PHI - Electric Transportation

Presented to:

Metropolitan Washington Council of Governments April 29, 2011

Barbara M. Gonzalez

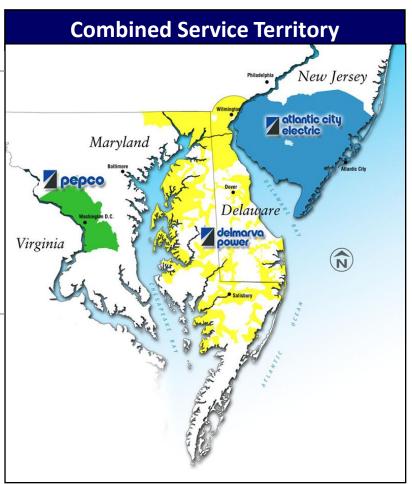
Manager, Special Projects, NERC

Pepco Holdings, Inc.

3 states and Washington DC in mid-Atlantic US

A PHI Company

A PHI Company



A PHI Company

Competitive Energy / Other

PHI Investments

Regulated transmission and distribution is PHI's core business.

PHI has a rich history in Electric Vehicles

- Member of DOE Site Operator Program
 - Maintained a fleet of 6 all-electric conversion vehicles
- Founding Member of EV America
 - Developed first utility standards for electric vehicles
 - Later turned over to DOE
- GM PrEView Drive Program
 - 60 customer drivers for two weeks at a time
 - Installed over 75 Level 2 chargers
- Toyota RAV4 EV Program
- Ford Ranger EV Program

Outreach Activities

- Institutions:
 - EPRI, EEI, PJM, University of Delaware, BEVI
- OEM's: Ford, General Motors, Fisker, BMW, etc.
- Agencies:
 - COG
 - Maryland Energy Administration
 - NJ Economic Development Authority
 - Architect of the Capitol
 - GSA, NIH, DOT, DOE
 - DC DOT
 - Delaware Transportation Council
 - Metro (WMATA)
- Other Utilities
 - Dominion, BGE, Progress Energy, SCE, DTE, etc.

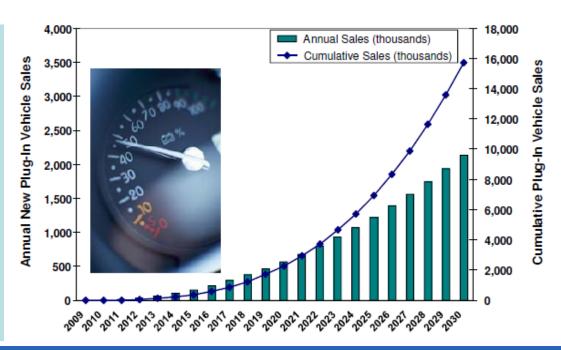
PHI Fleet Deployment (YTD)

Vehicle Type	ACE	DPL	Pepco	Total
Hybrid Cars	8	30	34	72
Hybrid SUV's	20	47	34	101
Hybrid Buckets	5	6	10	21
Total	33	83	78	194

Short Term Plan

- Participating in EPRI/Ford Escape PHEV Program
- Will deploy 10 Chevy Volts in fleet by Q2 2011
- PHEV Trucks:
 - Gas Compressor2011
 - EPRI Bucket Truck 2012
- EVSE Charging Stations Installed
 - 2 Edison Place
 - 1 NCRO
 - Bay Region and ACE (Planned)

Our Landscape

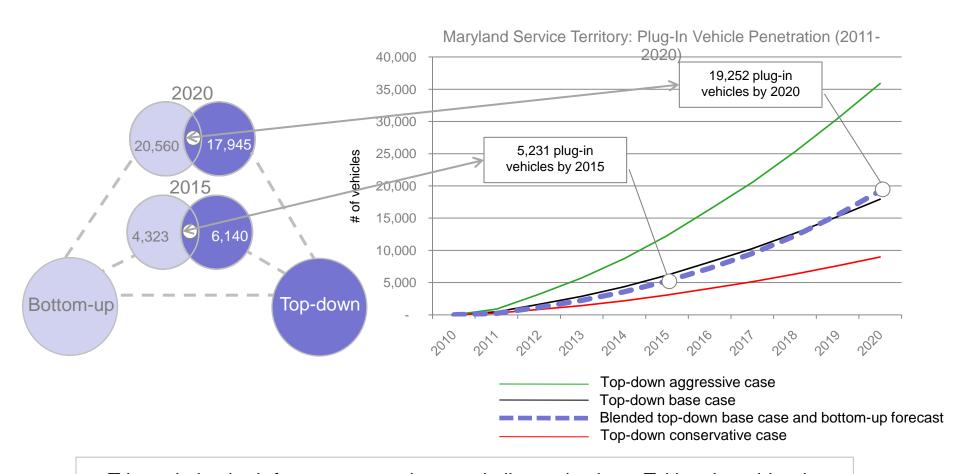


- Penetration projections are inconsistent
- Initial Impacts to infrastructure will be due to clustering
- Significant penetration is still years away
- Washington, DC region is expected to be any early target market for several manufacturers

OEM Deployment in the Pepco Region

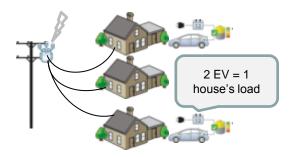
 Ford Transit Connect 	2010
Chevy Volt	2011
 Nissan Leaf 	2011
 Ford Focus 	2011
 Ford PHEV 	2012
 Fisker Nina PHEV 	2012
• Tesla	2012
 BMW Megacity 	2013

EPRI National Projection for Plug-In Vehicle Penetration

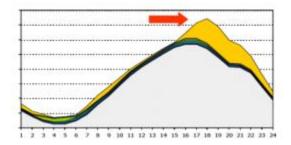


Projecting PEV Growth

Triangulating Between Top-Down and Bottom Up Forecasts


PHI has built a set of projections covering PEV take-up in each of its jurisdictions, using both top-down and bottom up techniques. In this example, the forecast covers the Maryland service territory.

Triangulating both forecasts reveals very similar projections. Taking the mid-point between the two yields 5,231 plug-in vehicles in 2015 and 19,252 in 2020.


Unmanaged EV charging can create problems for utilities.....

Local Distribution System Impact

- EV load is equivalent to ½ to full home load, so adding EVs may overload local transformers
- Older, more affluent neighborhoods with higher concentrations of EVs will be particularly at risk (e.g., Washington, DC & Maryland Suburbs)

Peak Load Increase

- Most drivers will return home and plug in between 4-8 PM, resulting in an increased afternoon peak
- Uncontrolled will create need for additional Infrastructure and result in longer and higher peak demand
- Impact to EmPower Maryland goals

Operational Needs

- Metering EVSE as separate load for billing, GHG credits
- Back-office integration of EVSE for control, billing
- Remote diagnostics for lower maintenance costs
- Need to avoid the need for installing a second meter by certifying the metrology in the chargers

EV Charging managed by a Smart Grid....

EV Control and Monitoring Features:

- EVSE device management (import/search/view/edit)
- View EVSE usage data (plug in/out, charge start/stop)
- Direct control of EVSE (start/stop charging)
- Basic charge scheduling (static schedules)
- Aggregated load impacts by transformer, feeder and substation

Moving Forward.....

Public Education

- Continue to reach out to local stakeholders
- Continue to participate in Customer Education programs and outreach to industry and research organizations

OEMs

- Continue vehicle demonstration / evaluation programs
- Continue to work collaboratively to integrate Plug-in Vehicles with the Smart Grid

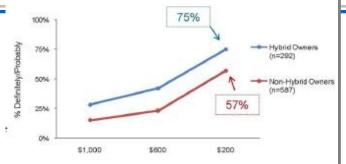
Technology Readiness

- Integrate EV charger monitoring and control into existing Smart Grid Deployment
- Further evaluate system impacts of EV and charging
- Evaluate vehicle batteries in stationary applications
- Evaluate how EV's and other distributed resources will change the distribution system

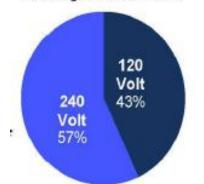
Questions???

Appendix

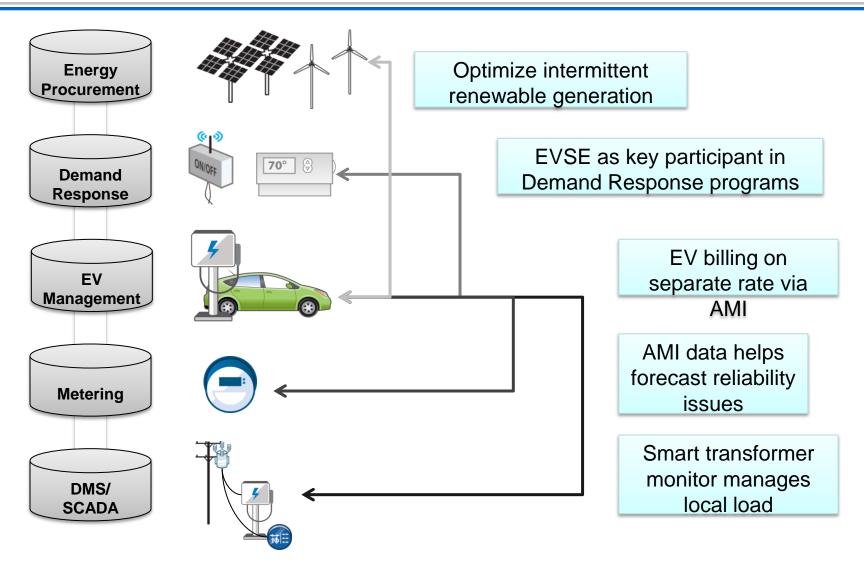
Further consideration.....


- Further infrastructure reviews need to be conducted to model the distribution system impacts of vehicle charging
- We need to combine this with more comprehensive/actual information on vehicle penetration into each region
- A rate structure needs to be developed that will properly incentivize EV ownership and charging (Off peak)
- We need to educate customers and key stakeholders on the benefits of off-peak charging of electric vehicles

EVs Need High-Powered Chargers


(2) EV's = 1 Residential Load

- Most vehicles will come with a Level 1 charger (120V home outlet)
- Level 2 charging required for overnight charging of larger batteries
- Faster charging also allows higher efficiency, smaller battery
- Customers surveyed preferred Level 2 chargers
- Cost of installation is a potential issue
 - 75% of existing hybrid owners would pay at least \$200
 - PrEView Program showed \$1200 average installation cost
 - May require installation incentive.


86% of those who would pay at least \$200 to upgrade to a 240V system already have an appliance with 240V service.

Characterizing Consumers' Interest in and Infrastructure Expectations for Electric Vehicles: Research Design and Survey Results, EPRI, May 2010

	Voltage / Current	Power	Chevy Volt	Nissan Leaf
Level 1	120V @ 12A	1.4 kW	6 hours	17 hours
Level 2	240V @ 32A	7.7 kW	4 hours	3 hours
	240V @ 70A	16.8 kW	½ hour	1.5 hours

Integration of EVs into the Smart Grid

ClipperCreek EVSE Overview

Power

Level 2: 240V, 30A

Communications

- Silver Spring Networks comms module
- 900MHz RF mesh radio, 2.4GHz HAN radio

Metrology

- Revenue-grade meter from TransData
- Meets ANSI accuracy standards

User interface

- SAE-J1772™ Coupler
- Button for on-demand charging
- Charge indicator light
- · Error indicator light

Charging features

- Charge on/low/off (low is configurable)
- In case of a fault, unit will auto-restart if possible

Pepco Holdings, Inc

Benefits of EVSE as Smart Grid Node

Robust, reliable communications Multiple connectivity paths No single point of failure •No HAN required for fleet/public **EVSE as Smart Grid Network node** Peer2Peer connectivity to SG devices •EVSE becomes a repeater in the Mesh Network Utility Backhaul Neighboring meter Customer Neighboring **HAN** gateway meter 5 5.95 **Home Charging ZigBee** Fleet/Public Charging Customer **EVSE** meter **HAN** repeater(s) Lower operating costs 3 **Maturity of standards** •SG is utility controlled Unaffected by ZigBee SEP upgrade Charger integrated with existing SG issues Communications network Future-proofing with OTA upgrades