Day of the Week (right), 2019-2023	50
Figure 44: Impaired Driving Fatalities and Serious Injuries by Hour of the Day, 2019-2023.....	50
Figure 45: Impaired Driving Fatalities and Serious Injuries Locations, 2019-2023.....	51
Figure 46: Multiple Involved Factors for Impaired Driving Fatalities and Serious Injuries, 2019-2023	51
Figure 47: Principal Arterial Fatalities (left) and Serious Injuries (right), 2019-2023	52
Figure 48: Principal Arterial Fatalities (left) and Serious Injuries (right) per 100 Million VMT by Subregion, 2019-2023	52
Figure 49: Principal Arterials Fatalities and Serious Injuries by Time of Day, 2019-2023	53
Figure 50: Principal Arterial Fatalities and Serious Injuries Locations, 2019-2023	53
Figure 51: Multiple Involved Factors in Principal Arterials Fatalities and Serious Injuries, 2019-2023	54
Figure 52: COVID-19 Impacts - Shifts in Behavioral Trends, 2019-2023	63

TABLES

Table 1: Data Sources.....	4
Table 2: TPB Region Zones.....	8
Table 3: Change in Mode Share of Commute Trips by Region and Zone (%)	12
Table 4: Summary of Peer Jurisdictions Reviewed.....	17
Table 5: NCR Annual Highway Safety Crash Data, 2019-2023.....	27
Table 6: Fatalities and Serious Injuries by Crash Type, 2019-2023	28
Table 7: Focus Area Selection Analysis	32
Table 8: Recommended Focus Areas - Cross-cutting Analysis	55
Table 9: Summary of Regional Travel and Crash Patterns, 2019-2023	61

PROJECT PARTNERS

The project team coordinated regularly with Metropolitan Washington Council of Government (COG) and National Capital Region Transportation Planning Board (TPB) staff throughout the course of the study. The TPB Transportation Safety Subcommittee, the TPB Technical Committee, and the TPB reviewed this document and provided input.

GLOSSARY OF TERMS

Angle Crash- Crash type where a vehicle strikes another vehicle at an angle (left or right turns).

Backing Crash- Crash type that involves an impact where a vehicle collides with another vehicle or a fixed object while reversing.

Crash Category – Combination of crash types based on common characteristics.

Crash Type – Crashes are defined based on nature of collision. Each crash has a unique crash type.

Fatal Crash – Crash contributing to at least one fatality.

Fatality – Death within 30 days of the crash.

Focus Area -An area identified in the study where a disproportionately high number of fatalities or serious injuries occur (Speed, Impairment, Pedestrian, etc..)A geographic or thematic area identified in the study where a disproportionately high number of fatalities or severe injuries occur.

Head On Crash- Crash type where the front of a vehicle strikes the front of another vehicle.

Intersection- A location where two or more roadways meet or cross, It excludes driveways, minor access points, and midblock crossings.

Involved Factor – A factor that contributes to a crash. Each crash can have multiple involved factors.

Linear Regression Trendline – Straight line that illustrates the overall direction or pattern of the data represented by a bar chart.

Maryland Automated Crash Reporting System – Maryland law enforcement agencies report crash data to the Department of State Police through the Automated Crash Reporting System (ACRS).

Non-Collision Crash – Crash type where the primary event causing damage or injury is not a collision between two or more vehicles or a vehicle and a fixed object. Instead, it could involve a single vehicle experiencing an event like an overturn or fire.

Parked Vehicle Crash – Crash type that refers to a crash between a moving vehicle and a vehicle that is stationary (parked).

Rear End Crash- Crash type that refers to a crash when the front of a vehicle strikes the rear of another vehicle.

Roadway Departure/Fixed Object Crash – Crash type that refers to a vehicle leaving the paved or designated travel portion of a road, potentially leading to a collision with roadside objects or a rollover.

Safe System Approach¹ – A Safe System Approach is a roadway safety strategy that considers interacting systems such as infrastructure, speeds, and road users, to design a transportaion system with redundancies to protect all road users.

Serious Injury – Disabling or incapacitating injuries that prevents normal activity.

Serious Injury Crash – Crash contributing to at least one serious injury.

Vision Zero – A global movement that aims to prevent all traffic fatalities and severe injuries.

Zero Death Goal – The Zero Death Goal is a transportation safety policy and planning approach that aims to eliminate all traffic-related fatalities on roadways.

¹ Based on USDOT definition of Safe System Approach:
<https://www.transportation.gov/safe-system-approach>

ACRONYMS

BMC – Baltimore Metropolitan Council.

BUILD – Better Utilizing Investments to Leverage Development.

COG – Metropolitan Washington Council of Governments.

COVID-19 – Coronavirus Disease 2019.

DDOT – District Department of Transportation.

DOT – Department of Transportation.

FHWA – Federal Highway Administration.

HSIP – Highway Safety Improvement Program.

MARC – Mid-America Regional Council.

MHSO – Maryland Highway Safety Office.

MPO – Metropolitan Planning Organization.

NCR – National Capital Region.

NHTSA – National Highway Traffic Safety Administration.

TPB – National Capital Region Transportation Planning Board

1

Introduction

1. Introduction

Safety of all modes of transportation has long been a priority of the National Capital Region (NCR). Safety permeates all elements of the regional transportation planning process and is a top concern for member jurisdictions of the National Capital Region Transportation Planning Board (TPB). However, in recent years, crash trends have remained at unacceptable levels above established thresholds which runs counter to the goals and vision of the TPB.

The TPB has undertaken this study to identify the factors involved in fatal and serious injury crashes across the region, and to recommend projects, programs, and policies that could be prioritized to improve safety outcomes. This study is a follow-up to a 2020 TPB study that analyzed crash data from 2013-2017.² It evaluates crash statistics from 2019 to 2023. Although 2018 data is included at a high level, the detailed analysis was for the 2019–2023 period for several reasons: (a) using a five-year analysis timeframe ensures consistency with the previous study and makes comparisons simpler; (b) this study window incorporates the latest available data (2023) at the time this study was undertaken; and (c) this study window captures the return to normal data post-pandemic by including 2023 data.

1.1 STUDY PURPOSE

The purpose of this safety study is to understand the factors contributing to fatal and serious injury crashes across the region, to uncover deeper understanding of these trends from a quantitative and qualitative perspective, and to provide recommendations to significantly improve safety for users of the regional transportation network. The study approach was tailored to this purpose as follows:

- 1. Conduct quantitative crash data analysis to identify safety trends by:**
 - Understanding the region's safety profile (i.e., regional roadway safety performance, trends, crash characteristics, and involved factors).
 - Providing insights into the nature, frequency, and location of fatal and serious injury crashes.
- 2. Conduct qualitative analysis to provide a more complete understanding of safety issues by:**
 - Conducting a literature review of safety research and analysis in the region and beyond.
 - Administering a jurisdictional questionnaire of staff involved in traffic safety practices throughout the region and evaluating their responses.
- 3. Provide recommendations to improve road safety by:**
 - Providing an evaluation of crash-related focus areas (characteristics, frequency, and involved factors).
 - Reviewing the safety countermeasures and strategies included in [TPB Resolution R3-2021](#) and suggesting updates.

1.2 STUDY APPROACH

² <https://www.mwcog.org/transportation/planning-areas/management-operations-and-safety/roadway-safety/>.

INTRODUCTION

As shown on **Figure 1**, the study approach is comprised of five main steps, including collecting and analyzing road safety data from 2019 to 2023 to develop safety profiles for the COG region, conducting a literature review to identify systemic involved factors in roadway crashes and to identify best practices from member jurisdictions, administering a member jurisdiction questionnaire to identify traffic safety challenges, trends, and ongoing efforts, identifying recommendations, and drafting and publishing the final report.

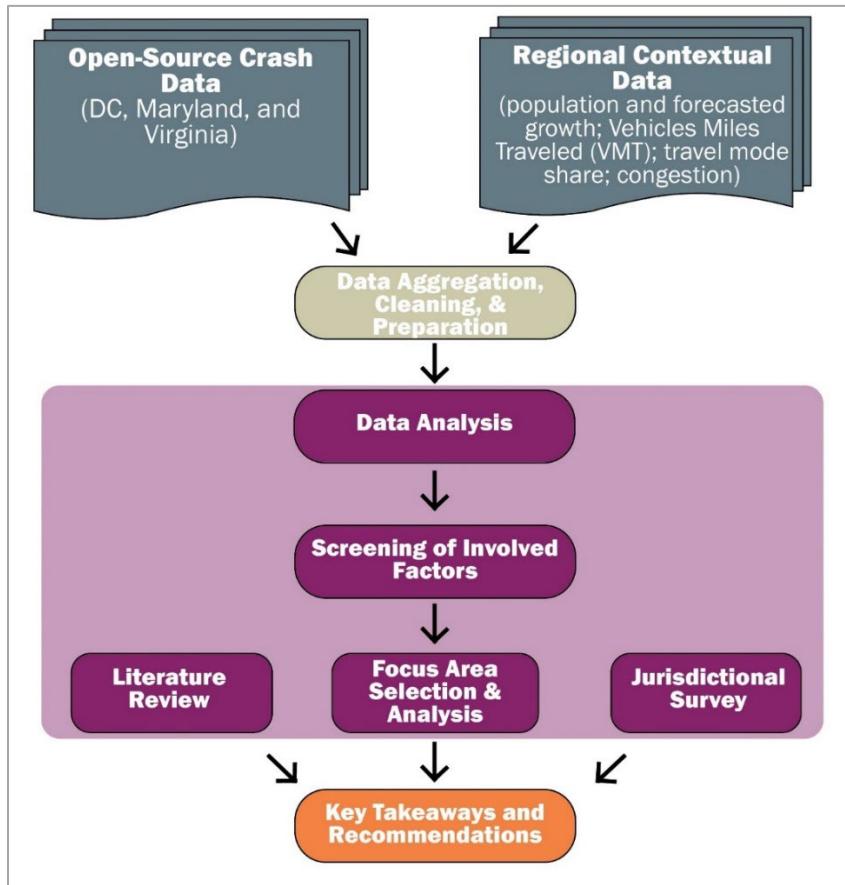


Figure 1: Roadway Safety Study Methodology

DATA AGGREGATION, DATA CLEANING & PREPARATION

- The timeframe for the crash data analysis is from the beginning of January 2019 to the end of December 2023. The study relies on crash data as well as demographic and economic data to understand the context within which crashes occur. **Table 1** shows the data sources used in the analysis for this report.
- The team developed safety profiles and identified involved factors and areas of safety concern.
- To account for differences in the way crashes are reported at the jurisdictional level, data harmonization was necessary to ensure regional consistency. This involved ensuring consistent verbiage related to crash types and involved road users across jurisdictions for proper aggregation of data throughout the region.

INTRODUCTION

- The crash data used in this study is structured at the incident level, meaning each record represents a single crash event. However, each crash may involve multiple people, each with different outcomes (e.g., fatalities, serious injuries, minor injuries, or no injury). As a result, the number of people affected by the crashes often exceeds the number of total crashes during the study period. This distinction is important for interpreting the analysis throughout the report, where both crash counts and person-level outcomes are presented.
- In 2021, the District of Columbia³ updated its crash severity assessment methodology to better align with the KABCO scale⁴, a standardized system used nationwide to classify injury severity in motor vehicle crashes. The KABCO scale categorizes outcomes as follows:
 - K- Fatal Injury
 - A- Suspected serious injury
 - B- Suspected minor injury
 - C- Possible injury
 - O- No apparent injury
- While each state and jurisdictions may use slightly different definitions and criteria for classifying each crash severity, for the purposes of this study, severity levels were standardized to align with the KABCO framework. This approach ensures consistency across the dataset and allows for meaningful regional analysis of crash outcomes.
- State Departments of Transportation (DOTs) continuously update and refine their safety, roadway, and performance data. The figures presented in this report represent a snapshot of the data available in state DOT databases at the time the dataset was extracted. Because states may revise, correct, or augment their data after this report's data pull, some values may differ from those found in more recent state publications or online databases. All analyses in this report reflect the best available information at the time of extraction.

Table 1: Data Sources

DATA	SOURCES AND LINKS
VEHICLE MILES TRAVELED (VMT)	DATA RECEIVED FROM COG STAFF (2013-2023).
POPULATION	2019-2023 AMERICAN COMMUNITY SURVEY 5-YEAR ESTIMATES: <u>TABLE DP05 – ACS DEMOGRAPHIC AND HOUSING ESTIMATES.</u>
PER CAPITA PERSONAL INCOME	BUREAU OF ECONOMIC ANALYSIS, CAINC1 COUNTY AND MSA PERSONAL INCOME, POPULATION, PER CAPITA PERSONAL INCOME 2017–2023. LAST UPDATED: NOVEMBER 14, 2024.
EMPLOYMENT	BUREAU OF LABOR STATISTICS, QUARTERLY CENSUS OF EMPLOYMENT & WAGES—QCEW. DATA EXTRACTED: FEBRUARY 12, 2025.
EQUITY EMPHASIS AREAS	EXPORTED FROM: <u>MWCOG OPEN DATA.</u> LAST UPDATED: MAY 30, 2025.

³ Note: This recalibration did not impact the number of reported serious injuries or fatalities. The update included a list of severities that better align with KABCO.

⁴ KABCO Injury Classification Scale and Definitions by State (<https://highways.dot.gov/media/20141>).

DATA	SOURCES AND LINKS
DISTRICT OF COLUMBIA CRASH DATA	RECEIVED 2019-2023 DATA FROM DISTRICT DEPARTMENT OF TRANSPORTATION (DDOT) ON MAY 20, 2024, AND JULY 17, 2024. UPDATES FOR 2023 DATA WERE EXTRACTING IN MAY 2025 USING: DC OPEN DATA .
VIRGINIA CRASH DATA	EXPORTED 2019 TO 2023 FROM: VDOT CRASH ANALYSIS TOOL . DATE EXTRACTED: MAY 2025.
MARYLAND CRASH DATA	EXPORTED 2019-2023 DATA FROM: MD AUTOMATED CRASH REPORTING SYSTEM . DATE EXTRACTED: MAY 2025.

LITERATURE REVIEW

- The literature review identified and analyzed systemic involved factors such as unemployment, land use, legislation, vehicle size, population growth, and investment in non-automobile transportation modes.
- The team incorporated lessons learned from successful frameworks (such as Safe System Approach) and best practices in developing recommendations and identifying next steps to improve regional road safety.

JURISDICTIONAL QUESTIONNAIRE

- The team administered a jurisdictional questionnaire to gather perspectives of staff at TPB member jurisdictions to complement quantitative data analysis. The questionnaire responses provided insights into several topics including local traffic safety challenges and trends, as well as ongoing efforts to improve safety.

FOCUS AREA SELECTION & ANALYSIS

- The team integrated qualitative information from the literature review and jurisdictional survey with quantitative data looking at safety profiles and involved factors to identify focus areas for improvement. The different involved factors included behavioral factors (such as distracted driving, impaired driving, speeding, not wearing a seatbelt), driver age (such as young and old drivers), and vulnerable road users (such as pedestrians or bicyclists hit by a vehicle), among others.

RECOMMENDATIONS AND NEXT STEPS

- The team suggested updates to the safety countermeasures identified in TPB Resolution R3-2021 and developed recommendations for member jurisdictions to improve road safety regionally.

1.3 ONGOING TPB SAFETY EFFORTS

The National Capital Region Transportation Planning Board (TPB) has long acknowledged roadway safety as an essential element of the region's livability and is committed to improving road safety across the region. The TPB safety planning program helps to advance roadway safety in the region by

INTRODUCTION

highlighting it as a policy priority and providing resources to support the safety efforts of member jurisdictions.

In addition to convening local safety experts through its Transportation Safety Subcommittee, setting annual highway safety targets, and sponsoring the Street Smart safety education campaign, the TPB has increased efforts in recent years to address roadway safety. In 2021, the TPB adopted Safety Resolution R3-2021, to establish a regional roadway safety policy. The policy urges member jurisdictions to reaffirm road safety as a top priority and to prioritize the implementation of projects, programs, and policies that strive to reduce the number of fatal and serious injury crashes on the region's roads. The resolution provides a set of specific actions that can be taken by jurisdictions to improve road safety and establishes a technical assistance program for local roadway safety projects, the Regional Roadway Safety Program.

In 2024, TPB held a Regional Roadway Safety Summit to explore transportation safety issues affecting the region and offer a forum to discuss a comprehensive approach to lower traffic-related injuries and fatalities in our communities.

This study seeks to build upon these efforts by analyzing and sharing crash data to identify recommended actions for the future.

2

Setting the Context: Regional Trends

2. Setting the Context: Regional Trends

Crashes are not random - they result from a system of intersecting influences, including demographic shifts, travel behavior, economic activity, land use, and roadway design. Understanding some of these systemic factors helps ensure that safety solutions are preventative, not just reactive.

This section provides some context for the regional safety profile by showing regional trends that influence roadway safety. These include changes in population, employment, income, travel behavior, and demographic forecasting. Understanding these trends helps frame the crash analysis presented in subsequent chapters and supports a more comprehensive view of factors shaping roadway safety outcomes.

2.1 THE TRANSPORTATION PLANNING BOARD (TPB) REGION

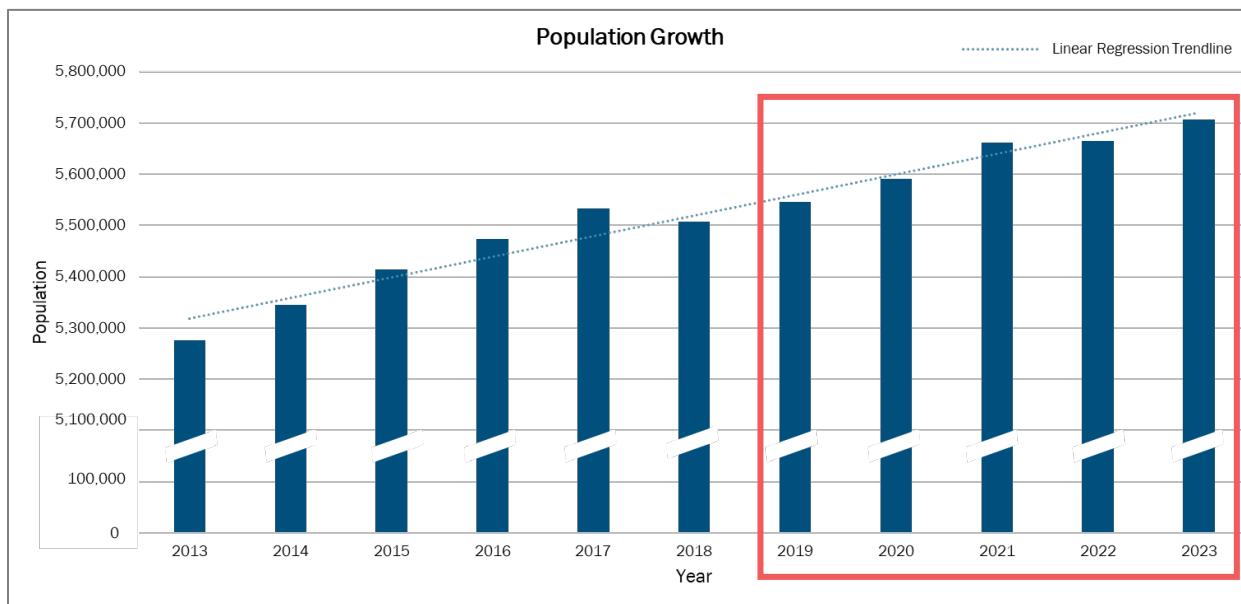
The National Capital Region Transportation Planning Board (TPB) is the federally designated Metropolitan Planning Organization (MPO) for the region and plays an important role as the regional forum for transportation planning. The TPB prepares transportation plans and programs to ensure that federal transportation funds flow to the metropolitan Washington region.

Figure 2: MWCOG TPB Region Zones

The TPB region is comprised of the District of Columbia and select jurisdictions in suburban Maryland and Northern Virginia. The region is divided into three subregions: Urban Core, Inner Suburbs, and Outer Suburbs (**Figure 2**) and 20 jurisdictions (**Table 2**).

Table 2: TPB Region Zones

URBAN CORE	INNER SUBURBS	OUTER SUBURBS
DISTRICT OF COLUMBIA	MONTGOMERY COUNTY	CHARLES COUNTY
ARLINGTON COUNTY	PRINCE GEORGE'S COUNTY	FREDERICK COUNTY
CITY OF ALEXANDRIA	FAIRFAX COUNTY	LOUDOUN COUNTY
	CITY OF FAIRFAX	PRINCE WILLIAM COUNTY
	CITY OF FALLS CHURCH	CITY OF MANASSAS
	CITY OF ROCKVILLE	CITY OF MANASSAS PARK
	CITY OF GAITHERSBURG	CITY OF FREDERICK
	CITY OF BOWIE	
	CITY OF LAUREL	
	CITY OF COLLEGE PARK	

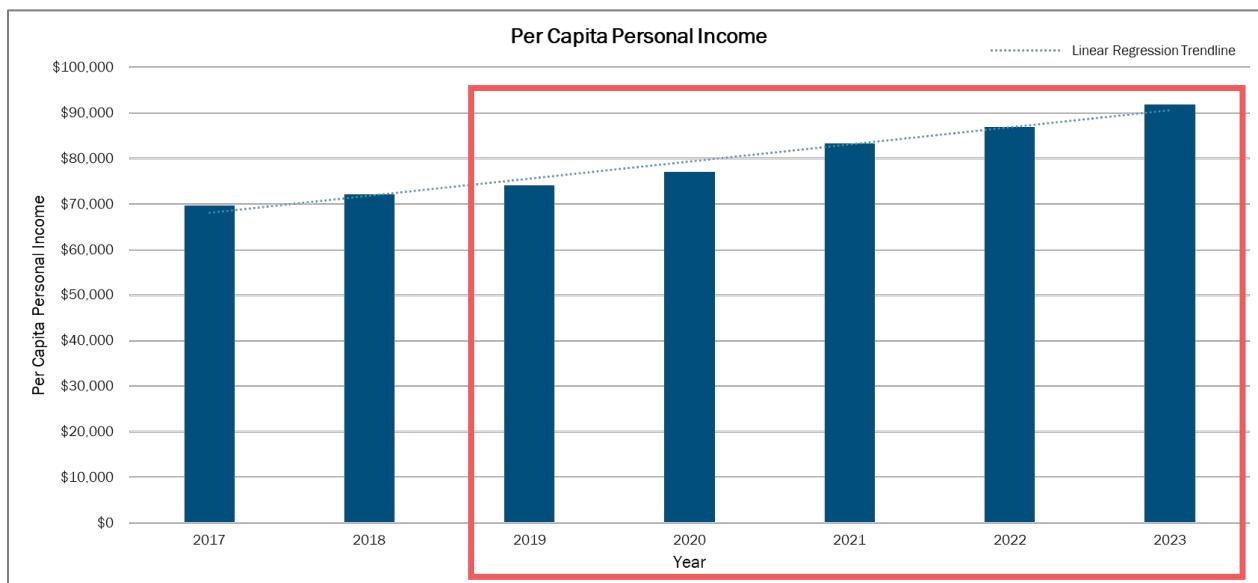

2.2 POPULATION AND ECONOMIC GROWTH

Population, income, and employment have an impact on the level of activity on a region's transportation system. The level of activity can be a proxy for an individual's potential exposure to crash risk and impacts of transportation safety. Reviewing and understanding these overall regional trends provides context for the crash information in the subsequent sections of this report.

SETTING THE CONTEXT: REGIONAL TRENDS

Overall, in the study period, the average annual population in the TPB region has increased by about 40,000 (or 1%). Most of this growth was seen in the Outer Suburbs (Charles and Frederick Counties in Maryland and Loudoun and Prince William Counties in Virginia) with an average annual population increase of about 30,000 (or 2%). The Inner suburbs experienced modest growth with an average annual population increase of about 13,000, while the average annual population in the Urban Core decreased by about 3,000. See **Appendix A: Population Data by Jurisdiction, 2019-2023** for details on population growth by jurisdiction from 2019, and **Figure 3** for overall population growth since 2013. Note breaks have been included in Figure 3 and may be used in other figures to fit the scale of numbers in the y-axis.

Figure 3: Overall Population Growth in the TPB Region, 2013-2023


[Source: 2019-2023 American Community Survey 5-Year Estimates: Table DP05 – ACS Demographic and Housing Estimates.]

Per capita income exerts a strong influence on travel behavior (the amount and mode of travel). It impacts the level of participation in outside activities (working, shopping, conducting personal business, recreation, etc.), which is the underlying source of the demand for travel. Per capita income also impacts access to personal vehicles, which may impact the mode of travel (non-motorized, transit, personal vehicle or shared ride).⁵ **Figure 4** shows per capita personal income in the TPB region from 2017 to 2023, showing a progressive year-over-year increase.

⁵ https://www.fhwa.dot.gov/policyinformation/tables/vmt/vmt_model_dev.cfm#doc514670596.

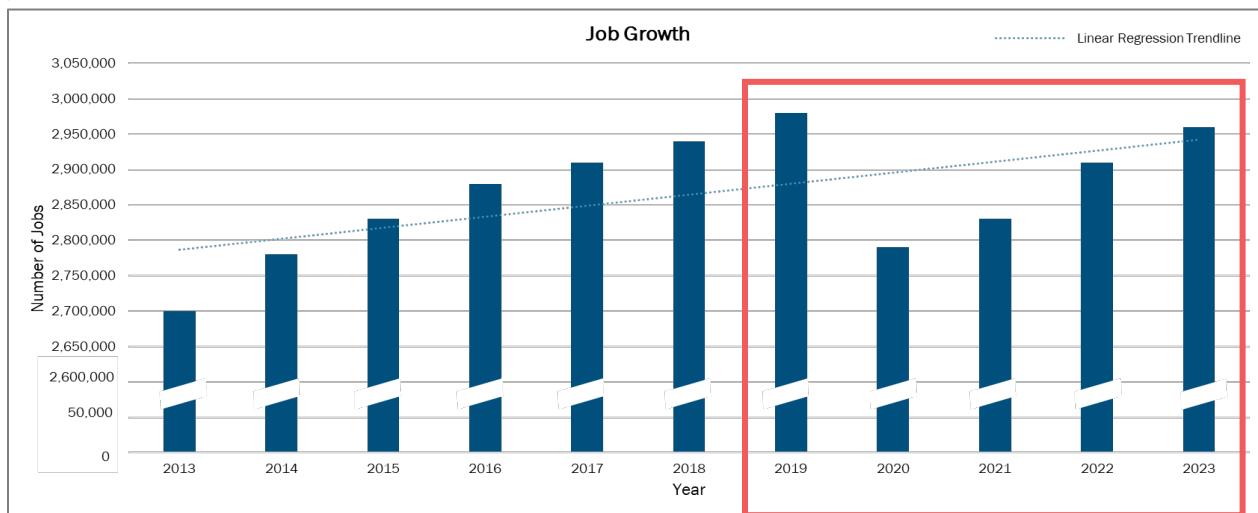

SETTING THE CONTEXT: REGIONAL TRENDS

Figure 4: Per Capita Personal Income in the TPB Region, 2017-2023

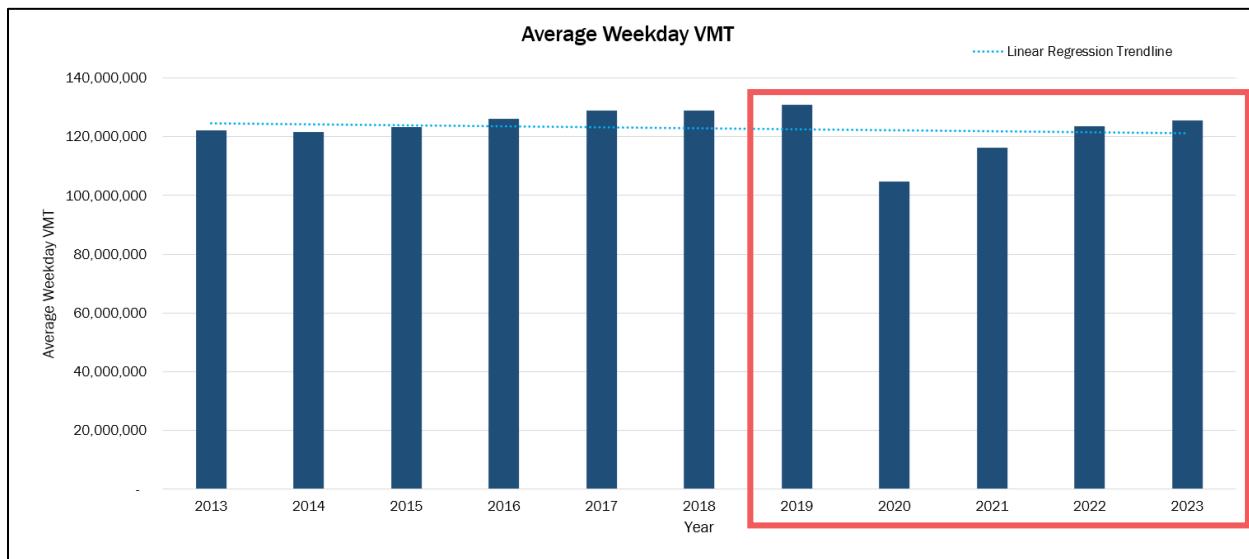
[Source: Bureau of Economic Analysis, CAINC1 County and MSA Personal Income, Population, Per Capita Personal Income 2017–2023, Last updated: November 14, 2024.]

Figure 5 shows the number of employees in the TPB region from 2013 to 2023, reflecting growth until the COVID-19 pandemic. In 2023, total job numbers seem to be returning to pre-pandemic levels. Employment is another proxy for travel demand. Employment centers are major travel destinations; consequently, employment is a primary input to any travel demand estimation process.⁶

Figure 5: Jobs in the COG Region, 2013-2023

[Source: Bureau of Labor Statistics, Quarterly Census of Employment & Wages—QCEW, All Employees in Total Covered Total, All establishment sizes, All Employees, Data extracted on: February 12, 2025.]

2.3 AVERAGE WEEKDAY VEHICLE MILES TRAVELED (VMT)


⁶ <https://www.mwcog.org/transportation/data-and-tools/modeling/inputs-outputs/>.

VMT is a measure of travel activity. There is a strong positive correlation between VMT and traffic crashes. Essentially, if all the other factors remain the same, as the amount of driving (VMT) increases, the number of crashes also tends to increase. This is because increased driving means more exposure to potential crashes. The average weekday VMT is a measure of how many miles vehicles collectively traveled averaged over weekdays, reflecting typical travel activity during the weekday.

As seen in Appendix B, across the TPB region, the average weekday VMT fell by four percent from 2019 to 2023. On average, the TPB region experienced a decrease of approximately 1.3 million weekday VMT. While suburban Maryland consistently had the highest average weekday VMT year over year, that subregion also saw the largest average annual decline, decreasing by about 840,000 weekday VMT per year. This decline and the overall decline in VMT from 2019 to 2023 in the TPB region reflects significant travel reductions in 2020 and 2021 due to the COVID-19 pandemic. Significant changes can be observed across each jurisdiction starting in 2020. Factors such as the initial travel restrictions at the onset of COVID in 2020, growth in work-from-home policies, and a shift to multimodal commuting patterns could be responsible for this change in travel behavior. The impacts of the pandemic in 2020 and 2021 on travel behavior and crash trends are explored in more detail in Section 6.

Figure 6 shows the average weekday VMT in the TPB region from 2013 through 2023. Despite steady population growth and rising incomes, VMT remained relatively stable, with a brief decrease in 2020 due to the COVID-19 pandemic followed by gradual recovery. This stability may reflect expanded multimodal options, including better access to transit and active transportation infrastructure throughout the TPB region.

Figure 6: Average Weekday VMT for the COG Region, 2013-2023
 [Source: Metropolitan Washington Council of Governments (MWCOG), 2013-2023]

2.4 TRAVEL MODE SHARE AND ACTIVE TRANSPORTATION

The TPB's once-in-a-decade Regional Travel Survey (RTS) helps paint a detailed picture of residents' daily travel patterns. Conducted approximately every ten years since 1968, the survey collects

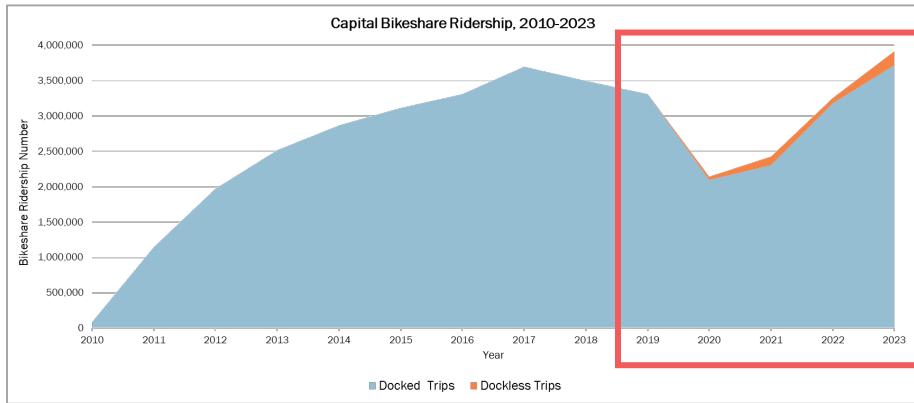
SETTING THE CONTEXT: REGIONAL TRENDS

demographic and travel information from a randomly selected representative sample of households in the region and adjacent areas.

The 2017/2018 travel survey shows an increase in bicycle commute trips (from 1.1 percent to 2.5 percent) and walking trips (2.7 percent to 3.8 percent) throughout the region. There were significant increases in bus transit, rail transit, and taxi/ride-hail commute trips in the region, while vehicle trips decreased (Table 3). **This shift towards multimodal travel is most pronounced in the Urban Core.** While the travel survey was last updated before the study period, additional evidence (such as the Capital Bikeshare data discussed below) suggests that these trends continued or have even increased from 2019 through 2023. **Increased use of transit, which itself increases pedestrian exposure, along with an increase in non-motorized modes of travel leading to higher levels of pedestrian activity, thereby increasing exposure.**

Table 3: Change in Mode Share of Commute Trips by Region and Zone (%)

MODE	TPB REGION 07/08	TPB REGION 17/18	CORE 07/08	CORE 17/18	INNER SUBURB 07/08	INNER SUBURB 17/18	OUTER SUBURB 07/08	OUTER SUBURB 17/18
DRIVE ALONE	66.7	64.9	46.9	34.6	69.1	70.1	78.3	82.3
DRIVER WITH OTHERS	11.4	7.4	7.8	4.1	11.9	7.4	13.2	11
RAIL TRANSIT	14.2	15.5	25	29.8	13.9	14.6	4.9	3.2
BUS TRANSIT	3.3	4.3	7.7	9.1	2.4	3.2	1.7	2.2
WALK	2.7	3.8	8.5	10.8	1.3	2.3	1	0.5
BICYCLE	1.1	2.5	2.9	7.6	0.8	1.3	0.3	0.4
TAXI/RIDE-HAIL	0.3	1.3	0.7	3.4	0.3	1	0	0.1
OTHER	0.4	0.3	0.5	0.7	0.2	0.2	0.7	0.2

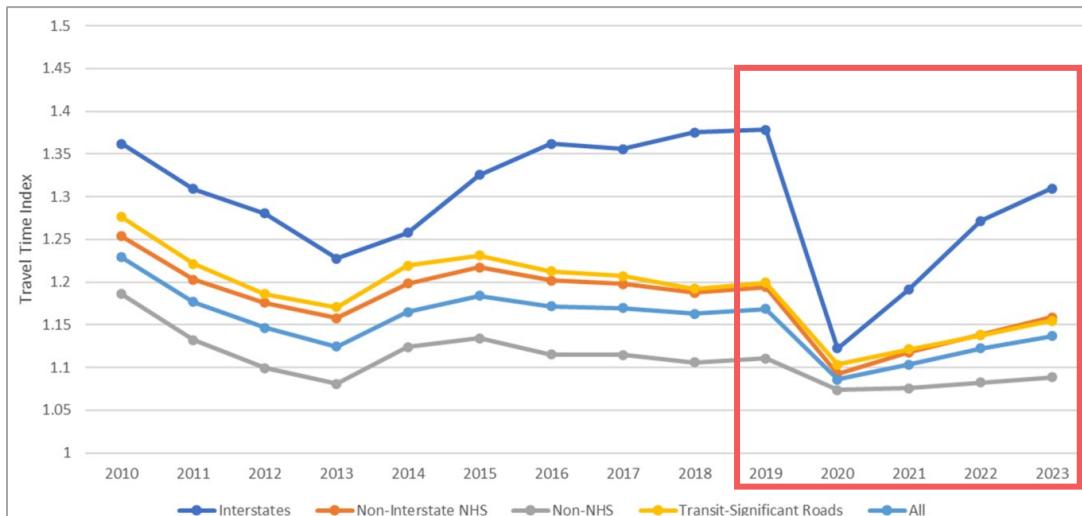

[Source: Metropolitan Washington Council of Governments, [Regional Travel Survey](#)]

Capital Bikeshare is metropolitan DC's bikeshare service, offering more than 5,000 bikes and 600 stations across seven jurisdictions in the COG region. Bikeshare is an integral part of the region's bike infrastructure network and plays an important role in increasing access to active transportation. **Figure 7** shows an overall increase in Capital Bikeshare ridership across the region, apart from a significant decrease in 2020 due to the COVID-19 pandemic.⁷ Ridership levels have returned to pre-pandemic levels, with the highest ridership numbers occurring in 2023.

⁷ <https://data.bts.gov/stories/s/Bikeshare-and-e-scooters-in-the-U-S-/fwcs-jpr/#:~:text=As%20of%20June%202030%2C%202024.number%20of%20stations%20to%208%2C838>.

SETTING THE CONTEXT: REGIONAL TRENDS

Figure 7: Capital Bikeshare Ridership, 2010-2023

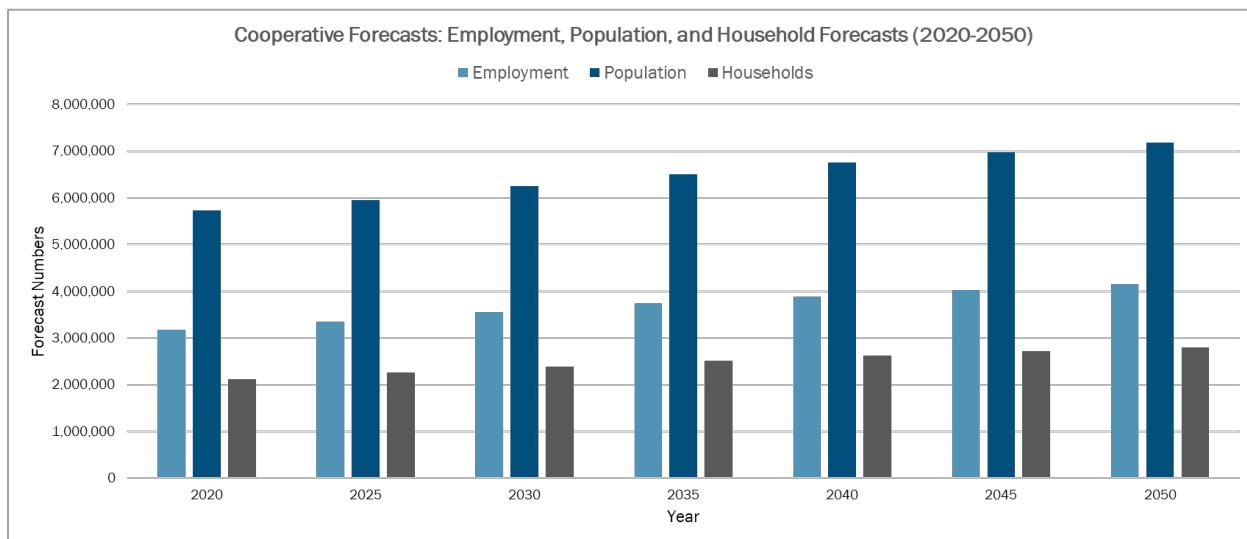

[Source: Bureau of Transportation Statistics (BTS), [Bikeshare and E-Scooter Systems in the U.S.](#)]

2.5 CONGESTION

The analysis of regional congestion trends from 2010 to 2023 highlights substantial fluctuations in traffic congestion, notably influenced by the COVID-19 pandemic. The congestion intensity, as measured by the Travel Time Index (TTI) from a traveler's perspective, decreased during the pandemic and reached a historic low TTI of 1.17 in 2020.

TTI quantifies the impact of congestion on travel time and is calculated by dividing the average travel time during the peak period by the free-flow travel time. For example, in 2023 the COG region had a TTI of just above 1.3 for interstates, which means that travel speeds on interstates are 30 percent slower than free flow.

Although the TTI rebounded in 2023, it remained below pre-pandemic levels. As shown in **Figure 8**, Interstates exhibit higher TTI values than other road types, emphasizing the need for effective traffic management. **Lower levels of congestion may increase a driver's propensity for speeding.**


Figure 8: Annual Average Travel Time Index by Highway Category - Total AM and PM Peaks, 2010-2023

[Source: Metropolitan Washington Council of Governments (MWCOG), [Congestion Management Process \(CMP\) Technical Report](#)]

2.6 COOPERATIVE FORECASTS: EMPLOYMENT, POPULATION, AND HOUSEHOLD FORECASTS

Long-range forecasts provide the data necessary for analyzing the effects of growth, developing policy responses to regional issues, ensuring air quality conformity of transportation plans, and determining the demand for public facilities. COG provides regularly updated population, household, and employment forecasts for use in its planning and modeling activities as well as by the TPB and other state, regional, and local agencies. The latest forecast was published in 2023, as seen in **Figure 9**. The forecasts indicate approximately 25 percent growth in population and over 30 percent growth in employment and households between 2020 to 2050. As discussed before, these three factors are the principal drivers of travel demand. Therefore, the region is expected to experience a corresponding increase in VMT leading to increased crash exposure and must proactively address roadway safety to meet the safety challenges.

Figure 9: Employment, Population, and Household Forecasts in the COG Region, 2020-2050
 [Source: Metropolitan Washington Council of Governments (MWCOG), [Cooperative Forecast](#)]

The forecasted data is consistent with past trends. The region has grown and is expected to continue growing, spurring further transportation demand. TPB member jurisdictions must continue to “*think regionally, act locally*” to develop innovative approaches to improving safety for all modes.

2.7 REGIONAL TRENDS SUMMARY

Regional population, economic, and transportation trends between 2019 and 2023 increased the exposure for vulnerable road users to crashes on the region's roads. Some key findings from the regional analysis include:

Population and economic growth are driving transportation demand:

- The TPB region saw a 2.9 percent population increase from 2019-2023, led by rapid growth in the Outer Suburbs (e.g., Charles, Frederick, Loudoun, Prince William Counties).
- Although personal income increased steadily, employment dropped significantly in 2020 due to COVID. It has since begun to rebound but remains below 2019 levels.
- Future planning should account for continued growth through 2050 as the population is projected to exceed seven million, increasing pressure on multimodal networks and safety systems.

Vehicles Miles Traveled (VMT) decreased, then rebounded:

- VMT dropped 4 percent from 2019 to 2023, most likely due to the pandemic. This reduction was seen most acutely in the District of Columbia, which saw a nearly 7.5 percent decrease.
- By 2023, VMT is trending back to pre-pandemic levels, particularly in suburban Maryland and Northern Virginia.

Active and multimodal transportation has increased in the region:

- Walking, biking, and transit trips have all increased (based on 2017/2018 data), especially in the Urban Core. Commuting by bicycle rose from 1.1 percent to 2.5 percent; commuting by foot increased from 2.7 percent to 3.8 percent; and commuting by car alone dropped regionally but increased in the Outer Suburbs, perhaps reflecting a growing automobile dependency in peripheral areas of the region.
- Capital Bikeshare usage rebounded post-pandemic, with 2023 marking the highest ridership ever. This suggests an increased demand for bicycle infrastructure.
- These shifts expand exposure for vulnerable road users and heighten the need for safer pedestrian and bicycle infrastructure, particularly where volumes have increased but safe infrastructure may not have.

Congestion patterns have shifted, perhaps enabling risky driving:

- The region experienced a historic low in congestion in 2020 due to the pandemic.
- Lower congestion can create a false sense of safety and increased speeding, especially in suburban areas with wide arterial roads.

3

Literature Review

3. Literature Review

The study team conducted a literature review to provide insights into fatal and severe crashes and their underlying causal factors, including learning from leading communities in transportation safety. The following elements were included in the review:

- Non-infrastructure crash factors correlated with severe crashes.
- Regional safety initiatives practiced by peer metropolitan planning organizations (MPOs) and other cities.
- The importance of coordinating transportation safety goals and data collection.
- Strategic approaches to safety messaging.

It also highlighted best practices and lessons learned from cities and metropolitan planning organizations (MPOs) that have successfully employed Vision Zero and carried out extensive collaboration efforts with stakeholders. **Table 4** shows a summary of the peer jurisdictions reviewed.

Table 4: Summary of Peer Jurisdictions Reviewed

PEER JURISDICTION	TOPIC	LINKS
MARICOPA ASSOCIATION OF GOVERNMENTS (MAG), PHOENIX, ARIZONA	DATA ANALYSIS	<ul style="list-style-type: none"> • PEDESTRIAN SAFETY FORUM • MAG STRATEGIC TRANSPORTATION SAFETY PLAN 2020-2030 • MAG REGIONAL BICYCLE SAFETY ANALYSIS GUIDANCE DOCUMENT
EAST-WEST GATEWAY COUNCIL OF GOVERNMENTS (EWCOG), ST. LOUIS, MISSOURI	COMMUNITY ENGAGEMENT	<ul style="list-style-type: none"> • PUBLIC INVOLVEMENT PLAN • PUBLIC INVOLVEMENT PLAN ADVISORY COMMITTEE
NORTH JERSEY TRANSPORTATION PLANNING AUTHORITY (NJTPA), NEW JERSEY	EDUCATION AND TECHNICAL ASSISTANCE	<ul style="list-style-type: none"> • LOCAL SAFETY ACTION PLANS • COMPLETE STREETS TECHNICAL ASSISTANCE PROGRAM • COMPLETE STREETS DEMONSTRATION LIBRARY
SAN DIEGO ASSOCIATION OF GOVERNMENTS (SANDAG), SAN DIEGO, CALIFORNIA	INTERREGIONAL COORDINATION AND COLLABORATION	<ul style="list-style-type: none"> • SANDAG - BORDERS COMMITTEE • SANDAG - NEIGHBORING COUNTIES • CALIFORNIA/BAJA CALIFORNIA PEDESTRIAN AND BICYCLE TRANSPORTATION ACCESS STUDY • SANDAG - MILITARY • MILITARY MULTIMODAL ACCESS STRATEGY
BALTIMORE METROPOLITAN COUNCIL (BMC)	MPO COLLABORATION OPPORTUNITIES	<ul style="list-style-type: none"> • CRASH DASHBOARD • IMPROVING MPO AND SHSO COORDINATION ON BEHAVIORAL TRAFFIC SAFETY: GUIDE AND TOOLKIT (2023) – NATIONAL ACADEMIES OF SCIENCES
MID-AMERICA REGIONAL COUNCIL (MARC)	MPO COLLABORATION OPPORTUNITIES	<ul style="list-style-type: none"> • TOGETHER TOWARD ZERO 2018-2022 – KANSAS CITY REGIONAL TRANSPORTATION SAFETY BLUEPRINT
HOBOKEN, NEW JERSEY	VISION ZERO	<ul style="list-style-type: none"> • IMPROVING TRAFFIC SAFETY: HOBOKEN, NJ • HOBOKEN ADOPTS VISION ZERO ACTION PLAN FOR SAFER STREETS

PEER JURISDICTION	TOPIC	LINKS
JERSEY CITY, NEW JERSEY	VISION ZERO	<ul style="list-style-type: none"> • VISION ZERO JERSEY CITY – 2023 ANNUAL REPORT
BOSTON REGION METROPOLITAN PLANNING ORGANIZATION	VISION ZERO	<ul style="list-style-type: none"> • REVIEW OF VISION ZERO STRATEGIES
ALABAMA DEPARTMENT OF TRANSPORTATION	COORDINATING TRANSPORTATION SAFETY DATA COLLECTION	<ul style="list-style-type: none"> • CRITICAL ANALYSIS REPORTING ENVIRONMENT (CARE)
OHIO DEPARTMENT OF TRANSPORTATION	COORDINATING TRANSPORTATION SAFETY DATA COLLECTION	<ul style="list-style-type: none"> • OHIO DOT GEOGRAPHIC CRASH ANALYSIS TOOL (GCAT)

3.1 KEY INSIGHTS

The literature review found that the development of safe transportation systems begins with the implementation of safety frameworks such as the Safe System Approach and Vision Zero.⁸⁹ One of the common denominators between both frameworks is to build consensus and to develop policies and safety projects that aim to mitigate the severity of crashes by believing crashes, especially fatal ones, are preventable. These frameworks are further supported through coordinated data collection efforts that facilitate efficient and accurate sharing of data between peer agencies, including state Departments of Transportation (DOTs), Metropolitan Planning Organizations (MPOs), and local governments. Additional support for these efforts can be garnered through thought-provoking and impactful safety campaigns, which can also have measured success through their own performance metrics. Collaboration, education, and innovative policies can advance COG's approach to regional roadway safety and work towards reducing and eliminating crash fatalities.

The following highlight several key insights discussed:

- The Safe System Approach has led to reductions of 50-70 percent in fatal crashes within communities that adopt it.¹⁰
- Increased vehicle weight correlates with greater risk and severity of pedestrian injury, and recent trends show increases in vehicle horsepower and weight.
- Land use planning can improve traffic safety. For example, minimizing highway access points by limiting driveways can help promote internal parcel access within developments, which reduces the number of conflicts on the roadway network.
- Hoboken, New Jersey, has seen zero traffic-related fatalities since 2017 after implementing their Vision Zero initiative, which lowered speed limits, redesigned streets, and introduced traffic calming strategies. While Hoboken serves as a peer jurisdiction, it spans only 1.3

⁸ According to the U.S. Department of Transportation (USDOT), the Safe System Approach is a strategy to address and mitigate the risks of traffic violence by building and reinforcing multiple layers of protection to both prevent crashes from happening in the first place and minimize the harm caused to those involved when crashes do happen. For more information, visit: <https://www.transportation.gov/safe-system-approach>.

⁹ According to the Vision Zero Network, Vision Zero is a strategy to eliminate all traffic fatalities and severe injuries, while increasing safe, healthy, equitable mobility for all. For more information, visit: <https://visionzeronetwork.org/about/what-is-vision-zero/>.

¹⁰ <https://highways.dot.gov/sites/fhwa.dot.gov/files/2022-08/fhwasa2018.pdf>.

LITERATURE REVIEW

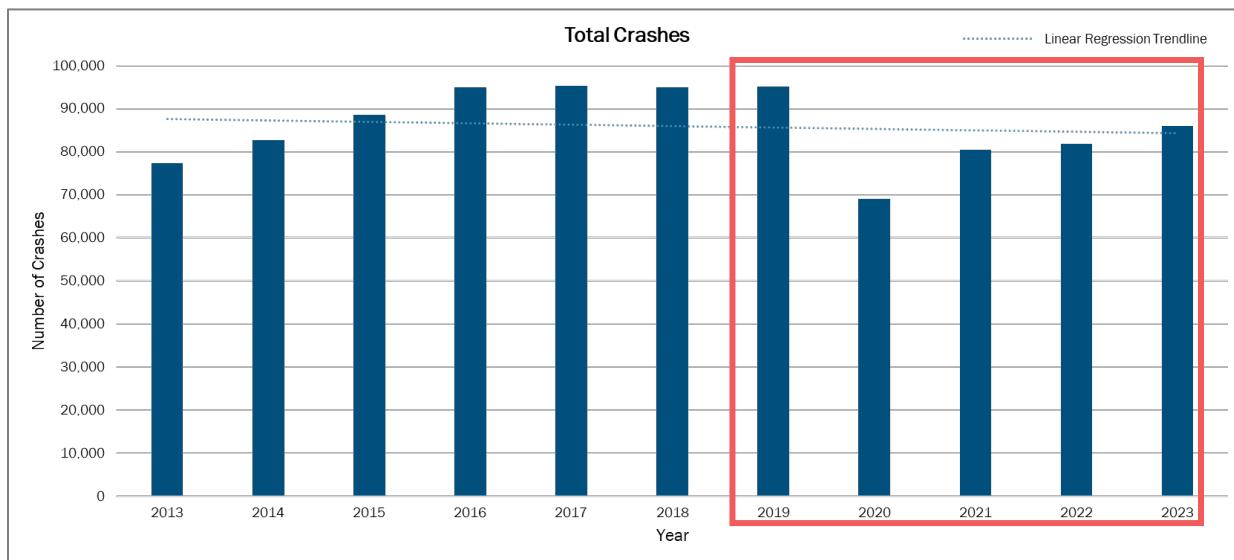
square miles with a population just over 60,000, making it significantly smaller in scale than the TPB region.

- Jersey City's Action Plan outlines 77 specific actions to eliminate traffic fatalities and severe injuries by 2026, prioritizing improvements in low-income communities that lack resources.
- The Baltimore Metropolitan Council (BMC) collaborates with Maryland State Highway Safety Office (MHSO) to advance statewide safety goals through coordinated outreach, innovative data sharing, and development of Maryland's Strategic Highway Safety Plans (SHSP). This collaboration is strengthened by dedicated staffing and active regional engagement. The partnership also developed the Look Alive Safety Campaign in 2019 which leveraged social media to address safety for bicyclists and pedestrians in high-priority corridors.
- The Mid-America Regional Council (MARC) established the MARC Destination Safe Coalition to facilitate collaboration between bi-state stakeholders, share, and analyze data to identify common crash factors, and conduct education initiatives and enforcement campaigns.
- Tools such as Alabama Department of Transportation's CARE software and Ohio Department of Transportation's GCAT enhance data sharing and analytical capabilities, supporting evidence-based safety planning.

3.2 LITERATURE REVIEW SUMMARY

- Safety frameworks such as the Safe System Approach and Vision Zero build consensus and develop policies and projects that aim to mitigate the severity of crashes by understanding that crashes, especially fatal ones, are preventable. Fatal crash reductions were found to be up to 70 percent in communities that adopt such frameworks.
- Vehicle size and weight, which are trending up, have a direct impact on the safety of vulnerable non-motorized road users. National Highway Traffic Safety Administration (NHTSA) data shows that as vehicle weight increases, so does the risk and severity of pedestrian injury. Land use planning, like limiting driveway access, can reduce crash risks.
- Coordinated data collection efforts facilitate efficient and accurate sharing of data between peer agencies, including state DOTs, MPOs, and local governments. Data coordination tools (such as CARE or GCAT) can improve safety analysis and planning.
- Case studies:
 - Hoboken, NJ has had zero traffic deaths since 2017 thanks to lower speed limits and traffic calming, among other initiatives.
 - Jersey City, NJ implemented an equity-focused plan with 77 actions to eliminate severe crashes by 2026.
 - In the Baltimore region, regional collaboration between planning and safety agencies can strength local implementation of statewide safety goals through coordinated outreach, data sharing and technical support.
 - The MARC coalition in Greater Kansas City is a multi-state collaboration on data, education, and enforcement.

Overall, the literature review found that collaboration, data, design, and equity are key to reducing crash severity and saving lives. The case studies included in this review serve to illustrate how these principles are applied in practice, particularly through MPO-led or MPO-supported initiatives. Each example highlights actionable strategies - such as regional coordination, equity focused planning, multi-jurisdictional collaboration, and integrated data tools - that demonstrate the impact MPOs have on advancing roadway safety. These case studies inform the current study by identifying replicable practices and collaborative models that can guide recommendations for improved roadway safety and addressing fatal and serious injury crashes across the region.


4

Crash Data Analysis

4.1 OVERVIEW OF CRASH DATA

This section presents a comprehensive analysis of regional crash data in the TPB region, offering insights into overall crash trends, types of crashes, and involved factors such as impaired driving, speeding, or location of crashes. As noted earlier in the introduction, the crash data in this study is organized by incident, meaning each record represents a single crash event. However, since crashes often involve multiple individuals with varying outcomes, the number of people affected typically exceeds the number of crashes. This distinction is important throughout the report, which presents both crash-level and person-level data to accurately reflect safety impacts.


Since 2019, the total number of crashes has been steadily increasing in the TPB region, with a significant decrease in 2020 during the COVID-19 pandemic (**Figure 10**). While current crash numbers have not exceeded pre-pandemic levels, the overall upward trend continues and is also reflected in the number of fatalities (**Figure 12**). Serious injuries, however, have continued to decline slightly (**Figure 13**). Independent of pandemic-related fluctuations, there is a shift in severity outcomes. The impacts of the pandemic in 2020 and 2021 on crash trends are explored in more detail in Section 6.

Figure 11: Total Crashes, 2013-2023

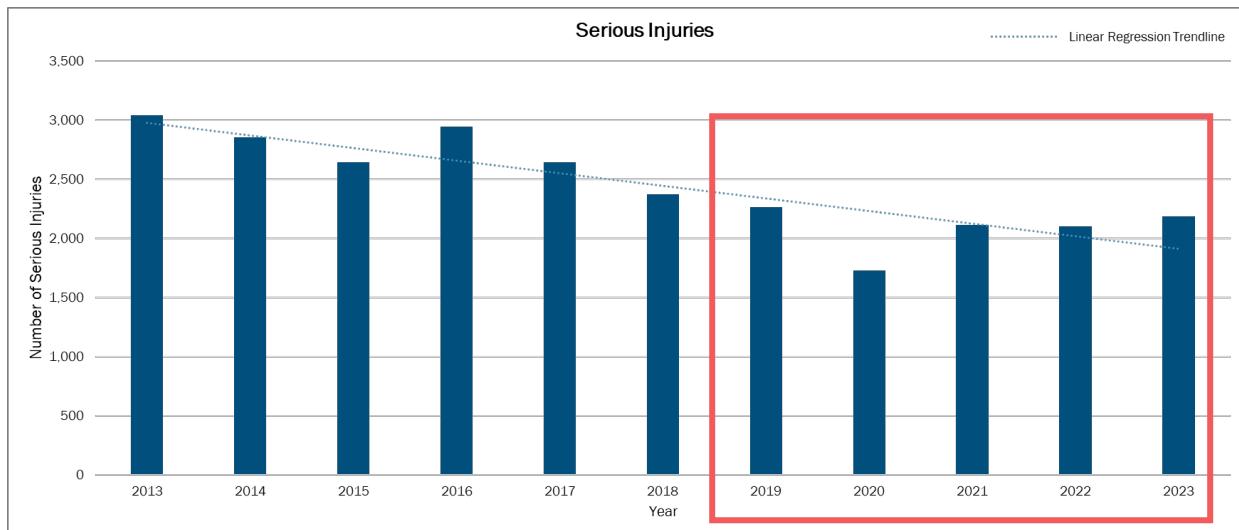
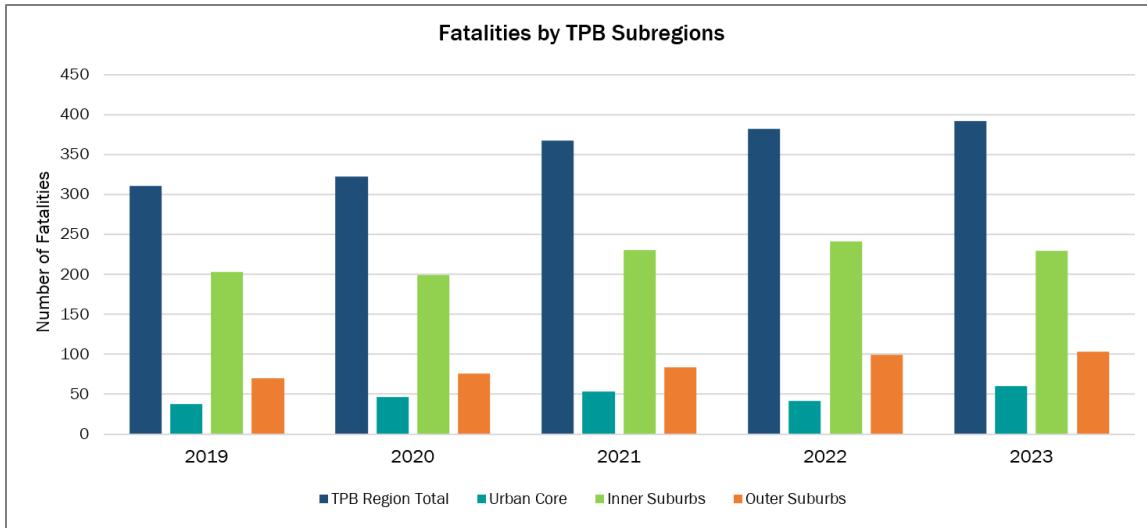
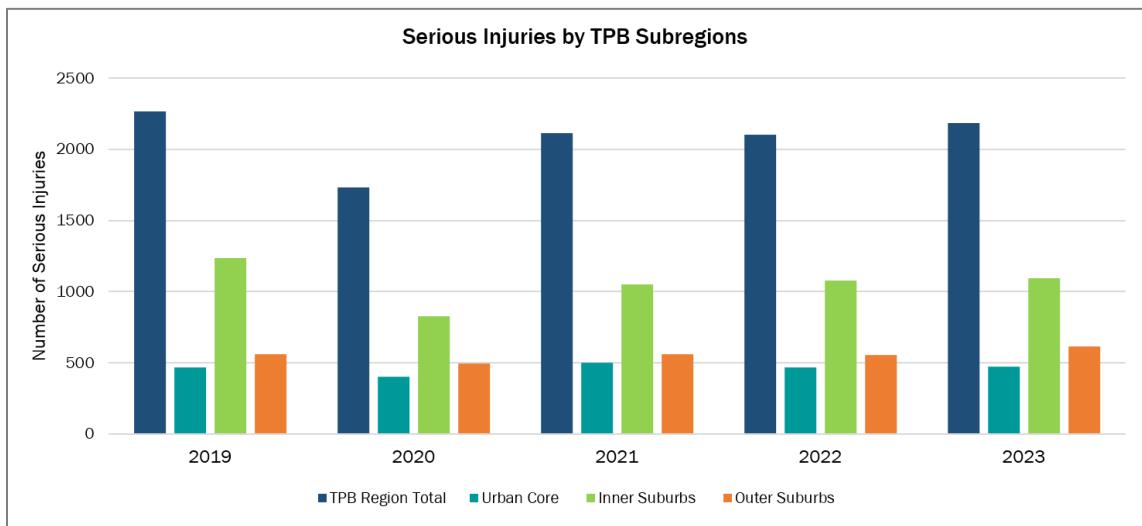

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

Figure 12: Fatalities, 2013-2023

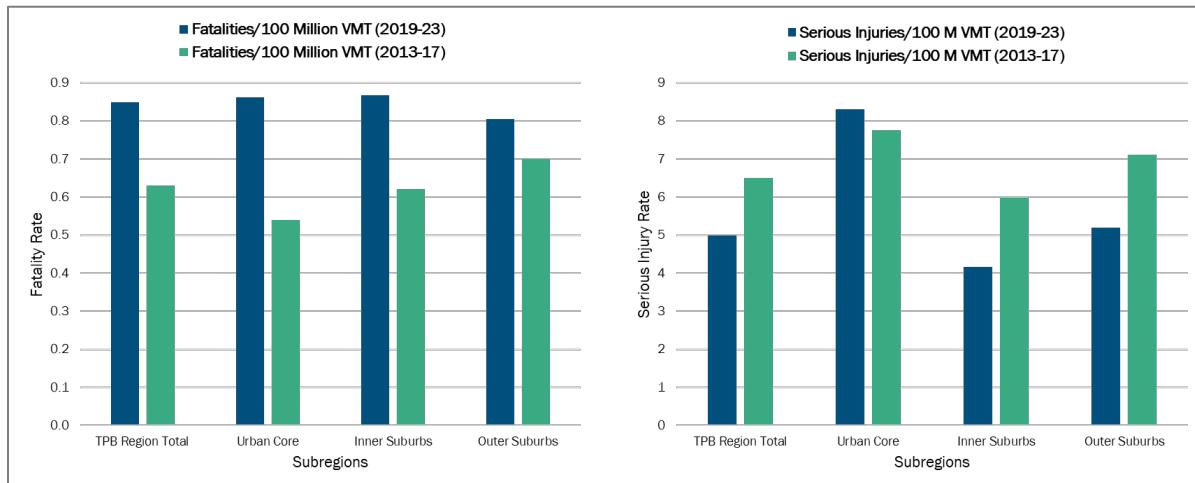

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]


Figure 13: Serious Injuries, 2013-2023

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

Figure 14: Fatalities by TPB Subregions, 2019-2023

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]


Figure 15: Serious Injuries by TPB Subregions, 2019-2023

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

Despite a reduction in total crashes, the number of fatalities steadily increased across the entire TPB region, as shown in **Figure 12**. Fatalities in the Inner Suburbs have consistently been the highest among the TPB subregions throughout the study period, though they remained below 250 annually, compared to the Urban Core and Outer Suburbs that remained at or below 100 annually (**Figure 16**). Similarly, serious injuries are most prevalent in the Inner Suburbs while the number of serious injuries in the Urban Core and Outer Suburbs show comparatively lower numbers. While there was a noticeable decline in 2020, the number of serious injuries has remained stable from 2021 through 2023 (**Figure 15**), mirroring regional trends over the same timeframe.

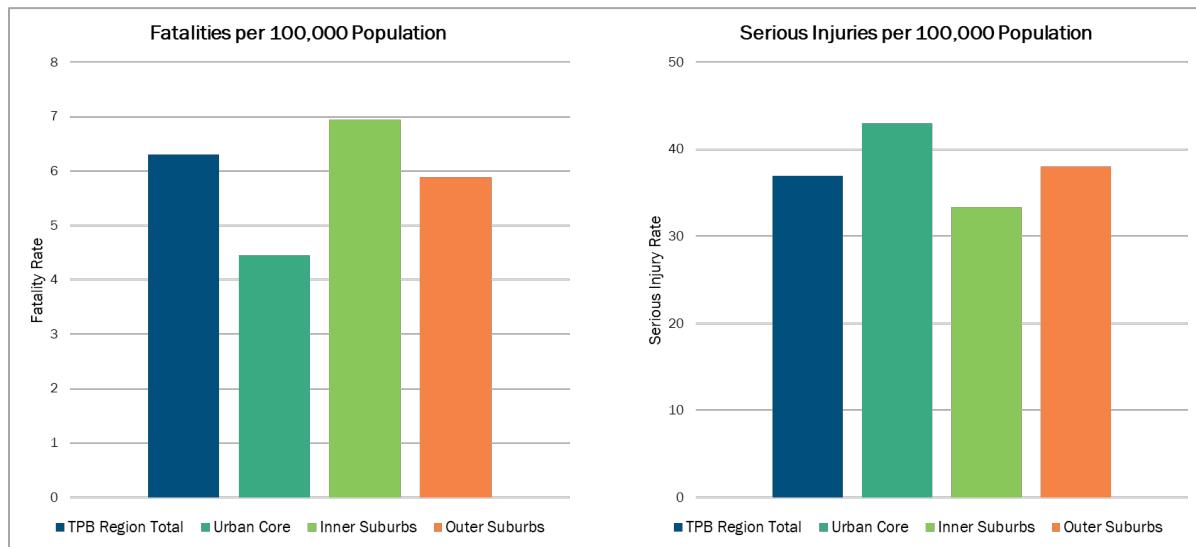


Figure 17 shows a comparison of fatalities and serious injury rates per 100 million VMT between the previous study period (2013 - 2017), and the current analysis (2019 - 2023).¹¹ Across the TPB region, the fatality rate increased by nearly 30 percent, while serious injury rate declined by 26 percent. During the 2019 - 2023 period, the Inner Suburbs recorded the highest fatality rate, a shift from the previous study period, when the Outer Suburbs had the highest rate. The Urban Core consistently shows the highest serious injury rate across both study periods. 15

Figure 16: Comparative Analysis of Fatalities (left) and Serious Injuries (right), 2013-2017 and 2019-2023 [Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

In terms of fatalities and serious injuries normalized by population, the Inner Suburbs have the highest fatality rate per 100,000 people, followed by the Outer Suburbs (6.95 and 5.89, respectively) (Figure 17), while the Urban Core has the highest rate of serious injuries.

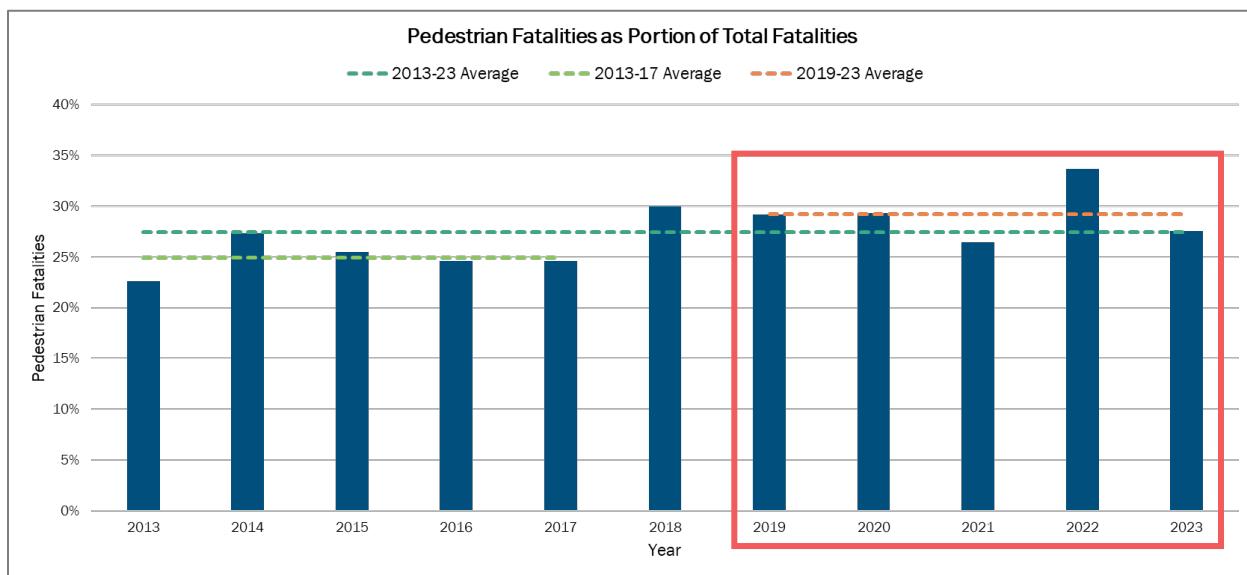


Figure 17: Fatality Rate by 100,000 People (left) and Serious Injury Rate by 100,000 People (right), 2019-2023 [Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

¹¹ In 2018, the regional fatality rate per 100 Million VMT was 0.67 and the regional serious injury rate per 100 Million VMT was 5.29.

While VMT and population are standard metrics for normalizing crash data and calculating rates, they do have certain limitations. For example, the daytime population in the District of Columbia nearly doubles during weekdays due to the influx of commuters. Therefore, population may not be an accurate normalizing factor, since it does not capture the exposure caused by the increase in daytime population. VMT is a better measure of exposure in this case. By the same token, VMT is not the best normalizing factor for pedestrian or bike crashes. VMT accounts for the level of vehicular activity but fails to account for the level of pedestrian or bicycle activity.

Figure 18 shows pedestrian fatalities as a percentage of total fatalities, highlighting an **increase over time in the proportion of fatal crashes that involve pedestrians in the COG region**. Particularly, 2022 sees a clear increase in the percentage of crashes that include pedestrians, at 34 percent. However, it is to be noted that the level of pedestrian activity increased regionally during this period, especially in the Urban Core (as discussed earlier in Section 2.4 and shown in Table 3).

Figure 18: Pedestrian Fatalities as a Percentage of Total Fatalities, 2013-2023

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

4.2 TPB SAFETY TARGETS

Each year the TPB has adopted a set of highway safety targets, for the National Capital Region (NCR) aimed at reducing fatalities and serious injuries.¹² These targets serve as regional performance goals and are aligned with federal safety planning requirements. Currently, **the region is not meeting its stated safety targets**. As shown in Table 5, the 2019-2023 average number of fatalities is 33 percent higher than the established target resulting in a fatality rate (per 100 million VMT) of 0.85, which is 38 percent higher than the target. In addition, the 2019-2023 average number of serious

¹² Transportation Planning Board (TPB). Resolution to Adopt Annual Highway Safety Targets for the National Capital Region. 2023. <https://www.mwcog.org/file.aspx?&A=EEQMWhs5ERm%2bII0E5u2BL%2b%2f%2bFzYmTp%2fgXU3CcEs%2beU%3d>

injuries is 17 percent higher than the target, resulting in a serious injury rate (per 100 million VMT) of 4.98, 29 percent higher than the target rate of 3.73. The number of non-motorist serious injuries and fatalities is also 9 percent higher than the target.

Table 5: NCR Annual Highway Safety Crash Data, 2019-2023

PERFORMANCE MEASURE (5-YEAR ROLLING AVERAGE)	2019-2023 ANNUAL AVERAGE TARGETS	2019-2023 ACTUAL ANNUAL AVERAGE	PERCENTAGE (%) ABOVE/BELOW
NUMBER OF FATALITIES	253	354	+ 33%
FATALITY RATE (PER 100 MILLION VMT)	0.58	0.85	+ 38%
NUMBER OF SERIOUS INJURIES	1,757	2,080	+ 17%
SERIOUS INJURY RATE (PER 100 MILLION VMT)	3.73	4.98	+ 29%
NUMBER OF NON-MOTORIST FATALITIES & SERIOUS INJURIES	487	534	+ 9%

[Source: Transportation Planning Board (TPB), [Draft Annual Regional Transit and Highway Safety Targets](#)]

4.3 CRASH TYPES

The following section discusses crashes by crash types¹³. A crash type category classifies a crash by the type of collision (i.e., rear end, head on, etc.). **It is important to note that each crash is assigned a specific crash type, with definitions provided in the glossary at the beginning of this report.** These types are based on how individual jurisdictions categorize crashes in their official records, which can vary significantly. **In some cases, a crash may involve multiple contributing factors but be classified under only one type.** For instance, in Virginia, certain crashes involving pedestrians or bicyclists were recorded as angle crashes rather than under pedestrian and bicycle categories. Consequently, these incidents are not reflected in the table under non-motorist/other category but are addressed in the relevant focus area sections of the report.

Table 6 shows crashes in four categories and eleven crash types. “Roadway Departure” and “pedestrian/bike” crash types account for the highest number of fatalities and serious injuries.

¹³ Crash types are defined in the glossary.

Table 6: Fatalities and Serious Injuries by Crash Type, 2019-2023

CATEGORY	CRASH TYPE	FATALITIES	SERIOUS INJURIES	TOTAL FATALITIES + SERIOUS INJURIES
INTERSECTION/ACCESS MANAGEMENT	ANGLE	196	1,967	4,473
	REAR END	124	1,602	
	LEFT TURN	54	530	
	TOTAL	374	4,099	
LANE MANAGEMENT	ROADWAY DEPARTURE	540	2,073	3,970
	HEAD ON	131	761	
	SIDESWIPED	29	436	
	TOTAL	700	3,270	
NON-MOTORIST	PEDESTRIAN	508	1,621	2,420
	BICYCLIST	27	264	
	TOTAL	535	1,885	
OTHER	OTHER/NON-COLLISION	155	1,009	1,314
	BACKING	1	25	
	PARKED VEHICLE	9	115	
	TOTAL	165	1,149	
TOTAL		1,774	10,403	12,177

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

As shown on **Figure 19**, “lane management” and “non-motorist” are the categories contributing the highest (70 percent) to fatalities, almost twice as much as the third highest crash type of “intersection and access management,” which is the highest crash type for serious injuries (39 percent).

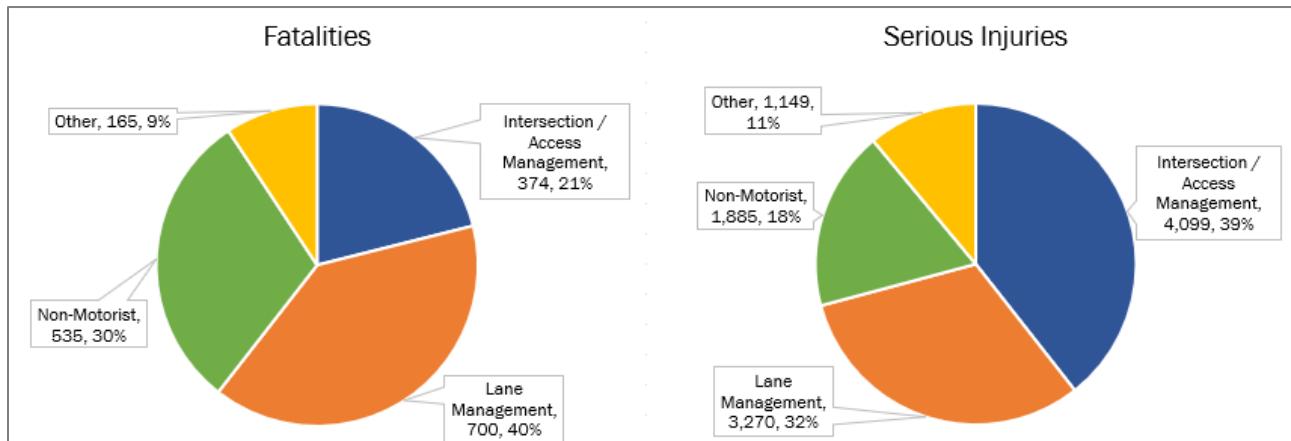
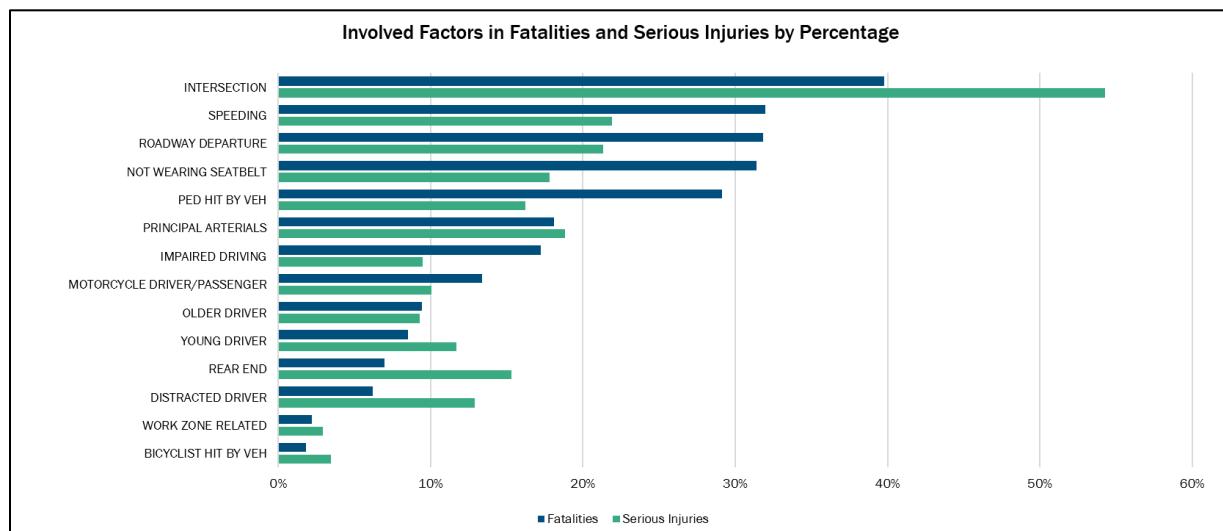


Figure 19: Crash Types Categories as a Percentage of Fatalities (left) and Serious Injuries (right), 2019-2023

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]


4.4 CRASH DATA BY INVOLVED FACTORS

An involved factor identifies the specific actions, behaviors, or conditions that played a role in contributing to the crash's occurrence and severity. **It is important to note that each crash may have multiple involved factors.**

The factors analyzed in this report were selected for their strong links to fatal and serious injury crashes, their relevance to target safety strategies, and their notable prevalence in the data.

- **Behavioral factors** such as **speeding, impaired driving, seatbelt non-use, and distracted driving** reflect risk driver behavior that significantly increase crash and injury severity and are key targets for enforcement and education.
- **Environmental factors** like **intersections, roadway departure, rear-end collisions, and work zone crashes** point to challenges in road design, traffic operations, and driving conditions that can be addressed through engineering and policy interventions.
- **Demographic and road user factors** include **young and older drivers, motorcyclists, pedestrians, and bicyclists**, each representing groups with distinct risk profiles or limited protection, requiring tailored outreach and infrastructure improvements.

Together, these categories provide a comprehensive view of crash dynamics and support data driven strategies to improve roadway safety across the region. **Figure 20** shows involved factors for fatal and serious injury crashes across the region. Most fatalities and serious injuries in the region included intersection as an involved factor. However, behavioral factors (such as speeding, not wearing a seat belt, distracted driving and impaired driving) contributed to a large percentage of fatalities and serious injuries.

Figure 20: Involved Factors for Fatalities and Serious Injuries, 2019-2023¹⁴ [Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

¹⁴ Young drivers: 15-24 years old and older drivers: 65 years and older.

4.5 CRASH DATA SUMMARY

Fatal crashes are increasing despite fewer overall crashes and serious injury crashes:

- From 2013 to 2023, total crashes declined, serious injury crashes declined, but fatal crashes rose steadily, a sign that while frequency is down, severity is worsening.
- Possible causes include higher speeds on less congested roads post-COVID; increased vulnerable road user exposure; and behavioral factors such as impaired driving, distracted driving, and not wearing seatbelts.
- Pedestrians make up 34 percent of total traffic fatalities (as of 2022), an increase compared to previous years.

Crash normalization shows an uneven safety landscape:

- The Inner Suburbs have the highest fatality rate per VMT and per capita, indicating a mismatch between infrastructure and current traffic volumes.
- The Urban Core has the highest serious injury rate per VMT and per capita, likely due to higher exposure of non-motorized users.
- VMT is an effective exposure metric for vehicle-based travel, but fails to capture bike and pedestrian exposure, a challenge for accurately assessing non-motorist risk.

The region is not currently meeting its safety targets:

- Fatalities are 33 percent above TPB's five-year annual average target, with a fatality rate 38 percent higher than the goal.
- Serious injuries exceed targets by 17 percent, with the injury rate 29 percent higher than the target rate (4.98 vs 3.22 per 100 million VMT).
- Non-motorist (pedestrians and cyclists) fatalities and serious injuries are also nine percent above target, underscoring systemic risk for vulnerable users.
- These gaps show that current interventions are falling short, and more systemic strategies are needed.

Crash types and categories highlight critical safety trends:

- Of the 12,177 fatal and serious injuries between 2019 and 2023:
 - Lane management crashes (roadway departure, head-on) account for 40 percent of fatalities, highlighting rural and arterial road risks.
 - Non-motorist crashes also account for 40 percent of fatalities, showing the severe impact on those outside of vehicles.
 - Intersection crashes (especially angle and rear-end types) account for the majority of serious injury crashes (39 percent), indicating conflict points at junctions.

Involved factors emphasize behavioral and infrastructure failures:

- The most common contributors to fatal and serious injury crashes include: intersections (high conflict environments); roadway departures; and speeding, failure to use seatbelts, impaired driving, and pedestrians hit by a vehicle. Many crashes involve multiple compounding factors.

5

Focus Areas

5. Focus Areas

One of the goals of this study was to identify “focus areas,” which are defined as involved factors that had a disproportionate impact on crash severity. Prioritizing safety strategies around focus areas may help move the needle on traffic safety.

5.1 IDENTIFYING FOCUS AREAS

To select focus areas for further analysis, this study examined the involved factors identified in the previous section. Additional involved factors were identified from other sources such as:

- 2021 TPB Regional Safety Study Report.
- Strategic Highway Safety Plans (SHSPs) for Maryland, District of Columbia, and Virginia.
- Federal sources such as the National Roadway Safety Strategy Report, and the Federal Highway Administration’s (FHWA) Safety Strategy Report.

The involved factors were ranked using a set of qualitative and quantitative factors. The quantitative factor consisted of a ranking of the involved factor based on its contribution to fatalities. The qualitative factors included the TPB’s ability to influence them (primary, secondary, and limited), regional priorities based on the jurisdictional questionnaire, and other anecdotal evidence.

Table 7 is organized by the involved factors categorized by behavior, vulnerable users (pedestrians and bicyclists), design, motor vehicles, and others. The table also highlights involved factors that are considered by the two states and the District of Columbia, federal agencies, and local jurisdictions. The data ranking is based on the analysis conducted for this report, with 1 being the most prevalent factor involved. The TPB’s ability to influence factors are abbreviated P for primary, S for secondary, and L for limited.¹⁵ Highlighted in orange are the seven factors involved that met the highest number of criteria.

Table 7: Focus Area Selection Analysis

INVOLVED FACTORS	CATEGORY	2021 REPORT	MD SHSP	DC SHSP	VA SHSP	TPB INFLUENCE	REGIONAL PRIORITY	FEDERAL SOURCES	DATA (2019-2023)
Rear End	Behavior					P			8
Ped Hit by a Vehicle	Vulnerable Users	X	X	X	X	P	X	X	5
Bicyclist Hit by a Vehicle	Vulnerable Users		X	X	X	P	X	X	11
Roadway Departure	Behavior, Design				X	L		X	3
Intersections	Design	X			X	L		X	1
Young Driver	Age	X		X	X	P			10
Older Driver	Age				X	P			10

¹⁵ Primary influence refers to areas where TPB has a high level of influence; secondary influence refers to areas where TPB has a medium level of influence; and limited influence refers to areas where TPB has a low level of influence.

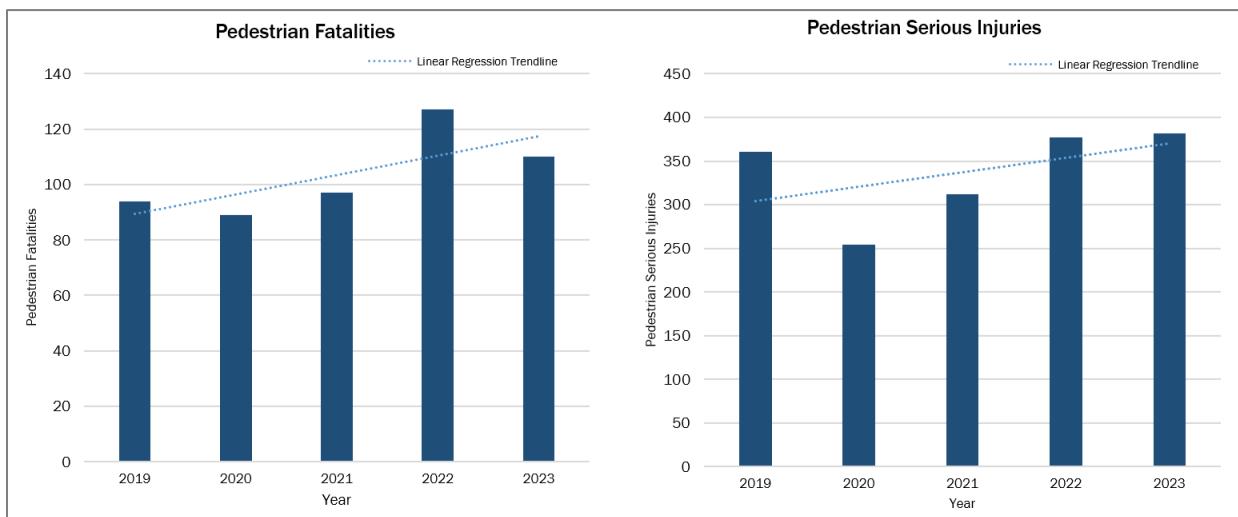
FOCUS AREAS

INVOLVED FACTORS	CATEGORY	2021 REPORT	MD SHSP	DC SHSP	VA SHSP	TPB INFLUENCE	REGIONAL PRIORITY	FEDERAL SOURCES	DATA (2019-2023)
Distracted Drivers	Behavior		X	X		P			9
Speeding	Behavior		X		X	P	X	X	2
Aggressive Drivers	Behavior			X		P			
Motorcycle	Vehicle			X	X	S			7
Impaired Driving: Alcohol	Behavior		X	X	X	P	X		6
Impaired Driving: Drugs	Behavior		X	X	X	P	X		6
Work Zone Related	Behavior, Design					S			12
Not Wearing a Seatbelt	Behavior					P	X		4
Principal Arterials	Design	X				L			
Infrastructure	Design		X			L			
Occupant Protection	Behavior, Vehicle		X	X	X	P	X		4
Post-crash care	Other				X	L			
Data/analytics	Other			X	X	S			
Lighting	Design					L	X		
Heavy vehicles	Vehicle				X	L	X		
CAVs	Vehicle				X	L			

The seven identified involved factors were combined into six focus areas (“Impaired Driving: Alcohol” and “Impaired Driving: Drugs” were combined into one focus area called “Impaired Driving.”)

The study recommends the following focus areas:

- 1) Pedestrians hit by a vehicle;
- 2) Bicyclists hit by a vehicle;
- 3) Intersections;
- 4) Speeding;
- 5) Impaired driving (drugs and alcohol); and
- 6) Principal arterials.

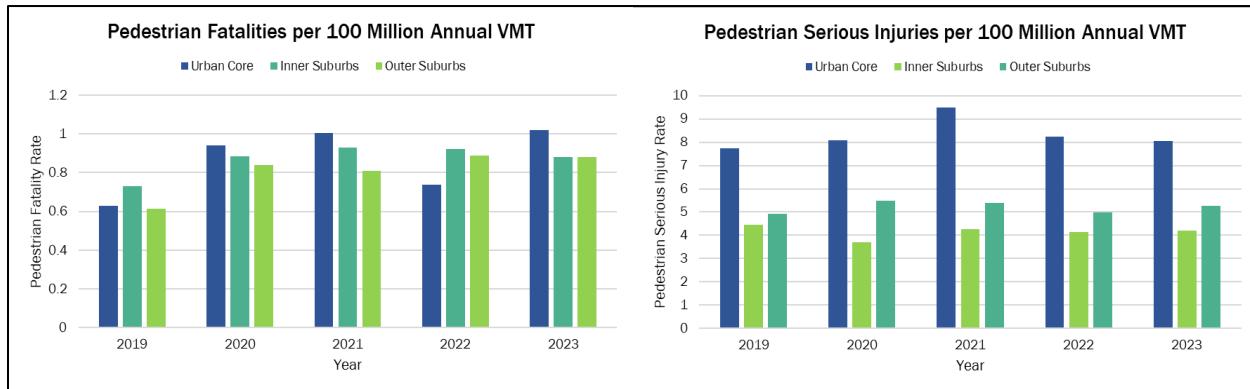

5.2 FOCUS AREA DEEP-DIVES

The following section will summarize the data analysis findings for each of the six proposed focus areas by the following categories: regional trends, geographic distribution, crash locations, and involved factors.

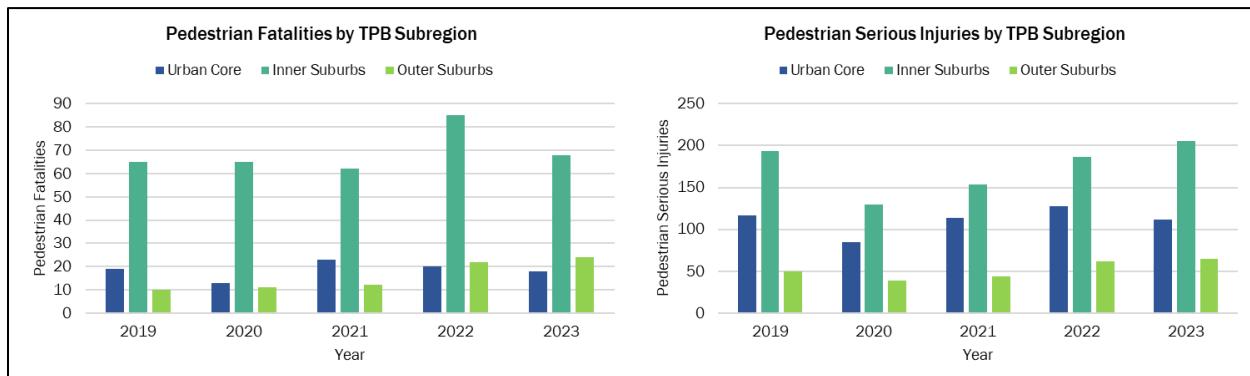
5.2.1 FOCUS AREA #1 – PEDESTRIANS

In the five-year study period (2019–2023), pedestrians were involved in 2.7 percent of crashes but accounted for 29 percent fatalities and 16 percent of serious injuries. This is particularly concerning given the region's emphasis on non-motorized and transit travel and the resulting increase in pedestrian activity.

Regional Trends: Regional trends show an increase in pedestrian fatalities and serious injuries since 2019 (Figure 21). A decrease in crashes was observed in 2020, likely due to the impact COVID-19 had on VMT and pedestrian traffic in general.


Figure 21: TPB Region Pedestrian Fatalities (left) and Serious Injuries (right), 2019-2023

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]


Geographic Distribution: The Inner Suburbs have the highest number of pedestrian fatalities and serious injuries during the study period, and the Urban Core has the lowest number (Figure 23). However, when normalized by VMT, the Urban Core has the highest injury and fatality rates (Figure 21). It is important to note the available data does not capture level of pedestrian activity. The discrepancy in fatality and serious injury rates between TPB subregions is most likely a function of higher pedestrian activity in urban areas, increasing the exposure and likelihood that pedestrians would be involved in crashes.

21

Figure 22: Pedestrian Fatalities by 100 Million Annual VMT (left) and Pedestrian Serious Injuries by 100 Million Annual VMT (right) by Subregions, 2019-2023

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

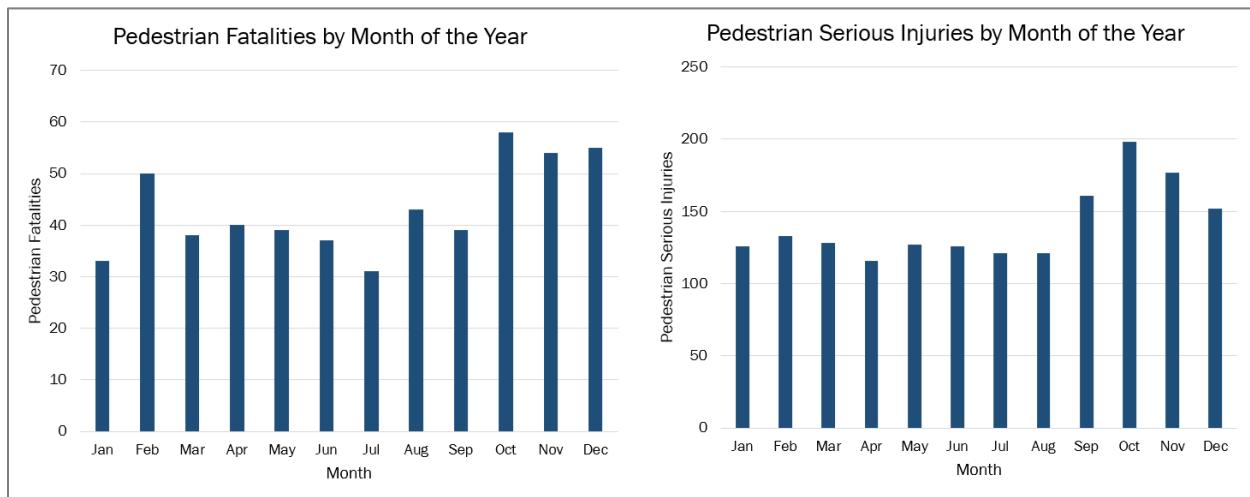
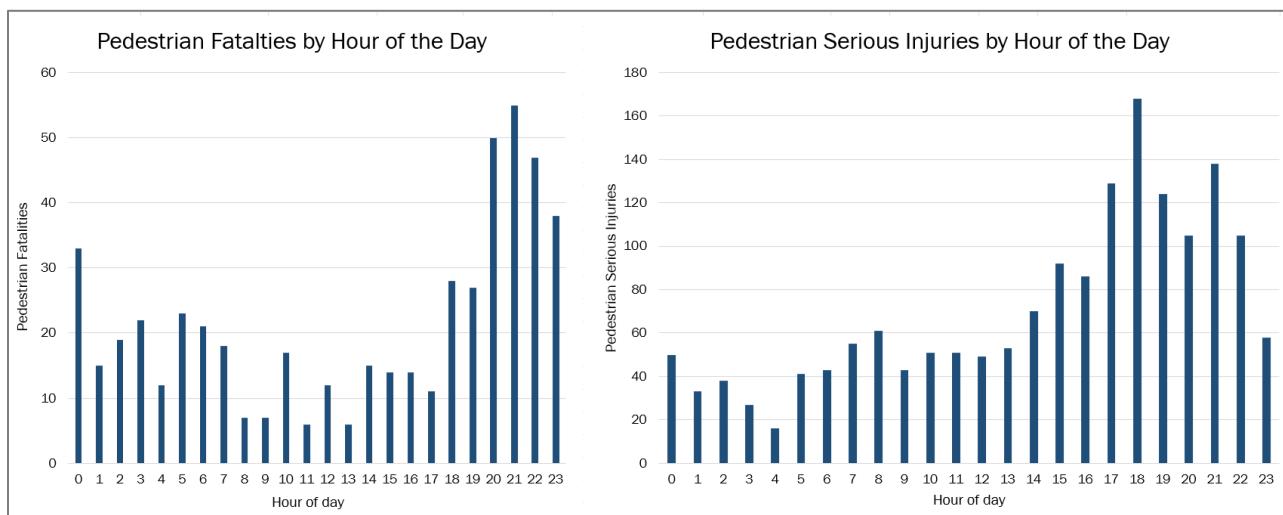


Figure 23: Pedestrian Fatalities (left) and Pedestrian Serious Injuries (right) by Subregions, 2019-2023
 [Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]


Temporal Analysis: In terms of time of year, the October to December months exhibit an uptick in the number of pedestrian fatalities and serious injuries (Figure 24). In terms of the day, pedestrian crashes are more likely to occur during the evening (6:00 PM- 8:00 PM) and late-night hours (9:00 PM- 12:00 AM) (Figure 25).

FOCUS AREAS

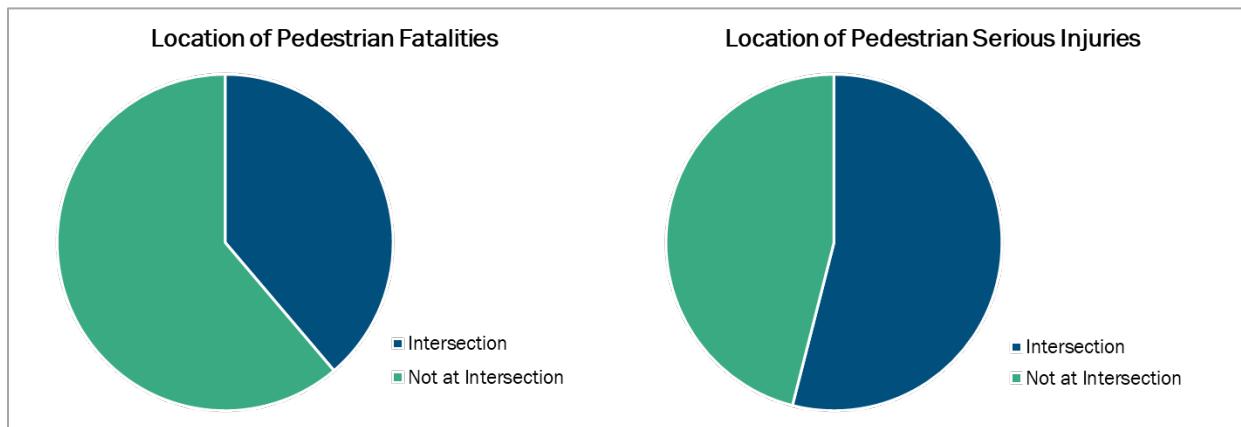

Figure 24: Pedestrian fatalities (left) and Serious Injuries (right) by Month of the Year, 2019-2023
[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

Figure 25: Pedestrian Fatalities (left) and Serious Injuries (right) by Hour of the Day, 2019-2023
[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

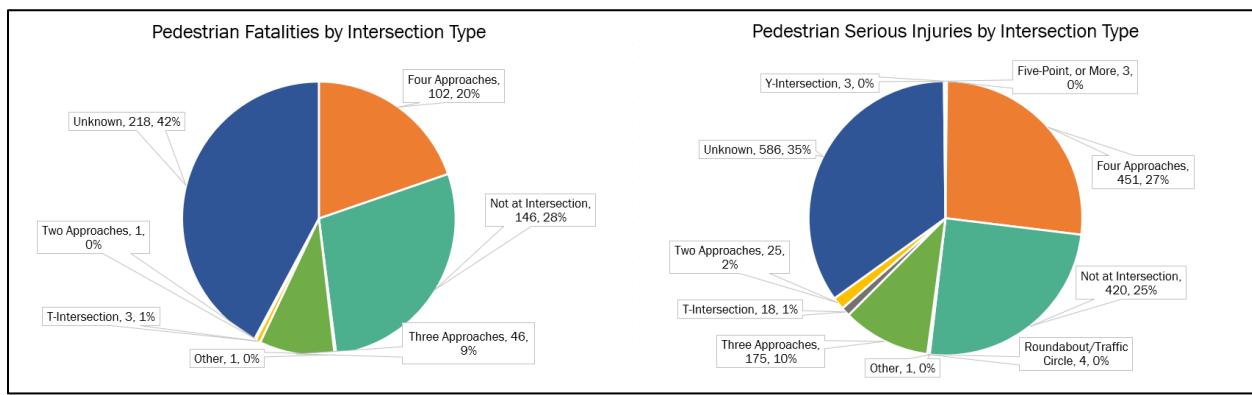

Crash Location: While most pedestrian fatalities do not take place at intersections, most pedestrian serious injuries do take place at intersections (Figure 26). This suggests that intersection and crosswalk safety should continue to be an important component of the safety program and should incorporate a multimodal approach.

Figure 26: Location of Pedestrian Fatalities (left) and Serious Injuries (right), 2019-2023

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]



Figure 27: Pedestrian Fatalities (left) and Pedestrian Serious Injuries (right) by Intersection Type, 2019-2023

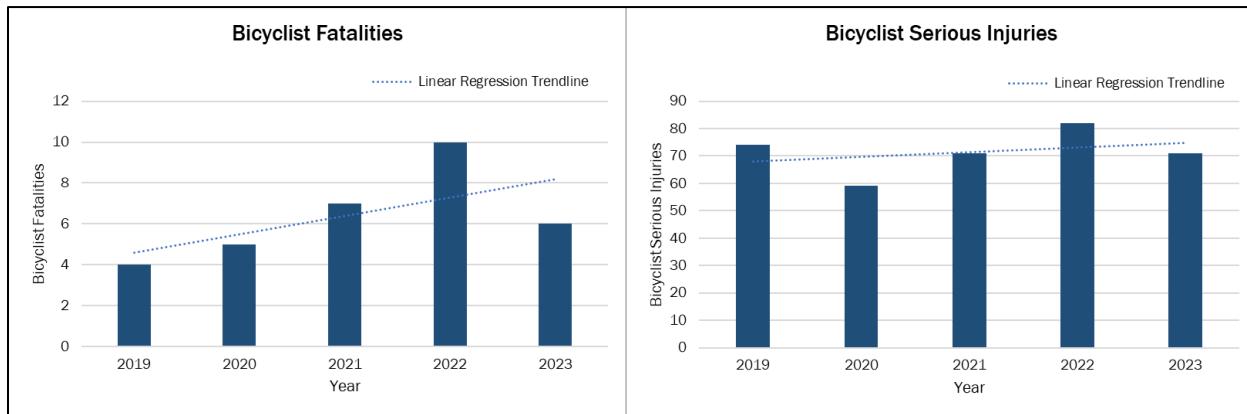
[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

Involved Factors: The top factors involved for pedestrian fatalities and serious injuries include intersections, impaired driving, speeding, and distracted driving (Figure 28). Three of the top four involved factors for pedestrian crashes are behavioral factors. The cross-cutting analysis shows that these types of involved factors compound, leading to increased risk when multiple driver behavior-related factors are involved in the incident (for example, impaired driving and speeding, or impaired driving and distracted driving).

FOCUS AREAS

Figure 28: Pedestrian Fatalities and Serious Injuries with Multiple Involved Factors, 2019-2023

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]



5.2.2 FOCUS AREA #2 - BICYCLISTS

In the five-year study period (2019 – 2023), bicyclists were involved in one percent of crashes but accounted for 2 percent of fatalities and 3 percent of serious injuries.

This is particularly concerning given the region's emphasis on non-motorized travel and the resulting increase in bicycle activity.

Regional Trends: Regional trends show an overall increase in bicyclist fatalities, with a notable drop in 2023. Serious injuries have remained relatively stable, with a slight decrease compared to 2022 levels (Figure 29).

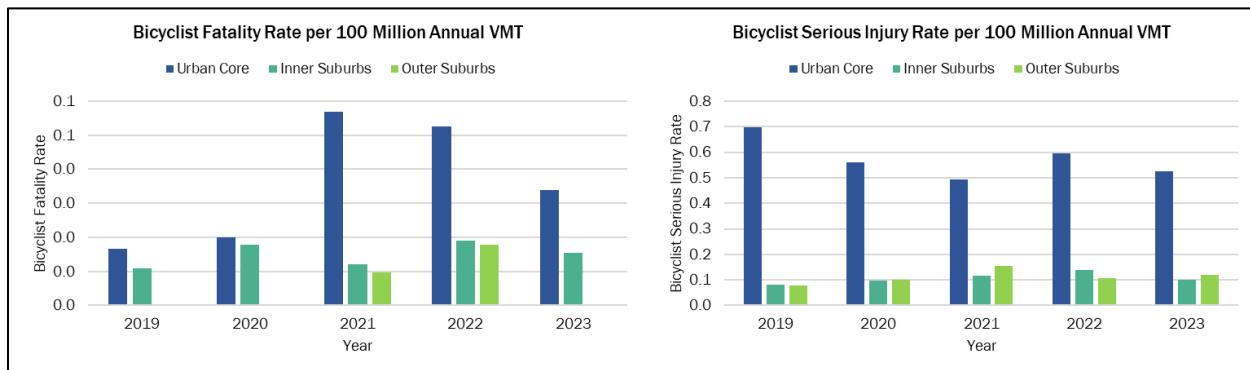
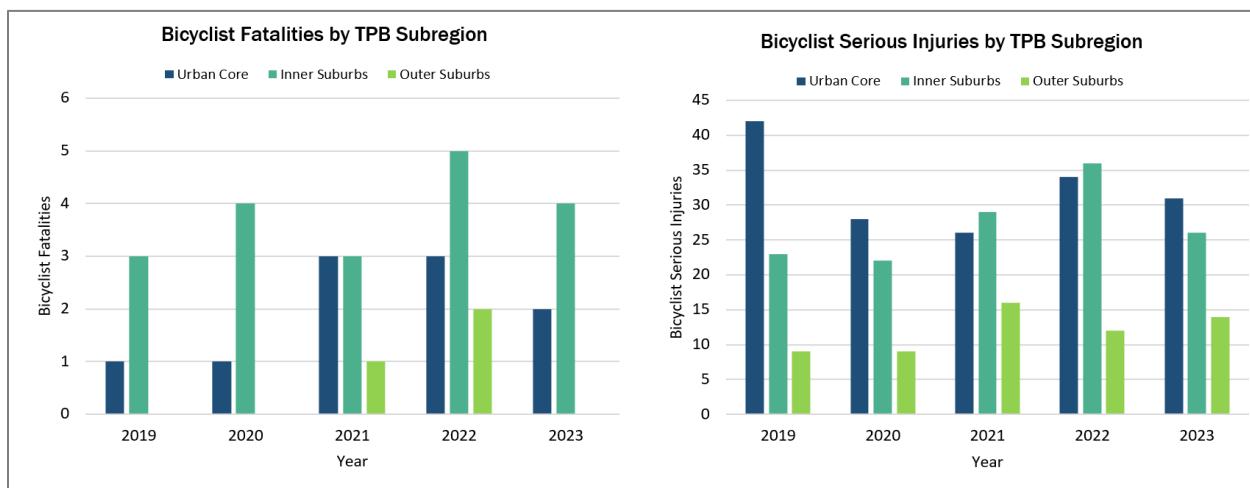


Figure 29: Bicyclists Fatalities (left) and Bicyclists Serious Injuries (right), 2019-2023

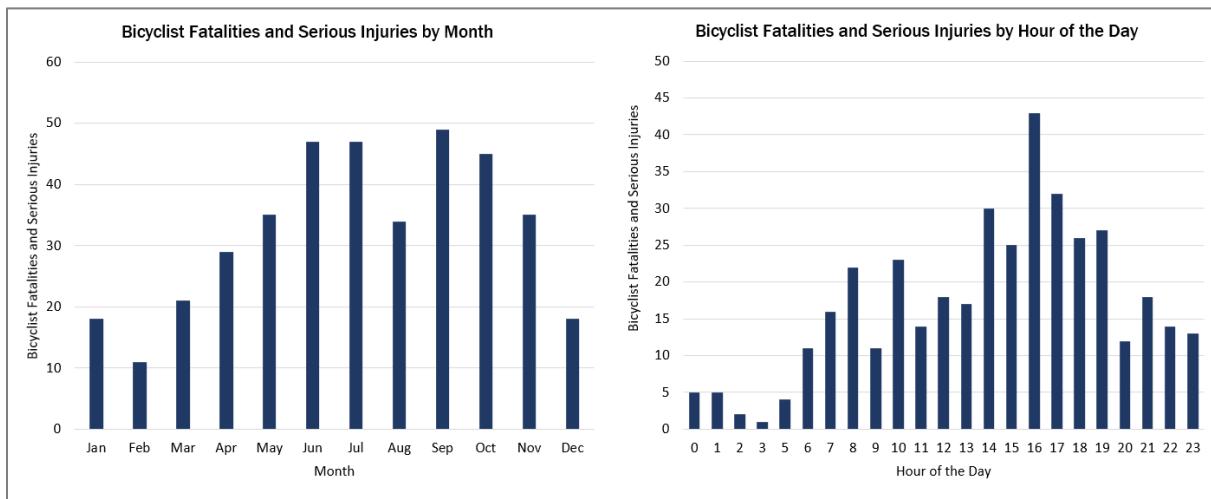
[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]


Geographic Distribution: In terms of bicyclist fatalities, the Inner Suburbs have the most incidents, and the Urban Core has the most serious injuries during the study period (Figure 31). The Urban Core has the highest fatality and serious injury rate compared to the Inner Suburbs and Outer Core, and Outer Core showing a rate of zero in some years (Figure 30). However, the data included in this study does not capture total bicyclist activity by subregion. The discrepancy between TPB subregions may be a function of higher bicyclist activity in urban areas, increasing the exposure and likelihood that bicyclists would be involved in crashes.

FOCUS AREAS

Figure 30: Bicyclist Fatalities (left) and Serious Injuries (right) per 100 Million Annual VMT by Subregion, 2019-2023.

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]


Figure 31: Bicyclists Fatalities and Serious Injuries by Subregion, 2019-2023

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

Temporal Analysis: In terms of time of year, the summer months see an uptick in the number of bicyclist fatalities and serious injuries during the study period (Figure 32). In terms of time of day, there is an increase in number of fatalities and serious injuries in the early afternoon/ evening peak commute hours (4:00 PM - 7:00 PM). The distribution of bicycle-involved fatalities and serious injuries appear to align with expected level of bicycle activity.

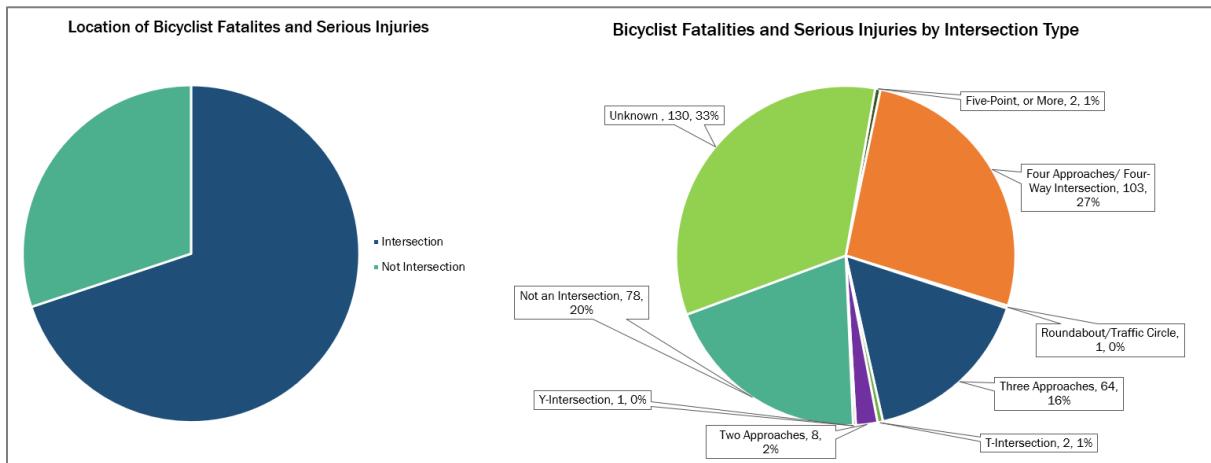
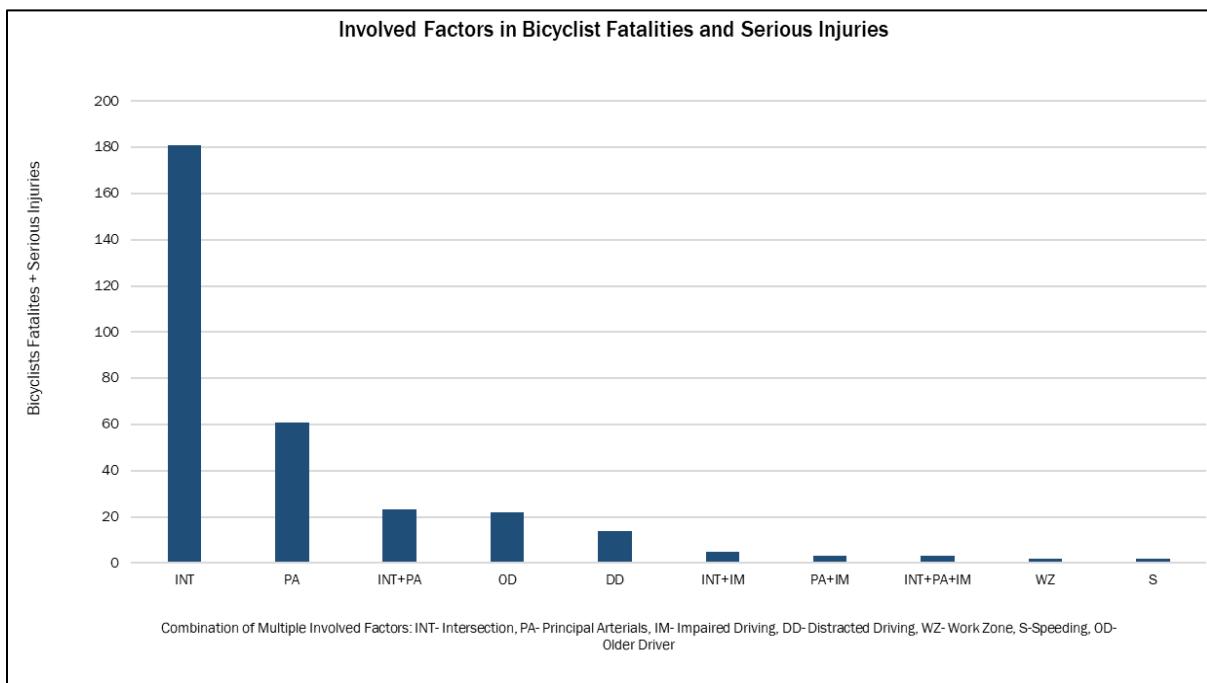

FOCUS AREAS

Figure 32: Bicyclists Fatalities and Serious Injuries by Month of the Year (left) and Hour of the Day (right), 2019-2023

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

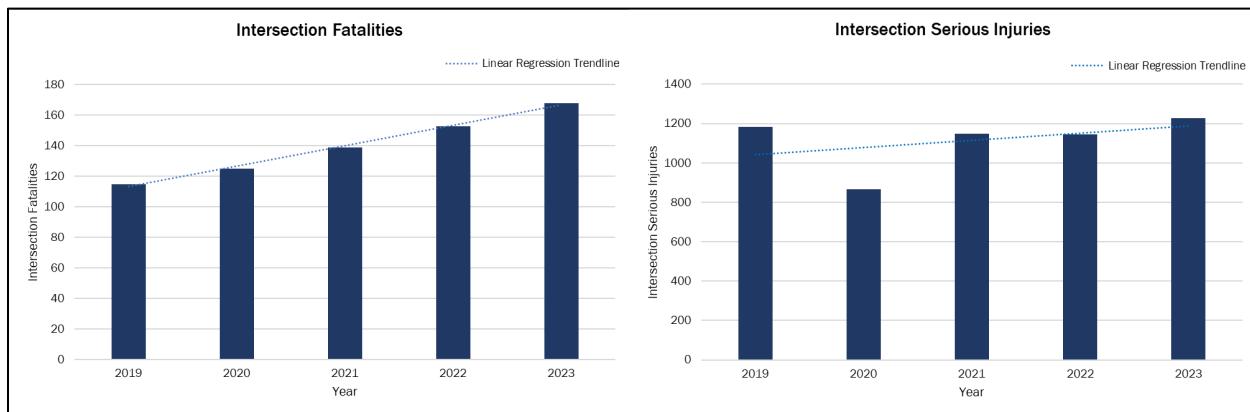
Crash Location: 70 percent of bicyclist fatalities and serious injuries occur at intersections, particularly those with four approaches (27%) controlled by either traffic signals or stop signs. This suggests that intersection design plays a significant role in bicyclist safety, posing greater risks due to increased vehicle movements and potential conflict points.


Figure 33: Bicyclist Fatalities and Serious Injuries Locations, 2019-2023

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

Involved Factors: Compared to other focus areas, bicyclist crashes involve fewer fatalities and serious injuries. However, the contributing factors are primarily location-related rather than behavioral. Most incidents occur at intersections and on principal arterials, while behavioral factors such as impaired driving or driver age appear in a smaller share of incidents. (Figure 34).

FOCUS AREAS


Figure 34: Multiple Involved Factors for Bicyclist Fatalities and Serious Injuries, 2019-2023 [Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

5.2.3 FOCUS AREA #3 – INTERSECTIONS

In the five-year study period (2019–2023), 39 percent of fatalities and 54 percent of serious injuries occurred at intersections.

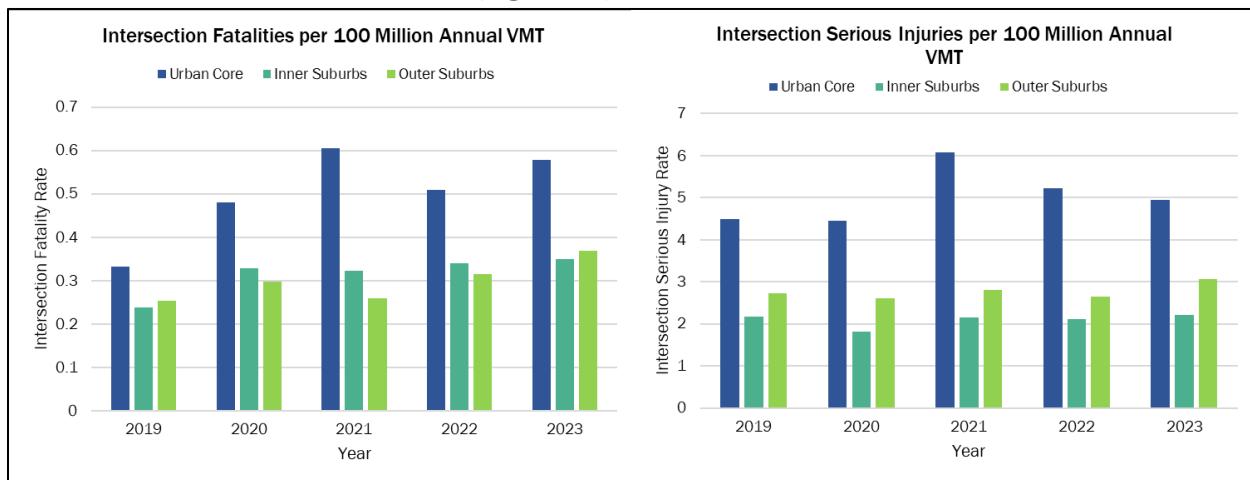

Regional Trends: Throughout the region, intersection- related crashes resulting in fatalities and serious injuries have generally increased during the study period, apart from a noticeable decline in serious injuries in 2020 during the COIVD-19 pandemic. A trend consistent with overall reduction in serious injuries during that year (Figure 35).

Figure 35: Intersection Fatalities (left) and Serious Injuries (right), 2019-2023

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

Geographic Distribution: The Urban Core has the highest rate of intersection crashes, followed by the Outer Suburbs and the Inner Suburbs (Figure 36).

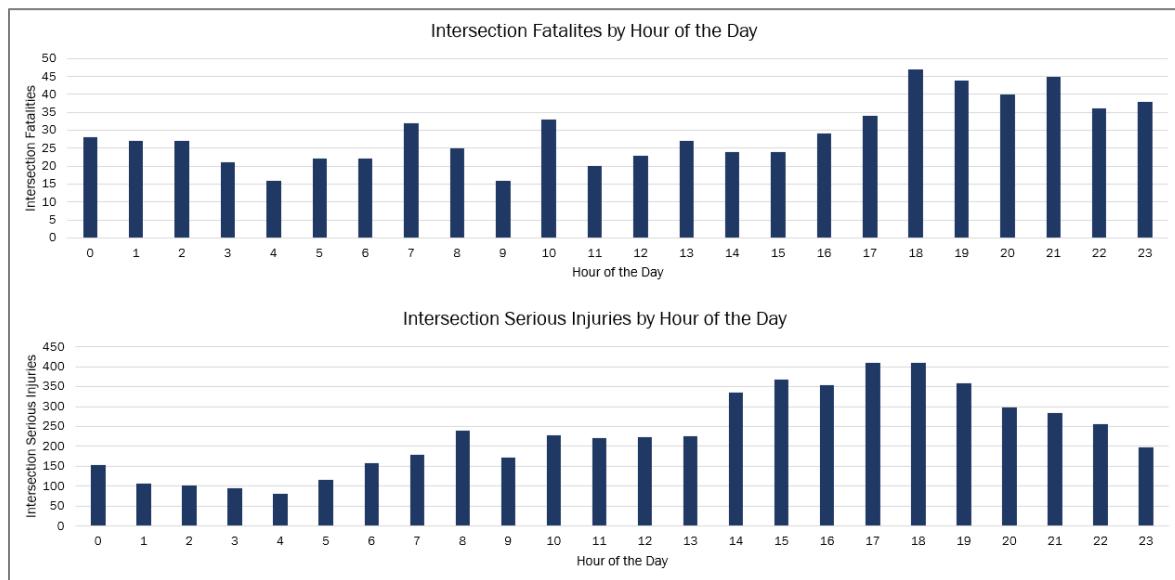


Figure 36: Intersection Fatalities (left) and Serious Injuries (right) by 100 Million Annual VMT per Subregion, 2019-2023

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

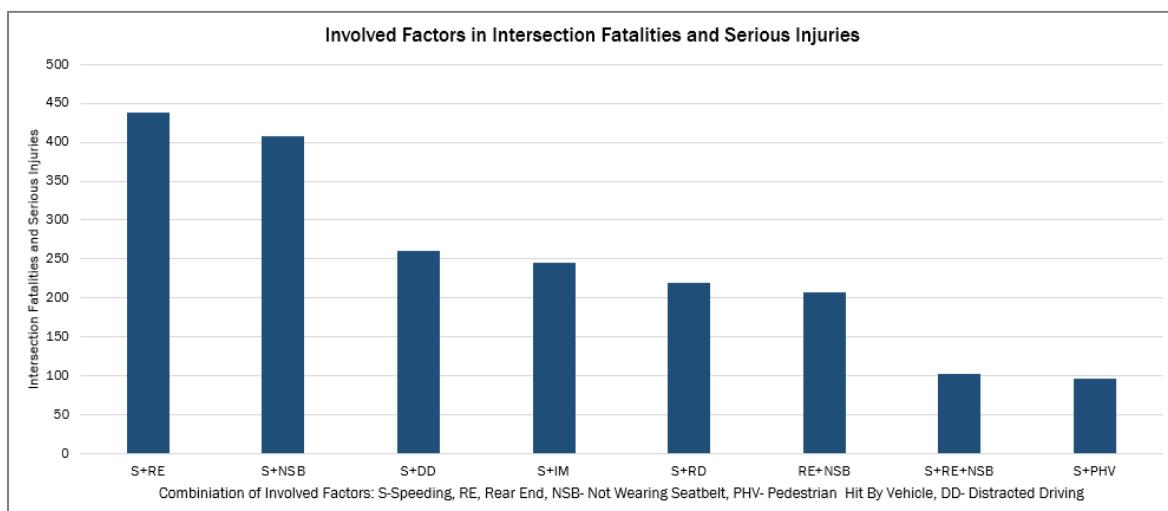
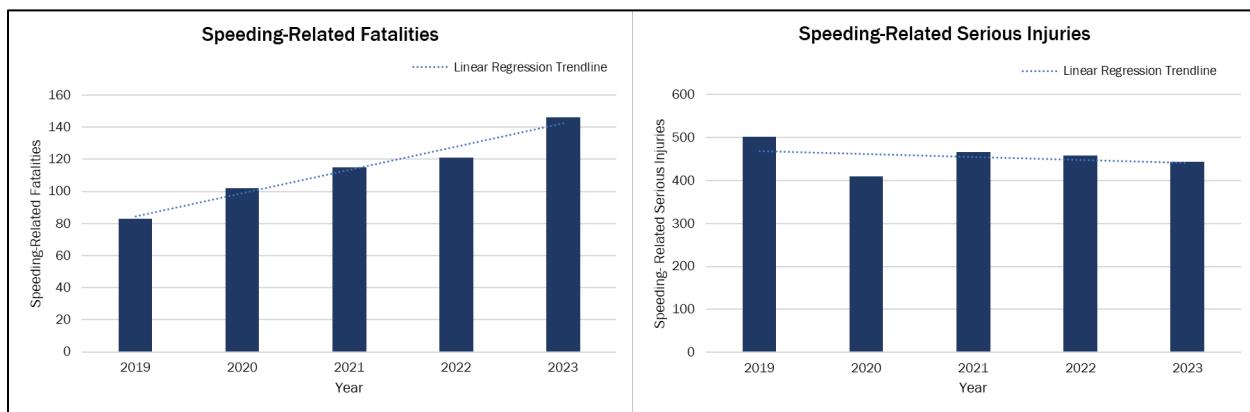

Temporal Analysis: Intersection fatalities happen more often during the evening into the late night (6:00 PM-midnight), whereas serious injuries tend to occur during peak commute periods (3:00 PM-7:00 PM) (**Figure 37**).

Figure 37: Intersection Fatalities (top) and Serious Injuries (bottom) by Hour of the Day, 2019-2023

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

Involved Factors: In terms of involved factors for intersection crashes, over 60 percent of the crashes included behavioral factors (speeding, distracted driving, impaired driving, and not wearing seatbelt) (**Figure 38**). The cross-cutting analysis highlights the following combination of factors for intersection crashes: speeding and rear end, speeding and not wearing a seat belt, rear end and not wearing a seat belt, speeding and pedestrian hit by vehicle, speeding and impaired driving, and speeding and distracted driving.

Figure 38: Multiple Involved Factors for Intersection Fatalities and Serious Injuries, 2019-2023


[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

5.2.4 FOCUS AREA #4 – SPEEDING

In the five-year study period (2019–2023) speeding was an involved factor in nine percent of total crashes which accounted for 32 percent of total fatalities and 22 percent of total serious injuries, indicating that when speeding is a factor, the severity of outcomes tends to be higher.

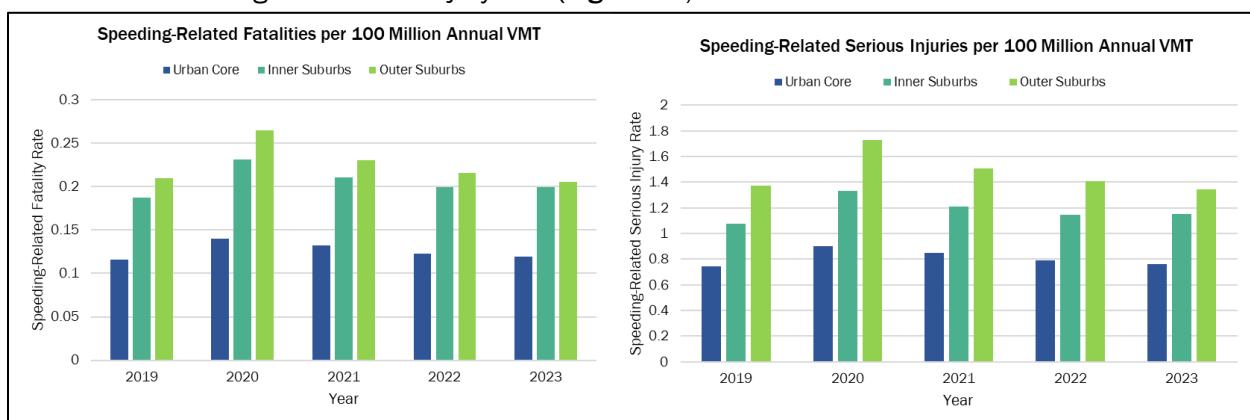

Regional Trends: Speed-related fatalities steadily climbed during the study period, while speed-related serious injuries decreased (Figure 39).

Figure 39: Speed-Related Fatalities (left) and Serious Injuries (right), 2019-2023

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

Geographic Distribution: Although speed-related crashes increased throughout the region, the Outer Suburbs have the highest serious injury rate (Figure 40).

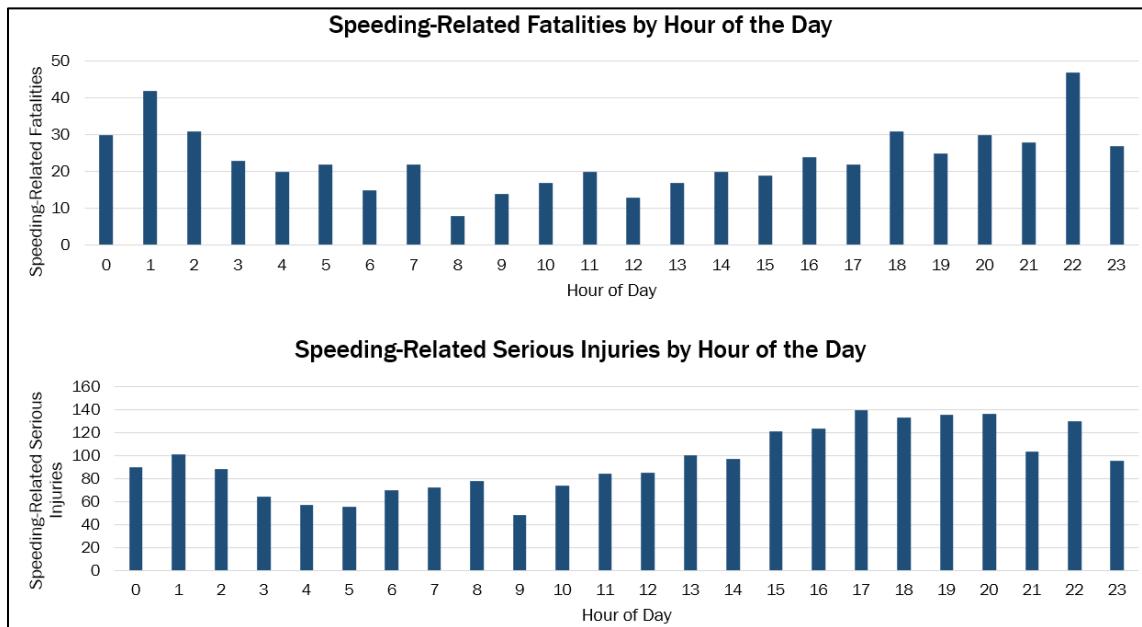


Figure 40: Speeding-Related Fatalities (left) and Serious Injuries (right) per 100 Million VMT by Subregion, 2019-2023

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

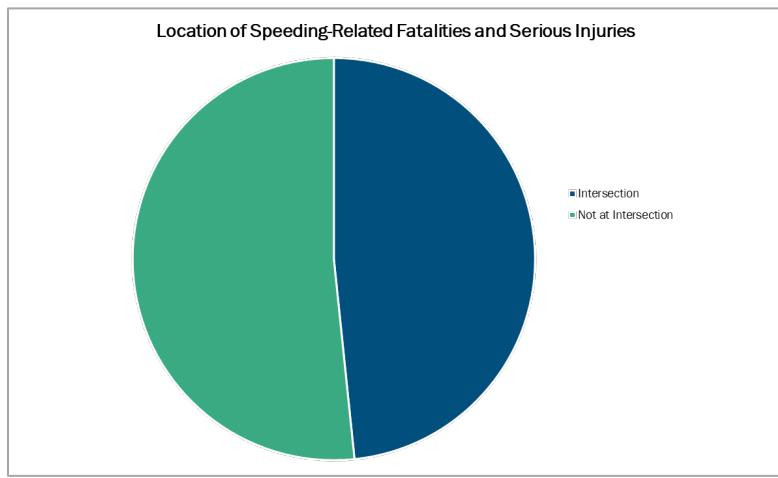

Temporal Analysis: Speed-related fatalities tend to occur during late night hours (10:00 PM -2:00 AM) Speed-related serious injuries tend to occur around peak commute hours (5:00 PM-7:00 PM) and into the late night hours (10:00 PM- 1:00 AM) (**Figure 41**).

Figure 41: Intersection Fatalities (top) and Serious Injuries (bottom) by Hour of the Day, 2019-2023
 [Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

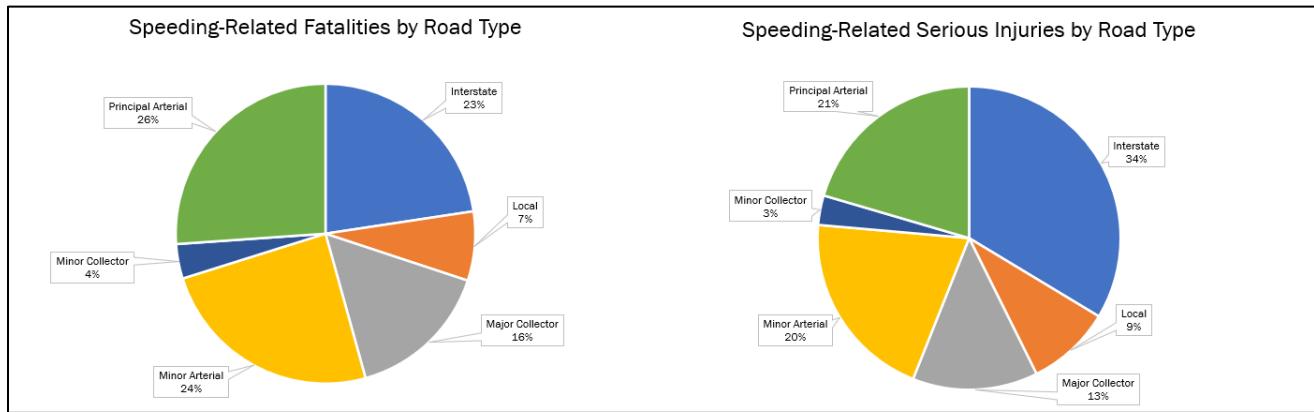

Crash Location: About half of all speed-related fatalities and serious injuries occur at both intersections and non-intersections. Most speed-related fatalities (60%) and serious injuries (41%) happen on principal and minor arterial roads, while interstates account for 23% and 34%, respectively. This highlights the need to address speeding on both interstate and arterial roadways as both serve high volumes of traffic and play key roles in regional connectivity. Arterial roadways are major streets designed to carry traffic over longer distances and connect freeways with local roads. (**Figure 42** and **Figure 43**).

Figure 42: Speed-Related Fatalities and Serious Injuries Locations, 2019-2023

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

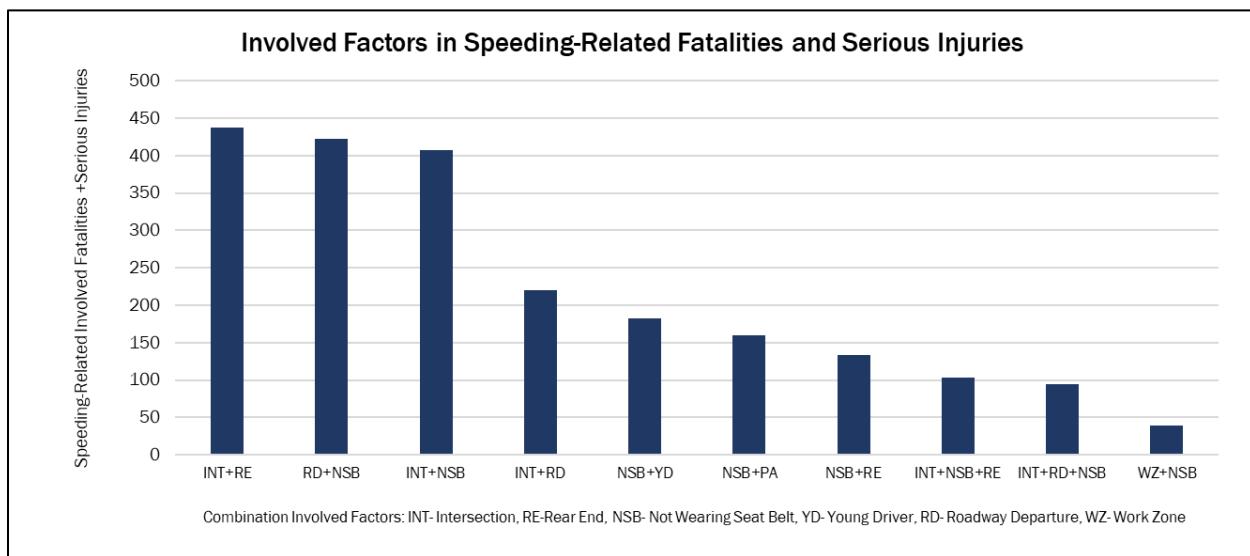
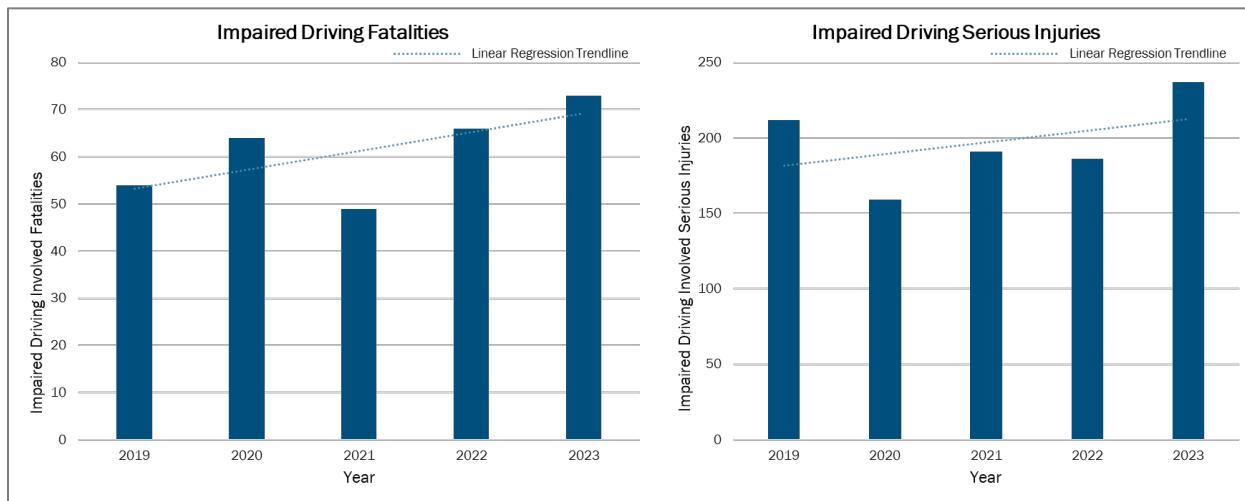


Figure 43: Speed-Related Fatalities (Left) and Serious Injuries (right) by Roadway Type, 2019-2023

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

Involved Factors: In terms of speed-related crashes, the top cross-cutting involved factors included: intersections and rear-ends, roadway departure and not wearing a seatbelt, and intersections and not wearing a seat belt (Figure 44). These patterns highlight the critical role of seat belt use in mitigating the severity of injuries or fatalities in speed-related incidents.

FOCUS AREAS


Figure 44: Multiple Involved Factors for Speed-Related Fatalities and Serious Injuries, 2019-2023

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

5.2.5 FOCUS AREA #5 – IMPAIRED DRIVING

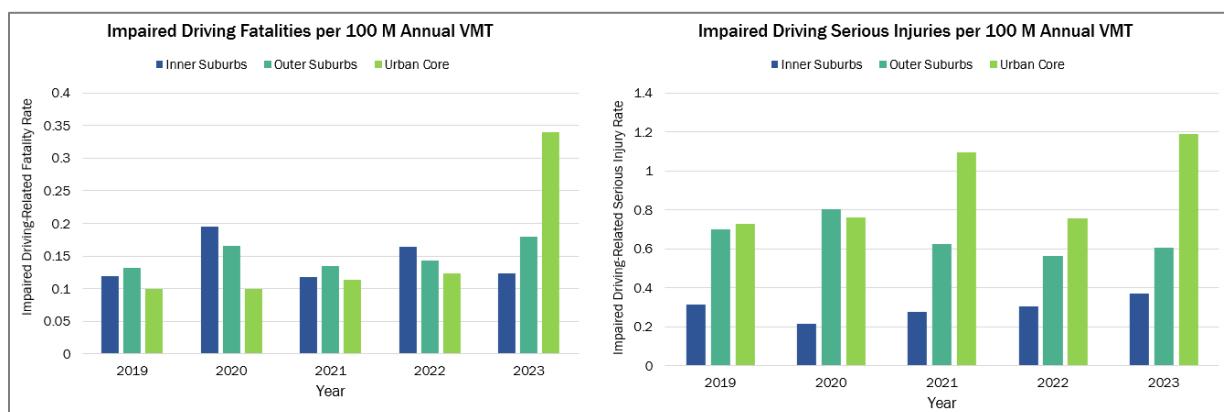
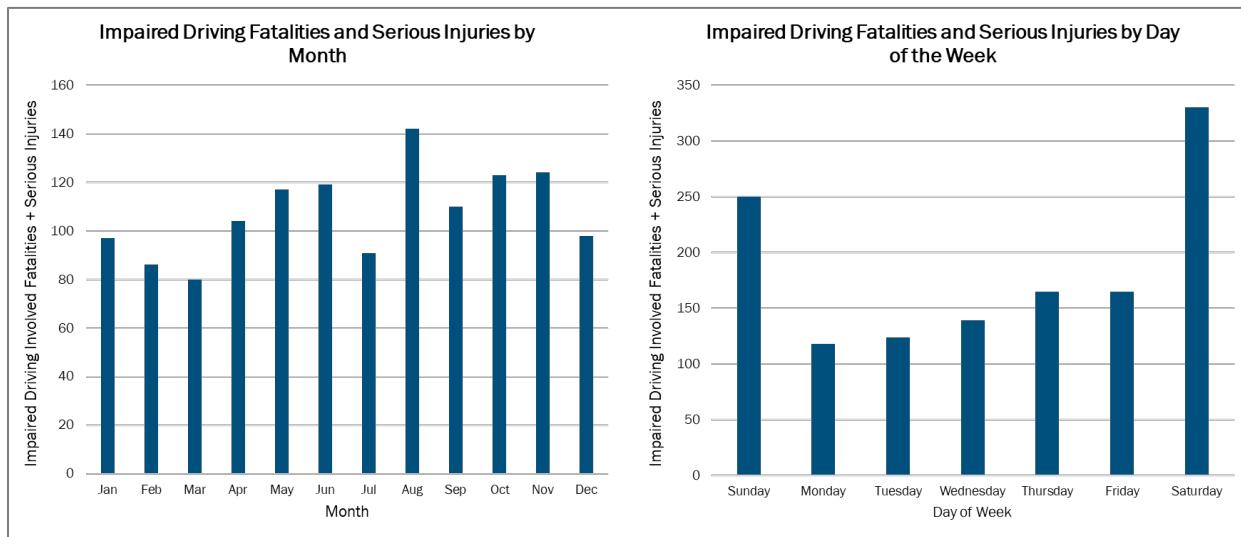

Regional Trends: Impaired driving-related fatalities and serious injuries have increased during the study period with 2023 exceeding pre-pandemic levels for both measures (Figure 45). These trends suggest increased efforts for targeted education emphasizing the dangers of impaired driving.

Figure 45: Impaired Driving- Related Fatalities (left) and Serious Injuries (right), 2019-2023

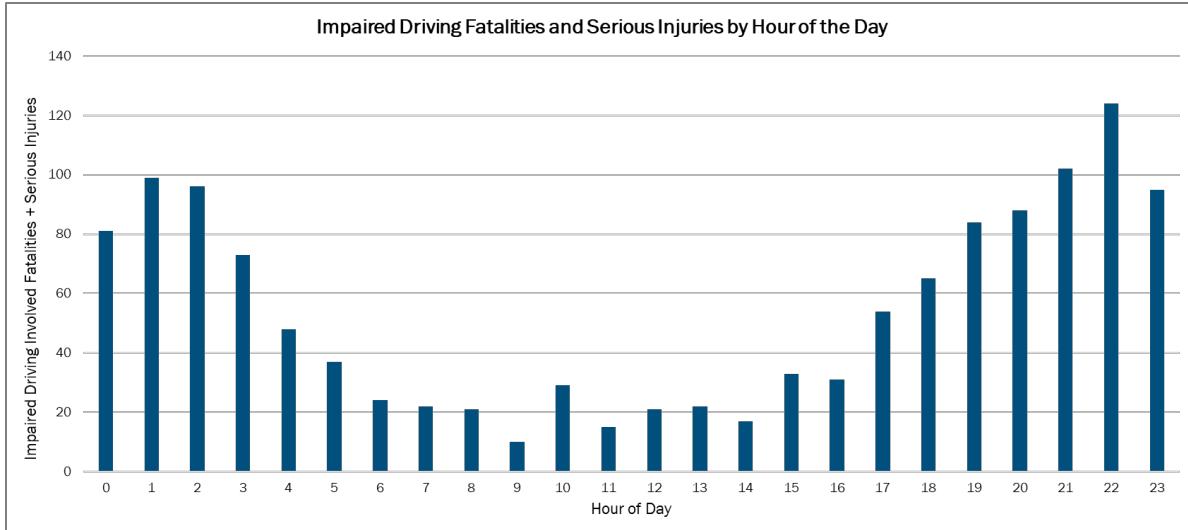
[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

Geographic Distribution: The impaired driving-related fatality rate remained stable through 2022 but rose sharply in 2023, driven by a spike in the Urban Core. Serious injury rates were consistently higher than fatality rates and increased steadily, with the Urban Core showing the highest rates each year. These trends highlight the need for targeted impaired driving prevention strategies, particularly in the Urban Core and Outer Suburbs, where the serious injury rates remain elevated. (Figure 46).

Figure 46: Impaired Driving-Related Fatalities and Serious Injuries per 100 Million VMT by Subregion, 2019-2023


[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

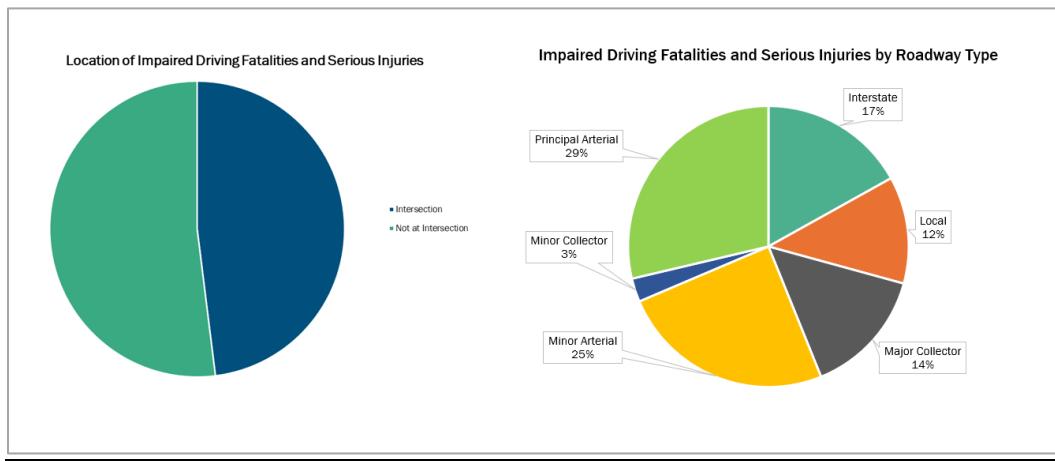
Temporal Analysis: The summer months see an increased number of impaired driving-related fatalities and serious injuries. In terms of day of the week, the weekends (Saturdays and Sundays) have the highest number of incidents (Figure 47). In addition, the majority of impaired driving


FOCUS AREAS

fatalities and serious injuries take place during the evening (5:00 PM – 9:00 PM) and into the late night hours (10:00 PM- 3:00 AM) (Figure 48).

Figure 47: Impaired Driving- Related Fatalities and Serious Injuries Month of the Year (left) and Day of the Week (right), 2019-2023

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]


Figure 48: Impaired Driving- Related Fatalities and Serious Injuries by Hour of the Day, 2019-2023

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

Crash Location: Impaired driving-related fatalities and serious injuries occur at both intersections and non-intersections, but most fatalities and serious injuries happen on arterial roadways (54%). Interstates have the next highest occurrence. This trend suggests that impaired driving prevention efforts such as targeted educational campaigns and enhanced enforcement should focus on arterial roadways and interstates to reduce risk and encourage responsible, safe driving (Figure 49).

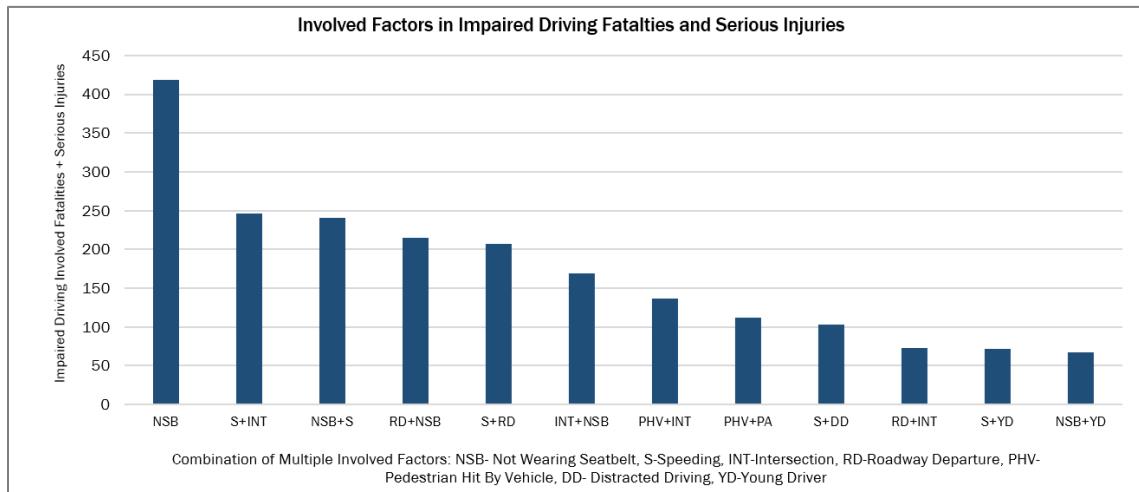
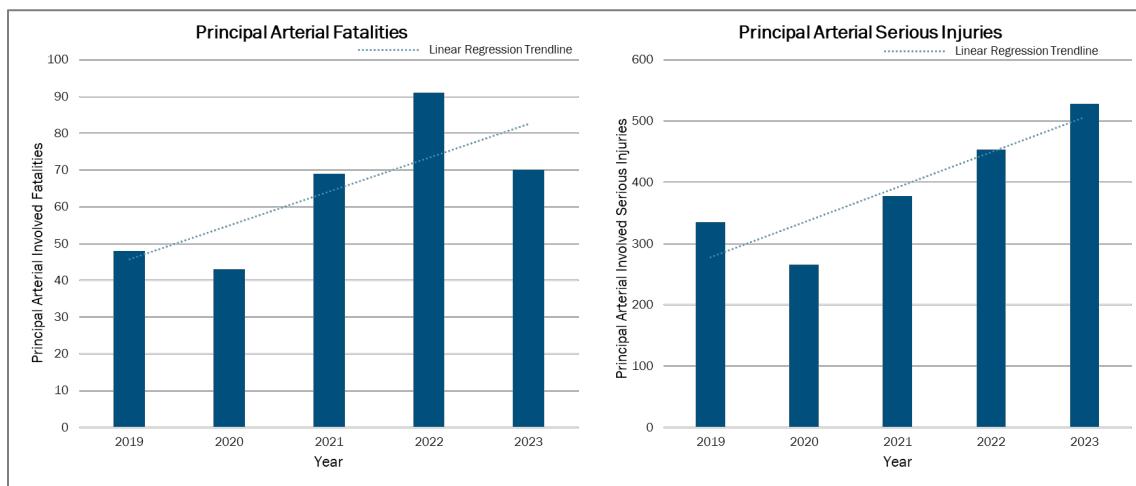

FOCUS AREAS

Figure 49: Impaired Driving-Related Fatalities and Serious Injuries Locations, 2019-2023

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

Involved Factors: In terms of involved factors for impaired driving-related serious injuries and fatalities the most prevalent was not wearing a seat belt (418), which accounted for 32% of total impaired driving-related fatalities and serious injuries (1,291). Other combinations of factors included speeding and intersections, no seat belt and speeding, roadway departure and no seat belt (Figure 50).

Figure 50: Multiple Involved Factors for Impaired Driving Fatalties and Serious Injuries, 2019-2023


[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

5.2.6 FOCUS AREA #6 – PRINCIPAL ARTERIALS

Principal arterials roadways are roads that carry high volumes of traffic and connect significant areas of the region. In the five-year study period (2019–2023), principal arterials were an involved factor in 19 percent of total serious injuries and 18 percent of total fatalities

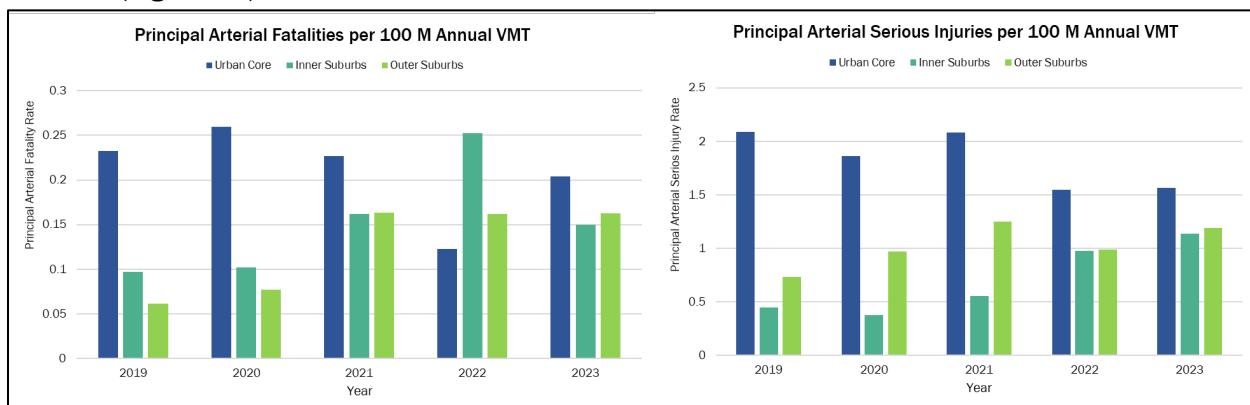

Regional Trends: Throughout the study period, fatalities and serious injuries on principal arterials have been steadily increasing (Figure 51).

Figure 51: Principal Arterial Fatalities (left) and Serious Injuries (right), 2019-2023

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

Geographic Distribution: In terms of total numbers of fatalities and serious injuries on principal arterials, the Urban Core generally has the highest number of incidents throughout the study period. When normalized by annual VMT, the Urban Core has the highest rate of fatalities and serious injuries in each year except for 2022, when the Inner Suburbs experienced the highest rate of fatalities (Figure 52).

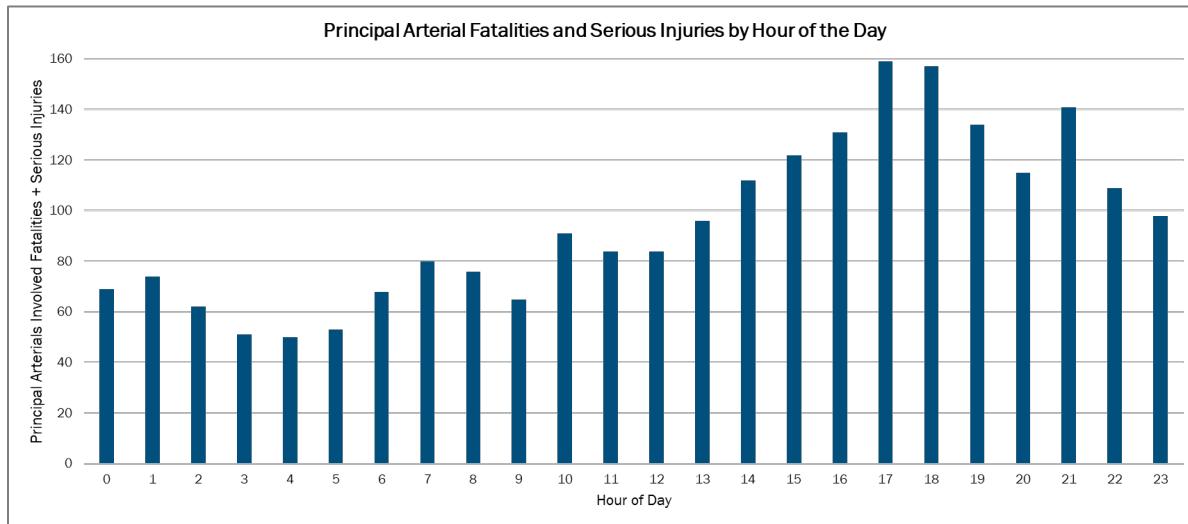


Figure 52: Principal Arterial Fatalities (left) and Serious Injuries (right) per 100 Million VMT by Subregion, 2019-2023

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

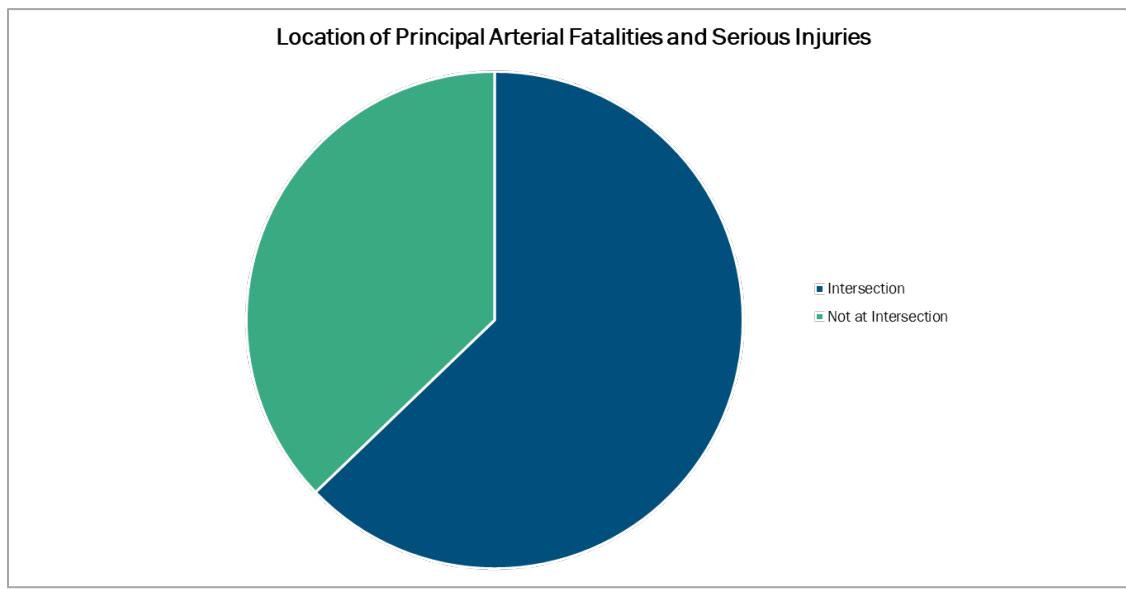
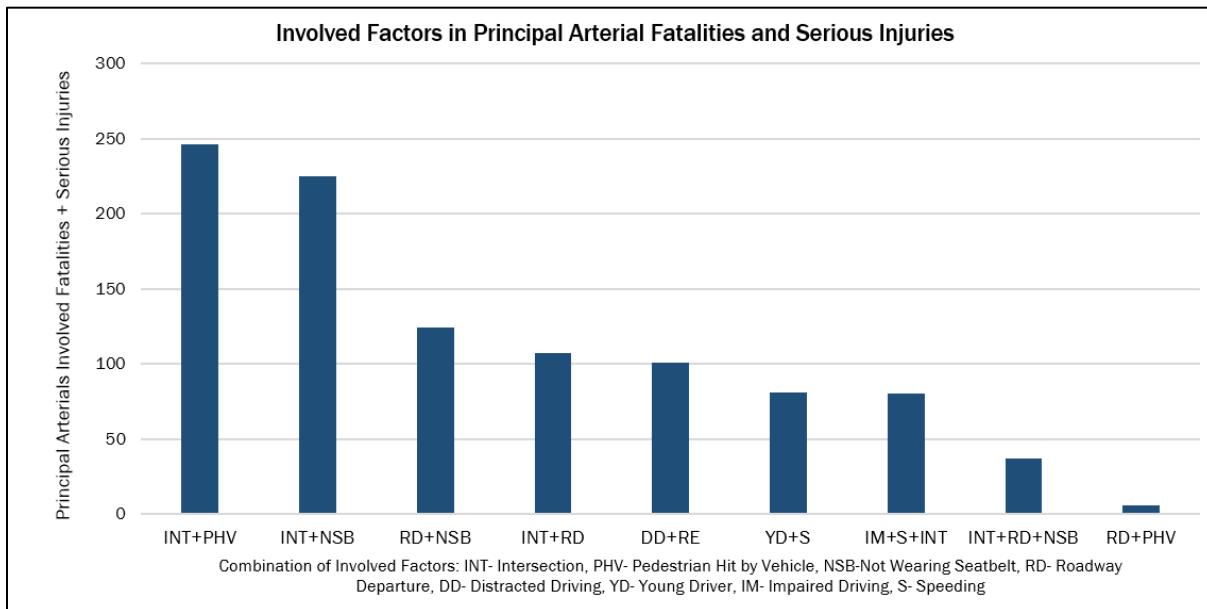

Temporal Analysis: Fatal and serious injuries on principal arterial see a significant increase during evening peak commute hours (4:00 PM to 7:00 PM), and later in the night hours (9:00 PM- 11:00 PM) (Figure 53).

Figure 53: Principal Arterials Fatalities and Serious Injuries by Time of Day, 2019-2023

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

Crash Location: Principal arterial fatalities and serious injuries tend to occur more often at intersections (Figure 54).


Figure 54: Principal Arterial Fatalities and Serious Injuries Locations, 2019-2023

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

Involved Factors: In terms of involved factors, a high number of principal arterial incidents also involve intersections and pedestrians, intersections and not wearing a seatbelt, and roadway departures and not wearing a seatbelt (Figure 55).

FOCUS AREAS

Figure 55: Multiple Involved Factors in Principal Arterials Fatalities and Serious Injuries, 2019-2023

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

Table 8 shows the cross-cutting analysis broken down by the five categories presented above.

Table 8: Recommended Focus Areas - Cross-cutting Analysis

	Pedestrians	Bicyclists	Intersections	Speeding	Impaired Driving	Principal Arterials
Regional Trends	<ul style="list-style-type: none"> Fatalities increasing. Serious injuries increasing. 	<ul style="list-style-type: none"> Fatalities increasing and then decrease. Serious injuries increasing. 	<ul style="list-style-type: none"> Fatalities increasing. Serious injuries increasing. 	<ul style="list-style-type: none"> Fatalities increasing. Serious injuries decreasing. 	<ul style="list-style-type: none"> Fatalities increasing. Serious injuries increasing. 	<ul style="list-style-type: none"> Fatalities increasing. Serious injuries increasing.
Geographic Distribution	<ul style="list-style-type: none"> Inner Suburbs have the highest number of incidents of fatalities and serious injuries next to Outer Suburbs. 	<ul style="list-style-type: none"> Inner Suburbs have the highest number of fatalities. Urban Core has highest number of serious injuries. 	<ul style="list-style-type: none"> Urban Core has the highest rate, but lowest number. Inner Suburbs have highest number of crashes but the lowest rate. 	<ul style="list-style-type: none"> More pronounced problem in Inner and Outer Suburbs. Higher serious injury rate in Outer Suburbs. Steady fatality rate for Inner and Outer suburbs. 	<ul style="list-style-type: none"> Inner Suburbs have the higher rate of fatalities for three years, then Urban Core had a significant increase in 2023. Urban Core and Outer Suburbs have the highest rate of serious injuries 	<ul style="list-style-type: none"> Urban Core has a higher rate of fatalities and serious injuries except in 2022, Inner Suburbs had higher fatality rate.
Temporal Analysis	<ul style="list-style-type: none"> Most risk during months of shorter daylight (Sep – Mar), and during darker hours (6 PM-6AM). 	<ul style="list-style-type: none"> Highest during warmer months, PM commuting hours. 	<ul style="list-style-type: none"> Higher number of fatalities at late night hours (9PM – 2 AM). Higher number of serious injuries during PM commuting 	<ul style="list-style-type: none"> Higher number of fatalities occur in late night hours. Serious injuries occur most often in the afternoon to late night. 	<ul style="list-style-type: none"> Fatalities and serious injuries are the highest during the afternoon into the late night. Higher numbers of fatalities and serious injuries on Saturdays and Sundays.. 	<ul style="list-style-type: none"> Higher number of crashes during afternoon peak and nighttime (4pm -12pm).
Crash Location	<ul style="list-style-type: none"> Fatalities happen most at non intersections. Serious injuries happen most often at intersections. 	<ul style="list-style-type: none"> Fatalities and serious injuries happen most often at intersections. 	<ul style="list-style-type: none"> N/A 	<ul style="list-style-type: none"> Fatalities and serious injuries often happen at higher functional classes (interstate, arterials.) 	<ul style="list-style-type: none"> Fatalities and serious injuries happen most at Intersections. Fatalities and serious injuries often happen at higher functional 	<ul style="list-style-type: none"> Fatalities and serious injuries happen most often at intersections.

FOCUS AREAS

	Pedestrians	Bicyclists	Intersections	Speeding	Impaired Driving	Principal Arterials
					classes (interstate and arterials).	
Involved Factors	<ul style="list-style-type: none"> Driver behavior factors, such as impaired driving, speeding, distracted driving, compound to create higher risk of pedestrian incidents. 	<ul style="list-style-type: none"> Intersections with four approaches were most prevalent intersection type for fatalities and serious injuries. Principal Arterials 	<ul style="list-style-type: none"> High proportion of rear end and no seatbelts compounded with speeding. Crashes also involved driver behavioral factors such as speeding, distracted driving, impaired driving. 	<ul style="list-style-type: none"> Intersection, roadway departure, not wearing seatbelt, pedestrian hit by vehicle. Younger drivers have a higher propensity for speeding. Other behavioral factors influence speeding (impaired and distracted driving). 	<ul style="list-style-type: none"> High proportion of crashes are due to behavioral factors (speeding, distracted driving, impaired driving). No seat belt use compounded the risk of fatalities and serious injuries. 	<ul style="list-style-type: none"> Intersection, roadway departure, pedestrian hit, no seat belt.

5.3 FOCUS AREA SUMMARY

Focus Area #1: Pedestrians:

- **Crash Burden:** Pedestrians are involved in 2.7 percent of crashes but responsible for 29 percent of fatalities and 16 percent of serious injuries. Most pedestrian serious injuries tend to happen at intersections with four approaches.
- **Geographic and Exposure Trends:** The Inner Suburbs have the highest number of pedestrian incidents resulting in a fatality or serious injury, next to the Urban Core. Exposure is likely driven by increased non-motorized travel in walkable areas in the Urban Core.
- **Temporal Patterns:** Crashes peak during winter months and dark hours, indicating risk related to visibility, lighting, and impaired night driving.
- **Involved Factors:** Speeding, distracted driving, and impaired driving are major drivers of pedestrian crashes. Crashes often involve multiple overlapping behaviors (e.g. a driver is both impaired and speeding). Intersection design and driver awareness of crosswalks also play a role.
- **Implications:** These trends point to the need for safer crosswalk treatments with improved lighting and visibility, as well as increased enforcement on driver behavior for speeding and impaired driving at these locations.

Focus Area #2: Bicyclists:

- **Crash Burden:** Bicyclists are involved in one percent of crashes but account for 3 percent of serious injuries 2 percent of fatalities.
- **Geographic and Exposure Trends:** The Inner Suburbs has both the highest number of bicycle incidents resulting in a fatality and Urban Core has higher number of serious injuries.
- **Temporal Patterns:** Crashes involving bicyclists peak in summer and commute hours, suggesting greater risk during leisure and high-activity periods.
- **Involved Factors:** Intersections are the location of 63 percent of fatal or serious injury bicycle crashes.
- **Implications:** These trends point to the need to expand protected bike lanes and protected intersections, as well as increased enforcement on driver behavior.

Focus Area #3: Intersections

- **Crash Burden:** 53 percent of fatalities and serious injuries took place at an intersection. Intersections are the leading location for serious injuries.
- **Geographic and Exposure Trends:** The Urban Core has the highest intersection crash rate, but the Inner Suburbs have more incidents overall.

- **Temporal Patterns:** Fatalities at intersections occur more often during off-peak hours (6-9PM); serious injuries spike during PM commute peaks (3-6PM).
- **Involved Factors:** There is a high share of behavioral risk overlaps: speeding, no seat belt, distracted driving, and impaired driving. These are often combined with rear-end, angle, and left-turn crash types.
- **Implications:** These trends point to the need for higher visibility, predictability, and protection at intersections. Implementing roundabouts, protected turns, and red-light camera enforcement could mitigate the risk of crashes at intersections.

Focus Area #4: Speeding:

- **Crash Burden:** Speeding is involved in nine percent of crashes, but 32 percent of fatalities and 22 percent of serious injuries, highlighting a disproportionate impact compared to its frequency.
- **Geographic and Exposure Trends:** The Outer Suburbs show the highest speed-related crash rate per VMT, which could be a function of longer distances, wider roads, and fewer enforcement points. Additionally, speeding is most prevalent on arterial and interstate roadways compared to local roads, further contributing to elevated crash risks in these areas.
- **Involved Factors:** Speeding contributes to a range of crash types including roadway departure, rear-end crashes, and crashes at intersections. The risk of severe injury increases when speeding is combined with not wearing a seat belt, regardless of crash type.
- **Implications:** Measures to reduce speeding and mitigate crash risk could include traffic calming treatments, speed cameras, and roadway design strategies on roadways with higher instances of speed-related crashes to discourage high speeds and promote safer driving behaviors.

Focus Area #5 - Impaired Driving:

- **Crash Burden:** Impaired driving accounts for four percent of total crashes but is responsible for 17 percent of fatalities and 9 percent of serious injuries and is a top contributor to late-night fatal crashes.
- **Geographic and Exposure Trends:** The Inner Suburbs have the most incidents; the Outer Suburbs and Urban Core have the highest rate per VMT.

- **Temporal Patterns:** Impaired driving incidents peak on weekends, summer months, and late-night/early morning hours.
- **Involved Factors:** Crashes involving impaired driving often overlap with roadway departures, intersection-related incidents, and pedestrian involved collisions. Speeding is a contributing factor in many of these crashes, particularly on arterial and interstate roadways. The absence of seatbelt use further compounds the severity risk of injuries in these high risk situations.
- **Implications:** To mitigate impaired driving crashes, enforcement efforts could be strengthened and strategically focused during late-night hours on arterial and interstate roadways. Complementary educational campaigns highlighting the risks of driving under the influence can further support behavior change

Focus Area #6 – Principal Arterials:

- **Crash Burden:** Principal arterials account for 18 percent of all fatalities and 19 percent of serious injuries. Steadily increasing on this roadway type year over year.
- **Geographic and Exposure Trends:** The Inner Suburbs see the most incidents on principal arterials, while the Urban Core has the highest rate per VMT.
- **Temporal Patterns:** Principal arterial crashes occur throughout the year, with spikes during PM peak (4-7PM) and late nights (9PM-2AM).
- **Involved Factors:** Principal arterial crashes are frequently associated with intersections, pedestrians, lack of seat belt -use, and roadway departure.
- **Implications:** Applying Complete Streets upgrades to principal arterials, such as enhanced crossings, median refuges, and reduced lane widths, could mitigate the risk of crashes on principal arterials.

6

COVID-19 Impacts on Crashes

6. COVID-19 Impacts on Crashes

Like other regions across the country, the COVID-19 pandemic had an impact on the operations and safety of the transportation networks in the COG region. Consistent with national guidance, Maryland, the District of Columbia, and Virginia declared COVID related health emergencies in March 2020, which imposed restrictions on travel and social gatherings (including shelter in place/stay at home orders), transitioned schools and workplaces to a hybrid environment, closed restaurant/bar dining rooms, and limited bus/rail service. As the pandemic progressed and vaccinations became available, some of the restrictions started easing (subject to social distancing norms and mask mandates). This was reflected in the level of travel activity (as shown in average weekday VMT trends) and crash patterns. **Table 9** summarizes the patterns which are highlighted in the discussion below.

Table 9: Summary of Regional Travel and Crash Patterns, 2019-2023

YEAR	ANNUAL VMT (MILLIONS)	YEAR OVER YEAR CHANGE IN VMT	NUMBER OF TOTAL CRASHES	YEAR OVER YEAR CHANGE IN CRASHES	NUMBER OF FATALITIES	YEAR OVER YEAR CHANGE IN FATALITIES	FATALITY/TOTAL CRASHES	YEAR OVER YEAR CHANGE IN FATALITIES /CRASHES	FATALITY RATE/100 MILLION VMT	YEAR OVER YEAR CHANGE IN FATALITY RATE
2019	454.97		95,158		311		0.33%		0.68	
2020	367.61	-19.2%	68,997	-27%	322	4%	0.47%	43%	0.88	28%
2021	406.47	10.57%	80,464	17%	367	15%	0.46%	-2%	0.90	3%
2022	431.91	6.25%	81,799	2%	382	4%	0.47%	2%	0.88	-2%
2023	436.31	1.19%	85,943	5%	392	3%	0.46%	-2%	0.90	1%
CHANGE 2019-2023		-4%		-10%						31%

[Source: Metropolitan Washington Council of Governments (MWCOG), District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

6.1 IMPACTS ON TRAVEL ACTIVITY

As expected, the impact of COVID-related travel restrictions was most pronounced in 2020, which saw a 19 percent reduction in VMT from 2019 levels. VMT started increasing from 2021 through 2023 but had not yet reached the pre-pandemic levels as of 2023. VMT in 2023 was still four percent lower than 2019, driven partly by the continued hybrid work environment carried over from the COVID years.

6.2 IMPACTS ON CRASHES

The reduction in travel activity in 2020 resulted in 27 percent fewer crashes in 2020 (compared to 2019). As VMT increased, total crashes increased; however, 2023 crashes were ten percent lower than 2019. Unfortunately, **the reduction in total crashes did not translate to a corresponding reduction in number of fatalities**. In fact, 2020 fatalities were higher (322) than 2019 (311). The year 2021 saw a 15 percent increase in fatalities over 2020 levels and the fatality numbers have been increasing through 2023. Fatalities accounted for nearly 0.46 percent of total crashes in 2020, meaning about 1 in 217 crashes resulted in a fatality (a 43 percent increase from 2019) and stayed at the higher rate through 2023. The fatality rate (per 100 million VMT) also jumped 29 percent between 2019 and 2020 and stayed at a high rate through 2023 (31 percent higher than 2019).

6.3 SHIFT IN BEHAVIORAL TRENDS

The crash statistics during the pandemic revealed some consistent but alarming behavioral trends:

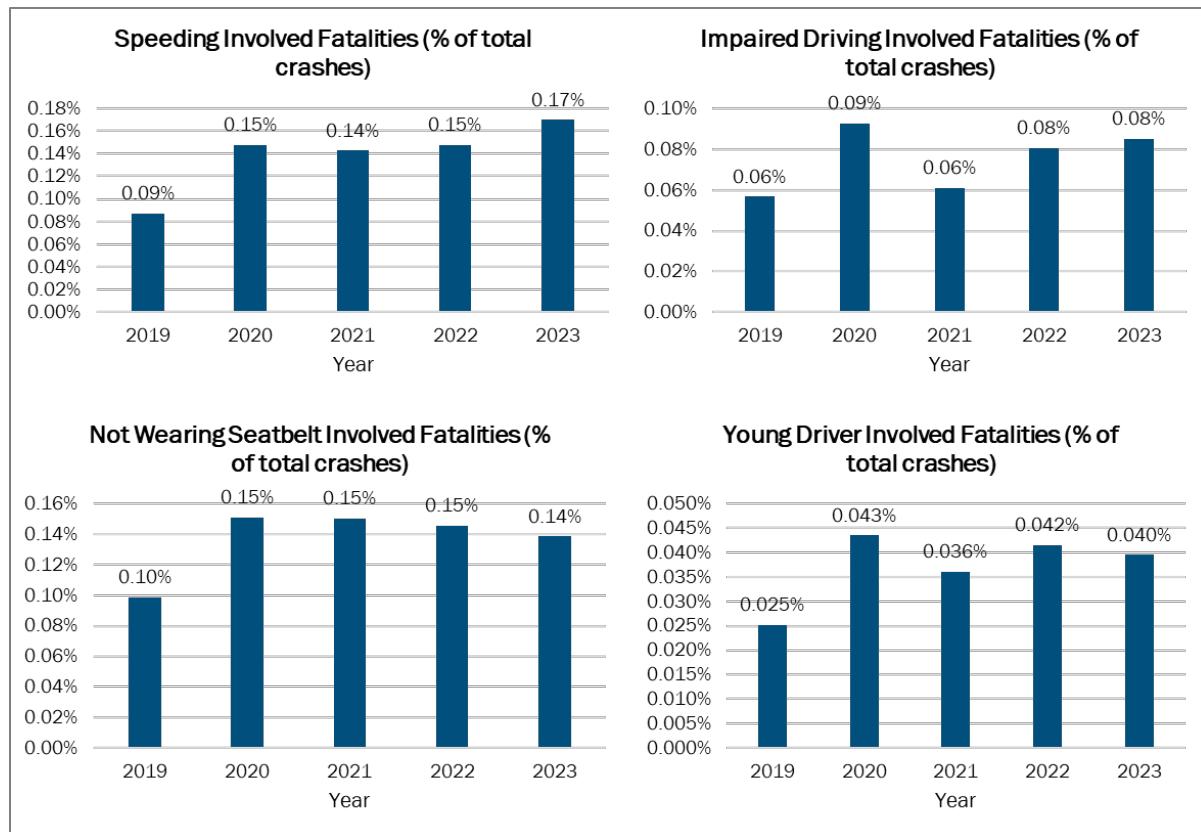
- **Speeding related fatalities jumped in 2020 by 67 percent.** The percentage dropped in 2021 but stayed above 2019 levels through 2023 (**Figure 56**). This can be attributed to an increase in speeding during the COVID. As an example, speeding-related violations in DC were higher in March and April of 2020, compared to the same months in 2019.¹⁶ This phenomenon is consistent with national trends¹⁷ and observations in other jurisdictions.¹⁸ Lower traffic volumes during the pandemic enabled drivers to travel at speeds that had been precluded by congestion prior to the pandemic. Empirical research also suggests that decreased traffic volume is likely to result in impairments in drivers' ability to accurately perceive, and thus control, their own speed. Three primary processes are likely at play:¹⁹
 - First, in low traffic volume conditions drivers lack visual information that they would typically use to detect their own speed. Systematic underestimation of speed, and thus speeding, are possible results.
 - Second, drivers seek to balance levels of perceived risk. With fewer cars on the road, speeding is likely to be perceived as less risky, as any given driver's field of safe travel is expanded. If this is in fact the case, it would entail more speeding to maintain the desired or acceptable level of risk.
 - Finally, low traffic volume is associated with increased boredom. Drivers may adopt several strategies to deal with boredom. Many of these, such as speeding, aggressive driving, and phone use, are associated with increased risk.
- **Impaired drivers involved in fatal crashes jumped in 2020 by 50 percent over 2019 levels.** The percentage dropped in 2021 and increased again in 2022 and 2023 and stayed above 2019 levels (**Figure 56**). This is consistent with national trend and likely co-related with increased alcohol sales (increased 34 percent), marijuana sales, and alcohol related health issues.^{20,21}
- **The percentage of drivers with no seat belts involved in fatal crashes jumped in 2020 by 36 percent (**Figure 56**).** This is consistent with national trends. Ejections from vehicles during crashes are a proxy measure of seat belt use because people using seat belts are less likely to be ejected. The National Highway Transportation Safety Administration (NHTSA) tracks the number and rate of ejections per emergency medical services (EMS) activation in response to motor vehicle crashes. The ejection rate by week for 2019 and 2020 shows an increase in the ejection rate in most of 2020 after week ten, when the COVID-19 public health emergency was declared.²²

¹⁶ <https://ggwash.org/view/78645/dc-driving-violations-spike-and-crashes-descrease-during-the-early-stages-of-covid-19>.

¹⁷ 202407-AAAFITS-Impact-of-COVID.pdf.

¹⁸ <https://pmc.ncbi.nlm.nih.gov/articles/PMC9042805/>.

¹⁹ <https://pmc.ncbi.nlm.nih.gov/articles/PMC9746225/>.


²⁰ https://www.nhtsa.gov/sites/nhtsa.gov/files/documents/traffic_safety_during_covid19_01062021_0.pdf.

²¹ pmc.ncbi.nlm.nih.gov/articles/PMC10202895/#:~:text=Lockdowns%20and%20social%20distancing%20led,%20%20%26%20Martins%2C%202021.

²² <https://rosap.ntl.bts.gov/view/dot/56125>.

- The percentage of young drivers involved in fatal crashes jumped in 2020 by 72 percent. The percentage dropped in 2021 but stayed above 2019 levels through 2023 (Figure 56). This may be explained by observations at the national level that while most drivers reported doing less driving in the fall of 2020 than they did prior to the pandemic, a small subset (four percent) of the population reported driving more than they did before, and this group tended to be riskier on average both demographically (i.e., younger, higher proportion male) and behaviorally (e.g., higher prevalence of risky behaviors, even after accounting for demographic characteristics).²³

Figure 56: COVID-19 Impacts - Shifts in Behavioral Trends, 2019-2023

[Source: District Department of Transportation (DDOT), Virginia Department of Transportation (VDOT), and Maryland Department of State Police]

²³ <https://newsroom.aaa.com/2022/02/solving-a-puzzle-with-fewer-drivers-on-the-road-during-covid-why-the-spike-in-fatalities/>.

6.4 COVID-19 IMPACTS SUMMARY

- Travel restrictions during COVID resulted in a reduction in VMT. As the restrictions were relaxed, VMT rebounded between 2021-2023, but not to pre-pandemic levels.
- Total crashes decreased during 2020 and increased incrementally between 2021 and 2023 but remained ten percent below pre-pandemic levels.
- Despite lower VMT and lower crashes, fatalities increased in 2020 and spiked in subsequent years. 2023 fatalities were 26 percent higher than in 2019. Fatalities accounted for a larger percentage of total crashes during 2020-2023. The fatality rate (normalized by VMT) also spiked in 2020 compared to 2019 and has remained at a high level through 2023.
- Speeding related fatalities jumped in 2020 by 67 percent. The percentage dropped in 2021 but stayed above 2019 levels through 2023. This is consistent with national trends and local data that indicates an overall increase in speeding-related violations during the early months of the pandemic.
- Impaired drivers involved in fatal crashes jumped in 2020 by 50 percent. This is consistent with national trends and may be correlated to data on increased alcohol and recreational drug sales, alcohol consumption, and alcohol-related health issues during the pandemic. The percentage dropped in 2021 and increased again in 2022 and 2023 and stayed above 2019 levels.
- The percentage of drivers with no seat belts involved in fatal crashes jumped by 36 percent in 2020. This is consistent with national trends. The percentage of drivers with no seat belt involved in fatal crashes dropped in 2021 but stayed above 2019 levels through 2023.
- The percentage of young drivers involved in fatal crashes jumped in 2020 by 72 percent. The percentage dropped in 2021 but stayed above 2019 levels through 2023.
- Behavioral factors involved in fatal crashes (speeding, impaired driving, seat belt usage) changed during COVID; however, as of 2023, these factors have not yet returned to pre-COVID levels.

7

Jurisdictional Questionnaire

7. Jurisdictional Questionnaire

To better understand the safety challenges faced by transportation agencies across the COG jurisdictions, a questionnaire was distributed to transportation safety professionals in member jurisdictions. The purpose of the questionnaire was to gather qualitative information from member jurisdictions and supplement existing crash data with insights as to ongoing trends, barriers to implementing safety efforts, and specific local issues.

The questionnaire was conducted in coordination with COG/TPB staff and included both multiple-choice and open-ended questions. This section summarizes the key findings from the questionnaire, offering perspective into the region's transportation safety landscape and identifying potential areas for future action.

7.1 KEY QUESTIONNAIRE FINDINGS

The questionnaire responses from COG member jurisdictions revealed several important trends and challenges related to their traffic safety. The key takeaways from the questionnaire are summarized below:

- **Increase in Fatalities during COVID-19 pandemic:** Most jurisdictions reported an increase in traffic fatalities during the pandemic, consistent with the trend seen across the region.
- **Decline in Serious Injuries:** Despite the rise in fatalities, most jurisdictions experienced a decline in serious traffic injuries, following the broader regional pattern.
- **Top Involved Factors for Serious Injuries:** Speeding and crashes involving vulnerable road users, such as pedestrians and bicyclists, were frequently cited as the leading causes of serious injuries.
- **Top Involved Factors for Fatalities:** Speeding and impaired driving were identified by respondents as the top involved factors for fatalities in most jurisdictions. These differ from the TPB's top three factors in 2021, which included the lack of seatbelt use, pedestrian incidents, and intersection crashes.
- **Areas of Assistance Needed:** Jurisdictional staff highlighted the need for assistance in the following areas (ranked by priority):
 1. Supportive legislation and policy: Specific areas cited included legislative policies around automated enforcement capabilities, distracted driving, impaired driving, and driver accountability.
 2. Funding: Multiple jurisdictions noted the need for funding for institutionalizing safety programs, data collection, enforcement, and educational and awareness initiatives.
 3. Additional staffing: Respondents indicated that staff capacity limits their jurisdiction's ability to implement projects, policies, and programs.
 4. Data collection and analysis: Respondents expressed a desire for more specific localized data tailored to their jurisdiction.
- **Effective Safety Strategies:** The most effective strategies for reducing fatalities and serious injuries, as mentioned by most jurisdictions, included:
 1. Speed management: Multiple respondents mentioned installation of road diet projects and lowering speed limits as having demonstrated effectiveness.

2. Pedestrian safety improvements: Respondents noted high-visibility crosswalks, quick-build projects, rapid-flashing beacons, and pedestrian signal phasing modifications as having a beneficial effect on roadway user safety.
3. Improved street lighting for enhanced visibility during night/dark conditions: Respondents noted LED streetlight conversions have improved nighttime visibility.
4. Automatic traffic enforcement (e.g., red light and speed cameras): Respondents noted reductions in angle crashes after installation of red-light cameras.

- Adoption of 'Zero Death Goal': 63 percent of the responding jurisdictions (10 out of 16) have adopted the 'zero death goal'. Of those, eight jurisdictions have set a target year to achieve this goal. Target years for the Vision Zero goal ranged from 2024 to 2040, with 2030 being the year most cited.

7.2 QUESTIONNAIRE SUMMARY

- Jurisdiction responses highlighted that fatalities rose during COVID-19, while serious injuries declined, matching the regional trends found in the crash data analysis.
- The top causes of serious injuries mentioned included speeding and crashes involving vulnerable road users (pedestrians and bicyclists).
- The top causes of fatalities mentioned included speeding and impaired driving.
- Jurisdictional needs identified:
 - **Supportive legislation**, especially for automated enforcement, distracted and impaired driving.
 - **Increased funding for safety programs**, education, enforcement, and data systems.
 - **Staffing**: participants highlighted that limited capacity hinders the implementation of safety strategies.
 - **Local data**: participants mentioned a desire for more jurisdiction-specific crash data.
- Effective strategies identified:
 - **Speed management** (road diets and lower speed limits).
 - **Pedestrian safety improvements** (crosswalks, beacons, signal phasing).
 - **Better lighting** (LED conversions to improve night visibility).
 - **Automated enforcement** (red light/speed cameras reduce angle crashes).
- Vision Zero commitments:
 - 63 percent of jurisdictions that responded to the survey have adopted a Zero Death Goal.
 - Most common target year: 2030, with ranges from 2024 to 2040.

8

Recommendations and Next Steps

8. Recommendations and Next Steps

Safety throughout the region's transportation network has long been a focus and a challenge. The trend in fatal crashes across the National Capital Region over the five-year study period (2019 - 2023) has not been encouraging. Not only are the safety targets adopted by the TPB not being met, but when it comes to fatal crashes, trends are going in the wrong direction.

This study is a follow up to a 2020 study that analyzed crash data from 2013-2017. Since that study, TPB has taken proactive steps to improve the safety of the NCR transportation network. However, these strategies have not yet yielded a positive outcome at the regional level.

This chapter highlights the steps taken by the TPB since the last study, recommends strategies for the TPB to consider based on the quantitative (crash statistics) and qualitative (jurisdictional questionnaire and literature review) analysis conducted in this study and identifies future areas of research.

8.1 STEPS TAKEN BY THE TPB SINCE 2020

The TPB adopted **Safety Resolution R3-2021** to establish safety policy to reduce fatalities and serious injuries on the NCR's roadways. The resolution urged member jurisdictions to reaffirm road user safety as a top priority and to prioritize the implementation of projects, programs, and policies that strive to reduce the number of fatal and serious injury crashes on the region's roadways. The resolution recommends actions to significantly reduce the number of people killed or injured in traffic crashes in four focus areas: pedestrian, intersection, major arterial, and young driver crashes. The resolution spells out specific actions that can be taken individually and/or collectively.

Specifically, the resolution:

- Advocated for increasing seatbelt use, reducing unsafe speeds, and reducing impaired and distracted driving.
- Identified 59 safety countermeasures for agencies to consider on a case-by-case basis. The countermeasures are grouped under two categories: (1) design and operate safer infrastructure, and (2) encourage safer behavior.
- Initiated the Regional Roadway Safety Program (RRSP) to assist member jurisdictions to develop and/or implement projects, programs, and policies to improve safety outcomes for all roadway users. Since 2020, TPB has awarded \$2.1 million through the RRSP across 32 projects including site-specific planning or preliminary design, education campaigns and toolkits, complete streets, local road safety plans, guidelines and standards, and other activities with the goal of increasing safety and reducing crashes on the region's roads. Currently, for fiscal year 2026 (July 1st, 2025 – June 30th, 2026) the available funding is \$320,000 and four projects have been funded.
- Called upon member jurisdictions to adopt safety goals consistent with Vision Zero and adopt procedures that increase the use of ignition interlock devices for impaired driving offenders.

On October 31, 2024, TPB also convened the **Regional Roadway Safety Summit** to develop potential actions the TPB could undertake to address regional roadway safety. Recommendations from the summit include:

- Joining the USDOT Allies in Action Campaign, which incites stakeholders to share how they are embracing the vision of eliminating roadway fatalities and redouble efforts to take specific actions to reduce serious injuries and deaths.
- Assist COG with developing a multijurisdictional arrangement to fully enforce traffic laws and hold dangerous drivers to account (automated enforcement reciprocity).
- Organizing a larger strategy on federal rulemaking.
- Data gathering and reporting activities to support local Vision Zero efforts.

These efforts as well as this study complement additional ongoing safety activities described in Section 1.3.

8.2 RECOMMENDATIONS

Based on regional trends analysis, literature review, the crash data analysis, the identification of focus areas, and the jurisdictional questionnaire results, this study proposes the following recommendations for TPB to improve road safety across the region.

8.2.1 PRIORITIZE FOCUS AREAS

This study identified the following six (6) focus areas:

- Pedestrian Hit by a Vehicle
- Bicyclist Hit by a Vehicle
- Intersection
- Principal Arterial
- Speeding
- Impaired Driving- Alcohol and Drugs

The focus areas were found to have a disproportionate impact on crash severity (fatalities and serious injuries). The TPB and its member jurisdiction and agencies should individually and collectively identify projects, programs, and policies to prioritize addressing the six (6) focus areas. An example of a potential application of the focus areas is to incorporate them into the Regional Roadway Safety Program selection process.

8.2.2 ADOPT THE SAFE SYSTEM APPROACH

The Safe System Approach is supported by extensive literature as a foundational framework for improving roadway safety. Its principles have been adopted internationally and are increasingly recognized as best practice in the United States in addressing traffic fatalities and serious injuries. It acknowledges that any death on the transportation system is unacceptable and is based on the understanding that humans make mistakes that can be anticipated.²⁴ The Safe System Approach relies on shared responsibility and redundancy in systems, so that when a human makes an

²⁴ <https://www.transportation.gov/safe-system-approach>.

inevitable mistake, that mistake does not result in a fatality. This report recommends the continued adoption of the Safe System Approach and structures the recommended safety countermeasures in this format.

The Safe System Approach is defined by six principles:

- Death and serious injuries are unacceptable
- Humans make mistakes
- Humans are vulnerable
- Responsibility is shared
- Safety is proactive
- Redundancy is crucial

The Safe System Approach is further organized around five complementary objectives:

- **Safer People**, which encourages safe and responsible driving and behavior;
- **Safer Roads**, which focuses on designing roadways to minimize the consequences of human mistakes, encourage safe roadway behaviors, and accommodate travel by vulnerable roadway users;
- **Safer Vehicles**, which notes the role of vehicles and vehicle systems in preventing crashes and minimizing their impact;
- **Safer Speeds**, which promotes thoughtful, context-appropriate roadway design and speed limits, supported by targeted outreach, education, and enforcement; and
- **Post-Crash Care**, which targets improving the likelihood of surviving a serious crash through access to emergency medical care and creating a safe environment for first responders and traffic incident management practices.

8.2.3 RESTRUCTURE COUNTERMEASURES USING THE SAFE SYSTEM FRAMEWORK

The 59 safety countermeasures identified in the [TPB Safety Resolution R3-2021](#) can be restructured using the Safe System Approach framework discussed in the previous section. The restructured countermeasures (shown in Appendix E) had the following breakdown across the safe system categories – safer roads (36), safer people (18), safer speed (3), safer vehicles (1) and post-crash care (1). In addition, the countermeasures can be targeted to achieve co-benefits to multiple focus areas. For example, strategies that target speeding are also likely to improve outcomes for vulnerable road users. Similarly, targeting ways to mitigate behavioral factors related to serious injuries and fatalities (speeding, impaired driving, and distracted driving) are likely to impact all focus areas. The countermeasures were also modified to emphasize focus areas identified in this study. As an example, the countermeasure “conduct pedestrian road safety audits in areas with higher-than-average crashes” was modified to “conduct pedestrian and bike road safety audits in areas with

higher-than-average crashes.” Similarly, “*develop and implement pedestrian safety programs for elementary school students*” was modified to “*develop and implement pedestrian and bike safety programs for elementary school students*.”

8.2.4 MORE EMPHASIS ON POST-CRASH CARE

Within the Safe System Approach, there are opportunities to identify and implement additional countermeasures related to Safer Vehicles and Post-Crash Care, an area where TPB may have untapped potential to influence jurisdictional efforts to increase the survivability of traffic crashes. Some of the post-crash care countermeasures recommended include:

- Implement pre-hospital blood transfusion programs: These programs enable EMS agencies to supply lifesaving blood and/or blood components to trauma patients and anyone else who might need it at the scene of an incident.²⁵
- Introduce signal pre-emption for emergency vehicles: This technology allows emergency vehicles priority passage through intersections when responding to an emergency.²⁶
- Coordinate post-crash response regionally between highway safety, EMS, and 911: This involves the coordination of communication protocols, Traffic Incident Management Programs (TIMs)²⁷, technology and data platforms, joint trainings for responders, and post-crash after-action reviews.²⁸
- Expand move-over public education campaigns: These campaigns raise awareness for the need to allow emergency vehicles through by pulling over.²⁹

8.2.5 PURSUE ADDITIONAL FUNDING OPPORTUNITIES

The jurisdictional questionnaire identified funding constraints as a challenge to developing more robust safety programs. TPB member jurisdictions have addressed this challenge by dedicating local funding to safety specific programs, re-framing maintenance programs to incorporate safety elements, and exploring federal grant opportunities to supplement their funding. However, the funding needs are broad, with jurisdictions citing the need for funding that supports a range of safety fundamentals including enforcement, media campaigns, education, data collection and analysis, and infrastructure. The region has an impressive track record of successfully leveraging federal programs such as the Highway Safety Improvement Program (HSIP), NHTSA Formula Grants, and the Transportation Alternatives Program (TAP), as well as winning competitive federal grants such as Safe Streets for All (SS4A) and Better Utilizing Investments to Leverage Development (BUILD). Many jurisdictions have used SS4A funding to develop a local Safety Action Plan, helping jurisdictions identify and prioritize initiatives to reduce fatal and serious injury crashes. Once the jurisdiction has an adopted Safety Action Plan, they may be eligible to apply for implementation funds to enhance their safety programs. TPB can play a role in connecting jurisdictions with funding sources, encouraging partnerships on collaborative grant applications that could benefit multiple jurisdictions and reduce competition from within the region.

²⁵ <https://www.ems.gov/issues/prehospital-blood-transfusion/>.

²⁶ <https://www.fhwa.dot.gov/publications/research/safety/04091/04091.pdf>.

²⁷ Currently the TPB does not have a TIMs program in place. The region has TIMs activities that are decentralized with each state jurisdiction operating their own TIMs programs.

²⁸ <https://www.ems.gov/issues/ems-highway-safety-and-post-crash-care/>.

²⁹ <https://www.trafficsafetymarketing.gov/safety-topics/move-over-safety>.

8.2.6 DEVELOP A MULTIJURISDICTIONAL ARRANGEMENT

Speeding was a contributing factor in a significant percentage of fatalities (32% of total fatalities) and serious injuries (22% of total serious injuries). With automated enforcement programs becoming more commonplace in the NCR (after the Commonwealth of Virginia passed enabling legislation for automated speed enforcement in school and work zones), the time might be right to work on multijurisdictional arrangements to fully enforce traffic laws and hold dangerous drivers to account through automated enforcement reciprocity. This was flagged as an action item from the Regional Roadway Safety Summit.

8.2.7 CONTINUE TO LEVERAGE FORUMS AT MWCOG

The TPB should continue to keep safety at the forefront of the NCR agenda. Forums such as the Transportation Safety Subcommittee can be leveraged to share best practices and coordinate efforts among jurisdictions to identify countermeasures that are having the greatest impact across the region. This enables jurisdictions to leverage their capital program effectively for positive safety outcomes.

8.3 FUTURE AREAS OF RESEARCH

This section identifies potential areas of future research that TPB and its member jurisdictions and agencies may consider:

- **Explore exposure data for pedestrians and bicyclists:**
 - The crash analysis demonstrated a rising trend in crashes involving bicyclists and pedestrians. However, the latest available data for pedestrian and bicycle trips for the NCR precedes the study period and only provides information on commute trips. Whereas VMT data is widely available, annually updated across the region with consistent methodology, and can be used as a method to normalize crash rates, no such data is currently available for pedestrian and bicycle trips. The lack of such data makes it difficult to draw conclusions without an understanding of the number of pedestrians and bicyclists traveling on the road network.
- **Provide consistency in crash data between Maryland, Virginia, and the District of Columbia:**
 - There are minor inconsistencies within the definitions used across the jurisdictions to categorize crash data. For example, in Virginia, 'Left Turn Crashes' are included as a type of 'Angle Crashes,' whereas in Maryland and the District there is a separate category for 'Left Turn Crashes.' In Virginia, the definition of 'Young Driver' is greater than 15 and less than 21, whereas in Maryland and the District, the definition applies to anyone under the age of 21. In the District, there is a crash type for 'Parked Vehicle Crash,' which is not a category used in Maryland or Virginia.
- **Conduct further research into the impact of vehicle size and weight data on traffic safety:**
 - The diverging trends between the number of fatalities (trending upward) and the number of serious injuries (trending downward) suggests a change in the dynamics of crashes which result in fatalities. Based on the literature review, a change in the composition of consumer vehicle size and weight may contribute to this with a prevalence of larger and heavier vehicles such as SUVs and trucks. National research has established a correlation between larger motor vehicles and increased risk and

severity of pedestrian injuries due to higher front-end profiles and greater impact of force. However, there remains a gap in the literature regarding effective strategies to mitigate this trend. Further research is needed to understand the dynamics that are resulting in a rise in fatalities while serious injuries are decreasing.

- **Explore information sharing for post-crash care:**
 - As post-crash care is an objective of the Safe System Approach, there are opportunities to share information between Emergency Medical Services (EMS) and transportation agencies to coordinate post-crash care and gather further data on crashes that may not have been historically collected. Further research on access to trauma centers across the region may identify areas in which lack of post-crash care is contributing to the discrepancy between rising fatal crash numbers and falling serious injuries.
- **Inventory and report on safety-supportive activities undertaken by TPB members pertaining to the Safety Resolution:**
 - Further understanding of differences in implementation and adoption of safety countermeasures at the jurisdictional level may provide key findings that explain different outcomes in different jurisdictions.
- **Explore proactive tools and strategies for safety analysis:**
 - While it is industry practice to rely on historical crash data to identify road safety issues and develop countermeasures, the shortcomings of this approach are widely recognized. Such analysis is inherently backward looking because it requires road safety analysts to wait for crashes to happen to prevent them. There is a need for proactive methods for road safety analysis that do not rely on the occurrence of crashes. Advances in telematics and artificial intelligence have opened opportunities to identify safety issues in advance of a crash occurring. Telematics data can identify high-risk areas of roadway, correlations between behavioral factors (such as distracted driving) and crashes, and be used to aid in real-time traffic monitoring, post-crash response, and reactive traffic safety analysis. Technological advances also allow for the dynamic analysis of “near miss” events that do not show up in a traditional crash analysis and that can be used to generate safety insights rather than responding to crashes that have already occurred.
- **Conduct research on the relationship between traffic enforcement and safety outcomes.**
 - While this study did not assess how changes in volumes in traffic enforcement activities impact safety outcomes, this remains an important area for future exploration. Understanding whether increased enforcement leads to measurable improvements in roadway safety could help inform more effective resource allocation and program design.

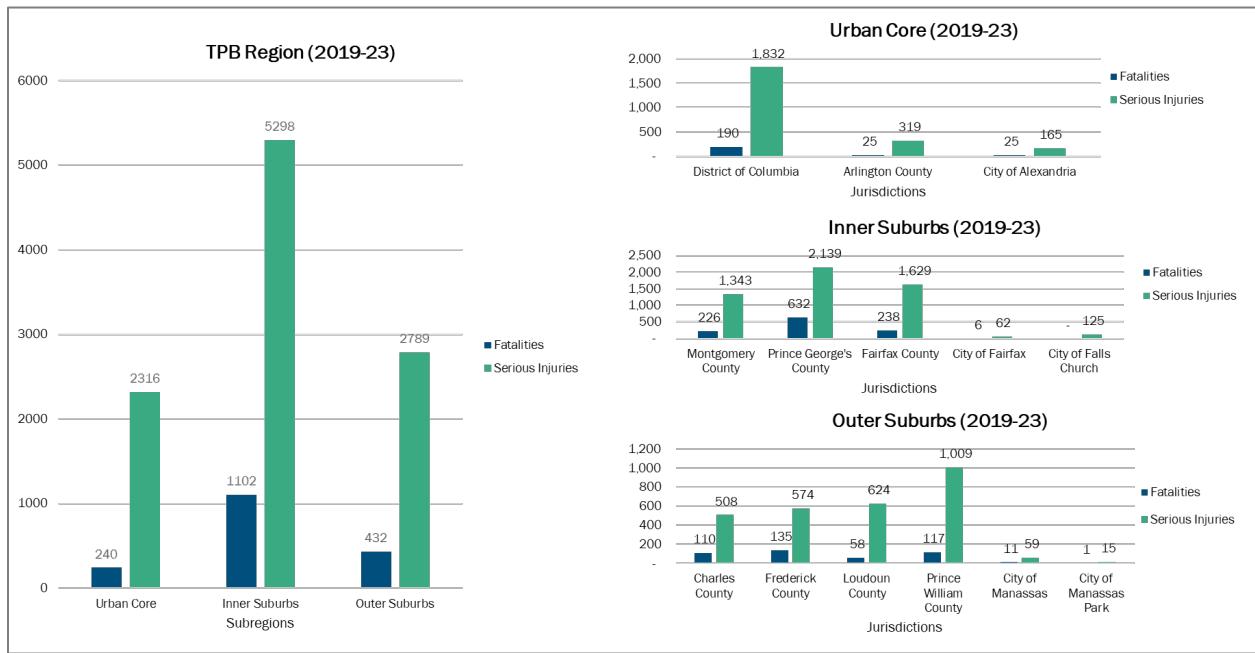
9

Appendices

9. Appendices

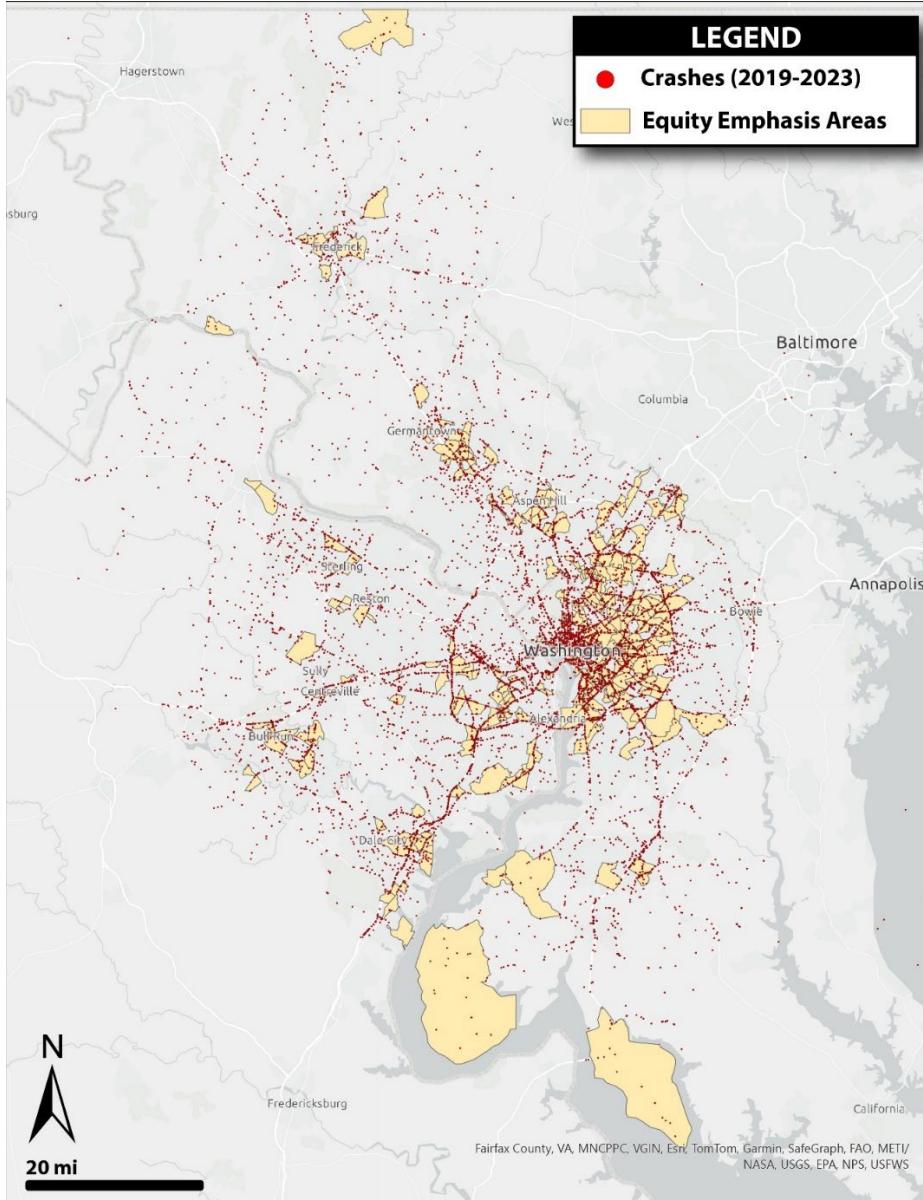
9.1 APPENDIX A: POPULATION DATA BY JURISDICTION, 2019-2023

Jurisdiction	2019	2020	2021	2022	2023	% Change (2019-2023)
District of Columbia	692,683	701,974	683,154	670,587	678,972	-2.0%
Suburban Maryland	2,363,050	2,375,615	2,447,675	2,454,963	2,471,268	4.6%
Charles County	159,428	161,448	165,209	167,035	171,973	7.9%
Frederick County	251,422	255,955	267,498	273,829	293,391	16.7%
Montgomery County	1,043,530	1,047,661	1,057,201	1,056,910	1,058,474	1.4%
Prince George's County	908,670	910,551	957,767	957,189	947,430	4.3%
Northern Virginia	2,489,315	2,512,535	2,529,723	2,539,241	2,556,143	2.7%
Arlington County	233,464	236,434	235,764	235,845	234,162	0.3%
Fairfax County	1,145,862	1,149,439	1,146,825	1,145,354	1,141,878	-0.3%
Loudoun County	395,134	405,312	413,574	420,773	436,347	10.4%
Prince William County	461,423	466,834	477,224	481,114	489,640	6.1%
City of Alexandria	157,613	158,309	158,185	157,594	155,230	-1.5%
City of Fairfax	23,531	23,312	23,980	24,242	25,144	6.9%
City of Falls Church	14,128	14,309	14,494	14,576	14,685	3.9%
City of Manassas	41,174	41,038	42,596	42,620	42,696	3.7%
City of Manassas Park	16,986	17,548	17,081	17,123	16,361	-3.7%
Total	5,545,048	5,590,124	5,660,552	5,664,791	5,706,383	2.9%


9.2 APPENDIX B: AVERAGE WEEKDAY VEHICLE MILES TRAVELED (VMT) DATA BY JURISDICTION. 2019-2023³⁰

Jurisdiction	2019	2020	2021	2022	2023	% Change (2019-2023)
District of Columbia	10,826,460	8,710,405	9,342,916	9,786,439	10,013,979	-7.5%
Suburban Maryland	63,313,562	52,870,082	58,854,658	59,202,740	59,950,685	-5.3%
Charles County	3,754,110	3,164,344	3,639,041	3,636,164	3,785,753	0.8%
Frederick County	9,467,260	7,978,279	9,058,767	9,084,658	9,300,411	-1.8%
Montgomery County	22,648,356	18,805,328	20,539,726	20,729,589	21,011,507	-7.2%
Prince George's County	27,443,836	22,922,131	25,617,123	25,752,329	25,853,014	-5.8%
Northern Virginia	56,635,696	43,293,544	48,081,696	54,606,326	55,549,030	-1.9%
Arlington County	4,707,760	3,481,197	3,553,404	4,537,570	4,415,035	-6.2%
Fairfax County	29,306,752	22,274,951	24,434,654	28,128,534	27,476,436	-6.2%
Loudoun County	8,227,063	6,356,708	7,629,343	8,743,344	9,298,067	13.0%
Prince William County	10,856,362	8,067,552	9,106,422	10,078,938	10,551,078	-2.8%
City of Alexandria	2,325,244	2,159,046	2,306,068	2,065,038	2,509,018	7.9%
City of Fairfax	503,811	389,140	440,850	415,458	480,590	-4.6%
City of Falls Church	144,555	109,898	111,260	127,407	135,850	-6.0%
City of Manassas	488,663	390,131	439,393	465,703	528,495	8.2%
City of Manassas Park	75,485	64,921	60,303	44,336	154,462	104.6%
Total	130,775,717	104,874,031	116,279,269	123,595,505	125,513,694	-4.0%

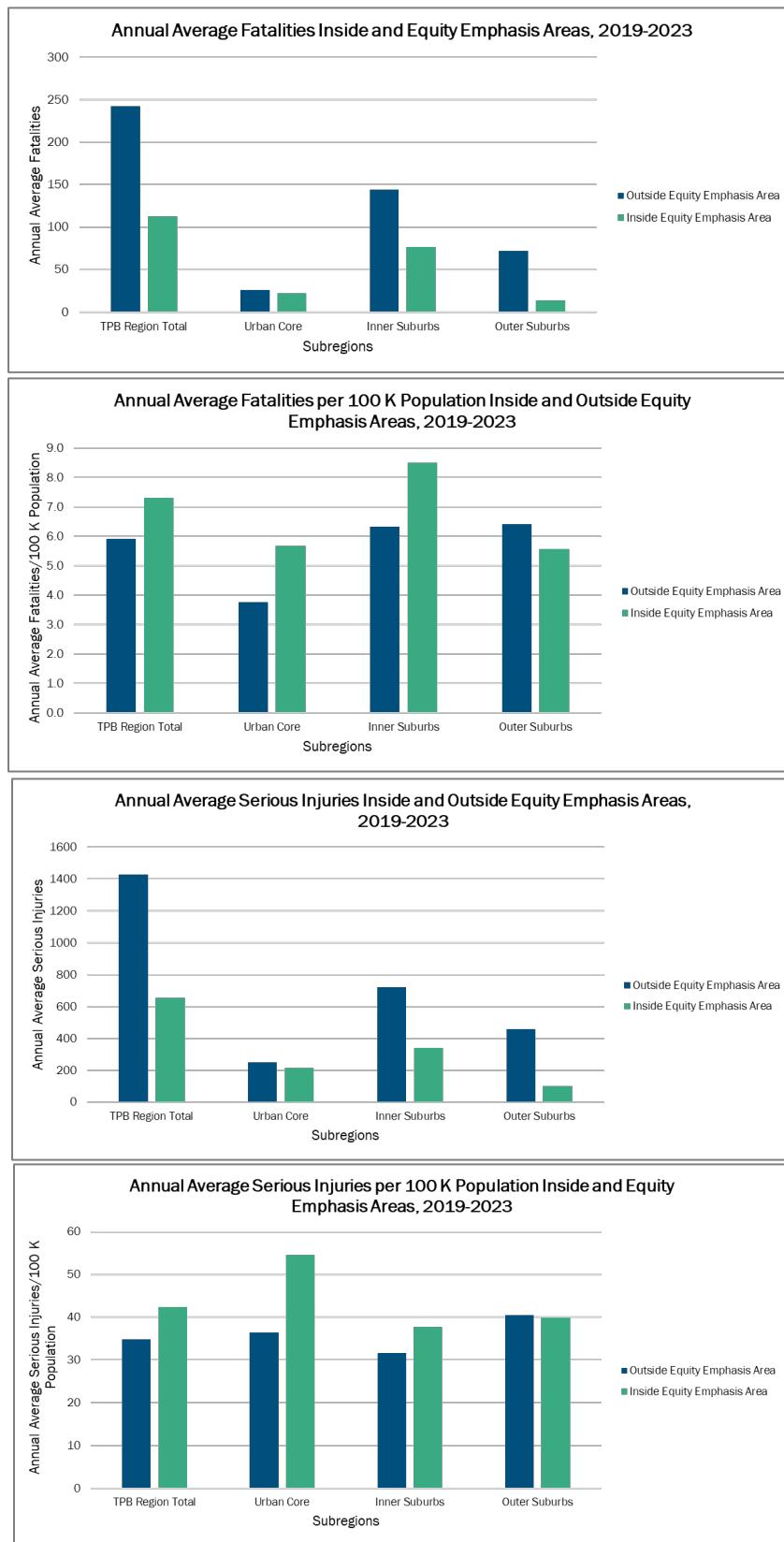
³⁰ <https://rtdc-mwcog.opendata.arcgis.com/datasets/ae0be1d6d98b461faf2359cae8178214/about> (Retrieved October 2025).



9.3 APPENDIX C: CRASH DATA BY TPB REGION AND JURISDICTION, 2019-2023

9.4 APPENDIX D: EQUITY EMPHASIS AREA ANALYSIS, 2019-2023

Equity Emphasis Areas (EEAs) are a regional planning concept adopted in 2021 by the COG Board of Directors to elevate equity and inform future growth and investment decisions. As of a 2022 update, 364 of the region's more than 1,300 census tracts are identified as EEAs, meaning they have a high concentration of low-income individuals and/or traditionally disadvantaged racial and ethnic population groups.³¹ The map below depicts the EEAs overlayed with crash incidents from 2019 to 2023.³² The graphs below illustrate crashes occurring either in or out of EEAs.



³¹ <https://www.mwcog.org/transportation/planning-areas/>.

³² As this study is an update of the previous Regional Safety Study, regional Equity Emphasis Areas were used in this analysis for consistency. Different or updated geographies may be used in future analyses.

APPENDICES

- Between 2019-2023, EEAs experienced approximately half the fatalities and serious injuries compared to the rest of the region.
- The fatality rate and serious injury rate (normalized by population) in EEAs was higher for the NCR, the urban core, and the inner suburbs. The trends were different for the outer suburbs, where low income areas had a lower fatality rate, but similar serious injury rate compared to the rest of the region.
- The 2019-2023 trends are similar to the 2013-2017 trends with a few exceptions. The past study showed: (a) low income areas in the urban core had higher fatalities than the rest of the urban core, (b) low income areas exhibited higher fatality rates across all geographies, (c) low income areas in the inner suburbs had a lower injury rate than the rest of the inner suburbs.

9.5 APPENDIX E: MAPPING RECOMMENDED COUNTERMEASURES TO FOCUS AREAS

SAFETY COUNTERMEASURE ³³	FOCUS AREAS AFFECTED BY COUNTERMEASURE					
SAFER ROADS						
Install pedestrian hybrid beacon and advanced yield signs, stop markings and signs, high visibility crosswalk markings	<input checked="" type="checkbox"/>		<input checked="" type="checkbox"/>			
Implement leading pedestrian interval (LPI) at intersections with high turning vehicle volumes. <i>Add bike signal phasing at intersections where protected bike lanes exist or where the location serves as a bicycle priority area. These measures reduce conflicts between turning vehicles and vulnerable road users and support safer multimodal travel.</i>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>			
Conduct vulnerable road user safety audits— <i>such as high injury network reviews—in areas with elevated rates of serious and fatal crashes. Expand the scope beyond single intersections to include corridors with recurring crash patterns. Address both pedestrian and bicyclist safety, especially at known conflict points or high-volume locations</i>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
Evaluate mid-block crossings with higher rates of fatalities and serious injuries (especially those over 10,000 Annual Average Daily Traffic (AADT)) to determine the need for more improvements such as medians, refuge islands, pedestrian hybrid beacon, and rectangular rapid flashing beacons	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>			

³³ Countermeasures are often subject to review/approval processes or other implementation policies not listed in this document. The appropriateness of any of these strategies need to be determined on a case-by-case basis

SAFETY COUNTERMEASURE ³³	FOCUS AREAS AFFECTED BY COUNTERMEASURE					
PEDESTRIAN HIT BY A VEHICLE	BICYCLIST HIT BY A VEHICLE	INTERSECTION	SPEEDING	IMPAIRED DRIVING	PRINCIPAL ARTERIAL	
Install pedestrian countdown signals	<input checked="" type="checkbox"/>		<input checked="" type="checkbox"/>			
Improve geometry of pedestrian and bicycle facilities at signalized intersections with high frequencies of pedestrian and/or bicycle crashes and on routes serving schools or other generators of pedestrian and bicycle traffic	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>		
Provide walkways where appropriate, including paved shoulders, shared-use paths, trails, bicycle lanes and/or separated bike lanes	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>				
Install <i>or evaluate</i> lighting at intersections and mid-block crossings with high pedestrian and <i>bicycle crash rates</i> to ensure motorists can see vulnerable users crossing the road	<input checked="" type="checkbox"/>		<input checked="" type="checkbox"/>			
Evaluate double-right turn lanes at intersections to determine if removal of one right-turn lane is warranted	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>		
Implement audible pedestrian crossing signals where appropriate	<input checked="" type="checkbox"/>		<input checked="" type="checkbox"/>			
Create pedestrian safety zone programs in areas with high occurrences of pedestrian crashes	<input checked="" type="checkbox"/>		<input checked="" type="checkbox"/>			
Replace intersections that have high numbers of fatalities and serious injuries with roundabouts, a circular intersection configuration with channelized approaches and a center island that results in lower speeds and fewer conflict points, <i>wherever feasible</i>	<input checked="" type="checkbox"/>		<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>		<input checked="" type="checkbox"/>

SAFETY COUNTERMEASURE ³³	FOCUS AREAS AFFECTED BY COUNTERMEASURE					
	PEDESTRIAN HIT BY A VEHICLE	BICYCLIST HIT BY A VEHICLE	INTERSECTION	SPEEDING	IMPAIRED DRIVING	PRINCIPAL ARTERIAL
Utilize multiphase signal operation at signalized intersections with a high frequency of angle crashes involving left turning and opposing through vehicles as well as rear-end and sideswipe crashes	<input checked="" type="checkbox"/>		<input checked="" type="checkbox"/>			
Increase change intervals (when the traffic lights change) at signalized intersections at locations where too-short signal change intervals cause rear-end crashes and crashes between vehicles continuing and entering the intersection between phases			<input checked="" type="checkbox"/>			
Improve left-turn channelization (providing definite paths for vehicles to follow) at signalized intersections where left-turn crashes, including those associated with left turning vehicles from through lanes, are an issue			<input checked="" type="checkbox"/>			
Improve right-turn channelization at signalized intersections with a high number of rear-end collisions			<input checked="" type="checkbox"/>			
Install LED heads and reflective backplates (reflective borders around traffic lights that make them more visible) in locations with high numbers of signalized intersection fatal and serious injury crashes			<input checked="" type="checkbox"/>			
Restrict access to properties using driveway closures or turn restrictions that are near signalized intersections with high crash frequencies related to driveways	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>			<input checked="" type="checkbox"/>
Restrict or eliminate turning maneuvers (including right turns on red) or employ signal coordination at signalized intersections with a high frequency of crashes related to turning maneuvers	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>			<input checked="" type="checkbox"/>
Improve signage at unsignalized intersections by ensuring foliage does not block the sign, the lettering is						

SAFETY COUNTERMEASURE ³³	FOCUS AREAS AFFECTED BY COUNTERMEASURE					
PEDESTRIAN HIT BY A VEHICLE	BICYCLIST HIT BY A VEHICLE	INTERSECTION	SPEEDING	IMPAIRED DRIVING	PRINCIPAL ARTERIAL	
still reflective, and the sign is located where motorists can see it			<input checked="" type="checkbox"/>			
Add reflective material to sign posts at unsignalized intersections			<input checked="" type="checkbox"/>			
Install LED-enhanced stop signs at unsignalized intersections where there are a higher-than-average number of fatal and serious injury crashes	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>			
Implement high friction <i>treatment at locations with a high incidence of roadway departure or run-off-the-road crashes, particularly on rural roadways or curves where loss of traction is a contributing factor</i>			<input checked="" type="checkbox"/>			
Implement left-turn traffic calming (left turn hardening) to reduce left turn speeds and provide for safe turning behavior at intersections that show a pattern of pedestrian-related left-turn crashes and intersection geometry that facilitates high speeds	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>		
Implement roadside design improvements such as clear zones, slope flattening, and adding or widening shoulders to improve the ability for drivers to safely recover if they leave the travel lane						<input checked="" type="checkbox"/>
Implement enhanced delineation treatments to alert drivers in advance of the curve including pavement markings; post-mounted delineation; larger signs and signs with enhanced retro reflectivity; and dynamic advance curve warning signs and sequential curve signs				<input checked="" type="checkbox"/>		<input checked="" type="checkbox"/>
Implement improvements including installation of cable barriers, guardrails, and concrete barriers to reduce the severity of roadway departure crashes						<input checked="" type="checkbox"/>

SAFETY COUNTERMEASURE ³³	FOCUS AREAS AFFECTED BY COUNTERMEASURE					
PEDESTRIAN HIT BY A VEHICLE	BICYCLIST HIT BY A VEHICLE	INTERSECTION	SPEEDING	IMPAIRED DRIVING	PRINCIPAL ARTERIAL	
Identify areas in the region that could benefit from traffic calming, including road diets that reduce the number of traffic lanes and planting trees that encourage reduced speeds	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>		<input checked="" type="checkbox"/>
Install high friction surface treatment (HFST) in locations where the available pavement friction is not adequate to support operating speeds at a sharp curve, inadequate cross-slope design, wet conditions, polished roadway surfaces, or driving speeds in excess of the curve advisory speed						<input checked="" type="checkbox"/>
Install longitudinal rumble strips and stripes in locations where run-off-the-road crashes are high						<input checked="" type="checkbox"/>
Install the Safety Edge to eliminate the vertical drop-off at the pavement edge, allowing drifting vehicles to return to the pavement safely						<input checked="" type="checkbox"/>
Develop a regional Safety Checklist or template as a tool for local jurisdictions to use during planning and project identification efforts	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>		<input checked="" type="checkbox"/>
SAFER PEOPLE						
Include pedestrian and bike safety and the risks of impairment for pedestrians, bicyclist, and drivers in alcohol related media campaigns	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>		<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	
Develop and implement pedestrian and bike safety programs for elementary school students	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>				

SAFETY COUNTERMEASURE ³³	FOCUS AREAS AFFECTED BY COUNTERMEASURE					
PEDESTRIAN HIT BY A VEHICLE	BICYCLIST HIT BY A VEHICLE	INTERSECTION	SPEEDING	IMPAIRED DRIVING	PRINCIPAL ARTERIAL	
Continue the regional Street Smart Campaign and strengthen by aiding member jurisdictions to engage street teams and other elements of the campaign at more locations throughout the year	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
<i>Develop and implement school focused pedestrian and bicycle strategies building on the work done in the Safe Routes to Schools program</i>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>				
Conduct education and fair, equitable, data-driven compliance campaigns focused on distracted driving (D.R.I.V.E, Texting and Driving Initiative)	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
Support legislative classification of distracted driving as a "moving violation" and decide if changes are needed	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>			<input checked="" type="checkbox"/>
Provide public information, education, and training for older drivers on risks associated with signalized intersections such as red-light running, speeding, not yielding to pedestrians, and difficulty judging speed and distance of approaching vehicles when making left turns	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>		<input checked="" type="checkbox"/>
Conduct a study to determine the safety needs of older adults in the region and coordinate internally and externally to provide information on transportation alternatives other than driving	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>		<input checked="" type="checkbox"/>
Implement safety awareness campaigns specifically for low seat belt use groups			<input checked="" type="checkbox"/>			<input checked="" type="checkbox"/>
Support state primary seat belt legislation			<input checked="" type="checkbox"/>			<input checked="" type="checkbox"/>

SAFETY COUNTERMEASURE ³³	FOCUS AREAS AFFECTED BY COUNTERMEASURE					
PEDESTRIAN HIT BY A VEHICLE	BICYCLIST HIT BY A VEHICLE	INTERSECTION	SPEEDING	IMPAIRED DRIVING	PRINCIPAL ARTERIAL	
Implement strategic and well-publicized compliance programs aimed at young drivers	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
Conduct well publicized, multi-component compliance campaigns throughout the region to address underage drinking, including licensing actions for underage alcohol violations, and vendor compliance checks to reduce underage drinking					<input checked="" type="checkbox"/>	
Implement and enhance server training programs to enable servers to identify underage customers and prevent overserving					<input checked="" type="checkbox"/>	
Encourage uniform support for open-container laws, an effective countermeasure that prevents impaired driving by prohibiting the possession of any open alcoholic beverage container and the consumption of any alcoholic beverage by motor vehicle drivers or passengers					<input checked="" type="checkbox"/>	
Provide and encourage use of ride sharing programs (like SoberRide) to reduce impaired driving; encourage more late-night transit service to provide options other than driving while impaired	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>			<input checked="" type="checkbox"/>	
Conduct well-publicized compliance programs aimed at impaired drivers	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	
SAFER SPEEDS						
Increase automated enforcement at intersections including speed on green lights, stop-light camera, blocking the box, etc.	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>		<input checked="" type="checkbox"/>

APPENDICES

SAFETY COUNTERMEASURE ³³	FOCUS AREAS AFFECTED BY COUNTERMEASURE					
SAFETY COUNTERMEASURE ³³	PEDESTRIAN HIT BY A VEHICLE	BICYCLIST HIT BY A VEHICLE	INTERSECTION	SPEEDING	IMPAIRED DRIVING	PRINCIPAL ARTERIAL
Reduce motor vehicle speeds by using data driven, effective, and equitable enforcement methods that utilize available technology, such as automated speed cameras, and other traffic calming strategies such as narrower lanes, adding roundabouts, and implementing road diets	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>		<input checked="" type="checkbox"/>
SAFER VEHICLES						
Increase use of ignition interlocks for impaired driving offenders	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
POST-CRASH CARE						
Evaluate incident response times to determine if additional Traffic Incident Management (TIMS) training and/or other resources are needed. Develop incident response plans for interstates and arterials throughout the region						<input checked="" type="checkbox"/>
Encourage adoption of Pre-Hospital Blood Transfusion programs to increase the survivability of crashes by delivering blood sooner to trauma patients	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
Encourage and facilitate the implementation of Signal Pre-Emption for Emergency Vehicles by supporting technology adoption and knowledge sharing			<input checked="" type="checkbox"/>			<input checked="" type="checkbox"/>
Encourage and facilitate regional coordination between Traffic Incident Management Programs (TIMs), Emergency Responders, and 911 dispatchers to improve safety, efficiency, and patient outcomes						<input checked="" type="checkbox"/>
Incorporate move-over messaging into the Street Smart program or campaigns.						<input checked="" type="checkbox"/>

